

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

All rights reserved. For information about permission to reproduce

selections from this book,

write to Permissions, IT Revolution Press, LLC,

25 NW 23rd Pl, Suite 6314, Portland, OR 97210

e DevOps Handbook, Second Edition © 2021 by Gene Kim,

Matthew “Jez” Humble,

Patrick Debois, John Willis, and Nicole Forsgren

First edition © 2016 by Gene Kim, Jez Humble, Patrick Debois, and

John Willis

Printed in the United States of America

27 26 25 24 23 22 21 1 2 3 4 5 6 7 8 9 10

Cover design by Devon Smith Creative

Cover illustration by eboy

Book design by Devon Smith Creative

ISBN: 9781950508402

eBook ISBN: 9781950508433

Web PDF ISBN: 9781942788867

Audio ISBN: 9781950508440

e author of the 18F case study has dedicated the work to the

public domain by

waiving all of his or her rights to the work worldwide under

copyright law, including all related

and neighboring rights, to the extent allowed by law. You can copy,

modify, distribute, and

perform case study 18F, even for commercial purposes, all without

asking permission.

For information about special discounts for bulk purchases

or for information on booking authors for an event,

please visit ITRevolution.com.

THE DEVOPS HANDBOOK, SECOND EDITION

http://itrevolution.com/

CONTENTS

Figures & Tables

Note from the Publisher on the Second Edition

Foreword to the Second Edition: Nicole Forsgren

Foreword to the First Edition: John Allspaw

Preface

Introduction

Part I—The Three Ways

Part I Introduction

01 Agile, Continuous Delivery, and the ree Ways

NEW Case Study: Approaching Cruising

Altitude: American Airlines’ DevOps

Journey (Part 1) (2020)

02 e First Way: e Principles of Flow

NEW Case Study: Flow and Constraint

Management in Healthcare (2021)

03 e Second Way: e Principles of Feedback

NEW Case Study: Pulling the Andon Cord at

Excella (2018)

04 e ird Way: e Principles of Continual

Learning and Experimentation

NEW Case Study: e Story of Bell Labs (1925)

Part 1 Conclusion

Part II—Where to Start

Part II Introduction

05 Selecting Which Value Stream to Start With

Case Study: Nordstrom’s DevOps

Transformation (2014–2015)

NEW Case Study: Kessel Run: e Brownfield

Transformation of a Mid-Air Refueling

System (2020)

NEW Case Study: Scaling DevOps Across the

Business: American Airlines’ DevOps

Journey (Part 2) (2020)

NEW Case Study: Saving the Economy From

Ruin (With a Hyperscale PaaS) at HMRC

(2020)

06 Understanding the Work in Our Value Stream,

Making it Visible, and Expanding it Across the

Organization

Case Study: Nordstrom’s Experience with Value

Stream Mapping (2015)

Case Study: Operation InVersion at LinkedIn

(2011)

07 How to Design Our Organization and

Architecture with Conway’s Law in Mind

Case Study: Conway’s Law at Etsy (2015)

Case Study: API Enablement at Target (2015)

08 How to Get Great Outcomes by Integrating

Operations into the Daily Work of Development

Case Study: Big Fish Games (2014)

NEW Case Study: Better Ways of Working at

Nationwide Building Society (2020)

Part II Conclusion

Part III—The First Way: The Technical Practices of Flow

Part III Introduction

09 Create the Foundations of Our Deployment

Pipeline

Case Study: Enterprise Data Warehouse (2009)

NEW Case Study: How a Hotel Company Ran

$30B of Revenue in Containers (2020)

10 Enable Fast and Reliable Automated Testing

Case Study: Google Web Server (2005)

11 Enable and Practice Continuous Integration

Case Study: HP LaserJet Firmware (2006)

Case Study: Continuous Integration of

Bazaarvoice (2012)

12 Automate and Enable Low-Risk Releases

Case Study: Daily Deployments at CSG

International (2013)

Case Study: Etsy—Self-Service Developer

Deployment: An Example of Continuous

Deployment (2014)

Case Study: Dixons Retail—Blue-Green

Deployment for Point-of-Sale System (2008)

Case Study: Dark Launch of Facebook Chat

(2008)

NEW Case Study: Creating a Win-Win for Dev &

Ops at CSG (2016)

13 Architect for Low-Risk Releases

Case Study: Evolutionary Architecture at

Amazon (2002)

Case Study: Strangler Fig Pattern at Blackboard

Learn (2011)

Part III Conclusion

Part IV—The Second Way: The Technical Practices of

Feedback

Part IV Introduction

14 Create Telemetry to Enable Seeing and Solving

Problems

Case Study: DevOps Transformation at Etsy

(2012)

Case Study: Creating Self-Service Metrics at

LinkedIn (2011)

15 Analyze Telemetry to Better Anticipate Problems

and Achieve Goals

Case Study: Telemetry at Netflix (2012)

Case Study: Auto-Scaling Capacity at Netflix

(2012)

Case Study: Advanced Anomaly Detection

(2014)

16 Enable Feedback So Development and

Operations Can Safely Deploy Code

Case Study: Right Media (2006)

Case Study: e Launch and HandOff Readiness

Review Google (2010)

17 Integrate Hypothesis-Driven Development and

A/B Testing into Our Daily Work

Case Study: Hypothesis-Driven Development at

Intuit, Inc. (2012)

Case Study: Doubling Revenue Growth through

Fast Release Cycle Experimentation at

Yahoo! Answers (2010)

18 Create Review and Coordination Processes to

Increase Quality of Our Current Work

Case Study: Peer Review at GitHub (2011)

NEW Case Study: From Six-Eye Principle to

Release at Scale at Adidas (2020)

Case Study: Code Reviews at Google (2010)

Case Study: Pair Programming Replacing Broken

Code Review Processes at Pivotal Labs

(2011)

Part IV Conclusion

Part V—The Third Way: The Technical Practices of

Continual Learning and Experimentation

Part V Introduction

19 Enable and Inject Learning into Daily Work

Case Study: AWS US-East and Netflix (2011)

NEW Case Study: Turning an Outage into a

Powerful Learning Opportunity at CSG

(2020)

20 Convert Local Discoveries into Global

Improvements

Case Study: Standardizing a New Technology

Stack at Etsy (2010)

NEW Case Study: Crowdsourcing Technology

Governance at Target (2018)

21 Reserve Time to Create Organizational Learning

and Improvement

Case Study: irty-Day Challenge at Target

(2015)

Case Study: Internal Technology Conferences at

Nationwide Insurance, Capital One, and

Target (2014)

Part V Conclusion

Part VI—The Technological Practices of Integrating

Information Security, Change Management, and

Compliance

Part VI Introduction

22 Information Security Is Everyone’s Job Every

Day

Case Study: Static Security Testing at Twitter

(2009)

Case Study: 18F Automating Compliance for the

Federal Government with Compliance

Masonry (2016)

Case Study: Instrumenting the Environment at

Etsy (2010)

NEW Case Study: Shifting Security Left at

Fannie Mae (2020)

23 Protecting the Deployment Pipeline

Case Study: Automated Infrastructure Changes

as Standard Changes at Salesforce.com

(2012)

Case Study: PCI Compliance and a Cautionary

Tale of Separating Duties at Etsy (2014)

NEW Case Study: Biz and Tech Partnership

toward Ten “No Fear Releases” Per Day at

Capital One (2020)

Case Study: Proving Compliance in Regulated

Environments (2015)

Case Study: Relying on Production Telemetry

for ATM Systems (2013)

Part VI Conclusion

A Call to Action: Conclusion to e DevOps

Handbook

Afterword to the Second Edition

Appendices

Bibliography

Notes

Index

Acknowledgments

About the Authors

FIGURES & TABLES

Table 0.1: e Ever Accelerating Trend toward Faster,

Cheaper, Lower Risk Delivery of Software

Figure 0.1: Deployments per Day vs. Number of

Developers

Figure 1.1: Lead Time vs. Process Time of a Deployment

Operation

Figure 1.2: A Technology Value Stream with a

Deployment Lead Time of ree Months

Figure 1.3: A Technology Value Stream with a Lead Time

of Minutes

Figure 1.4: e ree Ways

Figure 1.5: American Airlines’ DevOps Transformation

Journey

Figure 2.1: An Example Kanban Board Spanning

Requirements, Dev, Test, Staging, and In

Production

Figure 2.2: Simulation of “Envelope Game”

Figure 3.1: Feedback Cycle Times

Figure 3.2: Cycle Time vs. Andon Pulls at Excella

Table 4.1: e Westrum Organizational Typology Model

Figure 5.1: e Technology Adoption Curve

Figure 5.2: American Airlines’ Delivery Transformation

Table 5.1: American Airlines’ New Vocabulary

Figure 6.1: An Example Value Stream Map

Figure 6.2: Invest 20% of Capacity in those Who Create

Positive, User-Invisible Value

Figure 7.1: Functional vs. Market Orientation

Table 7.1: Specialists vs. Generalists vs. “E-shaped” Staff

Figure 8.1: Functional Teams in Silos vs. Long-Lived,

Multi-Skilled Teams

Figure

10.1:

e Deployment Pipeline

Figure

10.2:

e Ideal and Non-Ideal Automated Testing

Pyramids

Figure

10.3:

Running Automated and Manual Tests in

Parallel

Figure

12.1:

Number of Developers Deploying per Week at

Facebook

Figure

12.2:

Daily Deployments at CSG International

Figure

12.3:

Elite and High Performers Achieve Faster

Deployment Lead Times and MTTR (2019)

Figure e Deployinator Console at Etsy

12.4:

Figure

12.5:

Blue-Green Deployment Patterns

Figure

12.6:

e Canary Release Pattern

Figure

12.7:

How Structure Influences Behavior and

Quality

Figure

12.8:

From Siloed Approach to Cross-Functional

Teams

Figure

12.9:

Conventional vs. Cross-Functional Structure

Figure

13.1:

Google Cloud Datastore

Table 13.1: Architectural Archetypes

Figure

13.2:

Blackboard Learn Code Repository: Before

Building Blocks

Figure

13.3:

Blackboard Learn Code Repository: After

Building Blocks

Figure

14.1:

Incident Resolution Time for Elite, High,

Medium, and Low Performers (2019)

Figure

14.2:

Monitoring Framework

Figure One Line of Code to Generate Telemetry using

14.3: StatsD and Graphite at Etsy

Figure

14.4:

User Excitement of New Features in User

Forum Posts after Deployments

Figure

15.1:

Standard Deviations (σ)Mean (µ) with

Gaussian Distribution

Figure

15.2:

Downloads per Minute: Over-Alerting when

Using “ree Standard Deviation” Rule

Figure

15.3:

Downloads per Minute: Histogram of Data

Showing Non-Gaussian Distribution

Figure

15.4:

Netflix Customer Viewing Demand for Five

Days

Figure

15.5:

Netflix Scryer Forecasting Customer Traffic

and the Resulting AWS Schedule of Computer

Resources

Figure

15.6:

Autodesk Share Price and irty-Day Moving

Average Filter

Figure

15.7:

Transaction Volume: Under-Alerting Using

“ree Standard Deviation” Rule

Figure

15.8:

Transaction Volume: Using Kolmogorov-

Smirnov Test to Alert on Anomalies

Figure

16.1:

Deployment to Etsy.com Causes PHP Run-

Time Warnings and Is Quickly Fixed

Figure

16.2:

e “Service Handback” at Google

Figure

16.3:

e LRR and HRR at Google

Figure

18.1:

Comments and Suggestions on a GitHub Pull

Request

Figure

18.2:

Size of Change vs. Lead Time for Reviews at

Google

Figure

21.1:

e ASREDS Learning Loop

Figure

22.1:

Jenkins Running Automated Security Testing

Figure

22.2:

Number of Brakeman Security Vulnerabilities

Detected

Figure

22.3:

Time to Remediate vs. Time to Update

Dependencies (TTU)

Figure

22.4:

Five Behavioral Clusters for Open-Source

Projects

Figure

22.5:

Developers See SQL Injection Attempts in

Graphite at Etsy

Figure

AF.1:

Average Development Window by Day of Week

per User

Figure A.1: e Core, Chronic Conflict Facing Every IT

Organization

Table A.1: e Downward Spiral

Figure A.2: Queue Size and Wait Times as Function of

Percent Utilization

Table A.2: Two Stories

Figure A.3: e Toyota Andon Cord

NOTE FROM THE PUBLISHER ON THE
SECOND EDITION

Impact of the First Edition

Since the original publication of e DevOps Handbook, data

from the State of DevOps Reports and other research continue

to show that DevOps improves time to value for businesses

and increases productivity and worker well-being. It also

helps create nimble, agile businesses that can adjust to

overwhelming change, as witnessed in the COVID-19

pandemic of 2020 and beyond.

“I think 2020 has been illuminating in showing what

technology can do in a time of incredible crisis,” Gene Kim

said in his “State of DevOps: 2020 and Beyond” article. “e

crisis provided a catalyst for rapid change. And I’m thankful

we were able to rise and meet it.”1

One of the underpinnings of DevOps and e DevOps

Handbook is that it shows—and is indeed written for—the

horses not the unicorns of the business and technology

world. DevOps was never, and still is not, only effective at

technology giants—the FAANGs—or startups. is book and

the DevOps community as a whole have shown time and time

again that DevOps practices and processes can take even the

most legacy-riddled, old “horse” enterprise organization and

turn it into a nimble technology organization.

In 2021, it is clearer than ever before that every business

is a technology business and every leader is a technology

leader. Not only can technology no longer be ignored or

relegated to the basements; it must also be considered a vital

part of the entire strategic endeavor of the business.

Changes to the Second Edition

In this expanded edition of e DevOps Handbook, the

authors have updated the main text where new research,

learnings, and experiences have developed and shaped our

understanding of DevOps and how it is used in the industry.

Additionally we are pleased to include renowned researcher

Dr. Nicole Forsgren as co-author to help update and expand

the text with new research and supporting metrics.

CONTINUOUS

LEARNING

We’ve added some additional insights and

resources we’ve learned since the �rst edition

came out. ese “Continuous Learning”

sections are highlighted throughout the book

as you see here and include new supporting

data and additional resources, tools, and

techniques to use on your DevOps journey.

We’ve also expanded the book with additional case

studies to illustrate how far DevOps has spread throughout

all industries, especially how it has spread beyond the IT

department and into the C-suite itself. In addition, at the end

of each case study we have added a key takeaway or two that

highlight the most important, though not exclusive, lessons

learned. Finally, we’ve updated the conclusion to each part

with new resources to continue your learning journey.

What’s Next for DevOps and the Age of Soware

If the past �ve years have taught us anything, it is how

important technology is and how much we can achieve when

IT and the business speak openly and honestly, as DevOps

facilitates.

Perhaps nothing illustrates this more than the rapid

changes that were necessary due to the COVID-19 pandemic

of 2020 and beyond. rough the use of DevOps,

organizations mobilized technology to get services to

customers, internal and external, in a moment of rapid,

unprecedented change. ese large, complex organizations,

known for their inability to pivot and adapt quickly, suddenly

had no other choice.

American Airlines also was able to take advantage of their

ongoing DevOps transformation to build big wins quickly, as

you can read about in Chapters 1 and 5.

Dr. Chris Strear relates his experiences using the eory

of Constraints to optimize �ow in hospitals, as you can read

about in Chapter 2.

In 2020 Nationwide Building Society, the world’s largest

mutual �nancial institution, was able to respond in weeks to

customer needs versus the typical years, thanks to their

ongoing DevOps transformation. You can read more about

their experience in Chapter 8.

But while technology is a piece of a successful

transformation into future ways of working, business

leadership must lead the charge. e bottleneck of today is no

longer just technical practices (though they still exist); the

biggest challenge and necessity is getting business leadership

on board. Transformation must be co-created between the

business and technology, and the theories presented here can

lead that change.

e enterprise can no longer sustain a binary thought

process: top down or tech only. We must achieve true

collaboration. Ninety percent of that work involves getting

the right people engaged, onboard, and aligned. Start there

and we can maintain the resulting motivation into the future.

—IT Revolution

Portland, OR

June 2021

I
FOREWORD TO THE SECOND EDITION

t has been �ve years since the �rst edition of e DevOps

Handbook was released. While so much has changed, so

much has also remained the same. Some of our tools and

technologies are no longer in vogue or might not exist, but

that shouldn’t detract any readers. Although the technology

landscape has shifted, the underlying principles presented in

this book remain as relevant as ever.

In fact, the need for DevOps is even greater today, as

organizations need to deliver value quickly, safely, securely,

and reliably to their customers and users. To do this, they

need to transform their internal processes and leverage

technology to deliver value—using DevOps practices. is is

true for organizations around the world and across all

industry verticals.

Over the past several years, I’ve led research in the annual

State of DevOps Reports (�rst with Puppet and later with

DORA and Google), with co-authors Jez Humble and Gene

Kim. e research has con�rmed that many of the practices

described in this book lead to improved outcomes like speed

and stability of software releases; reductions in deployment

pain and burnout of our engineers; and contributions to

organizational performance, including pro�tability,

productivity, customer satisfaction, effectiveness, and

efficiency.

For the second edition of e DevOps Handbook, we have

refreshed the text with updated data based on the latest

research and best practices, and included new case studies to

share even more stories about what transformations look like

“on the ground.” anks for joining us on this journey of

continuous improvement.

—Nicole Forsgren, PhD

Partner at Microsoft Research

2021

I
FOREWORD TO THE FIRST EDITION

n the past, many �elds of engineering have experienced a

sort of notable evolution, continually “leveling up” its

understanding of its own work. While there are university

curriculums and professional support organizations situated

within speci�c disciplines of engineering (civil, mechanical,

electrical, nuclear, etc.), the fact is, modern society needs all

forms of engineering to recognize the bene�ts of and work in

a multidisciplinary way.

ink about the design of a high-performance vehicle.

Where does the work of a mechanical engineer end and the

work of an electrical engineer begin? Where (and how, and

when) should someone with domain knowledge of

aerodynamics (who certainly would have well-formed

opinions on the shape, size, and placement of windows)

collaborate with an expert in passenger ergonomics? What

about the chemical in�uences of fuel mixture and oil on the

materials of the engine and transmission over the lifetime of

the vehicle? ere are other questions we can ask about the

design of an automobile, but the end result is the same:

success in modern technical endeavors absolutely requires

multiple perspectives and expertise to collaborate.

In order for a �eld or discipline to progress and mature, it

needs to reach a point where it can thoughtfully re�ect on its

origins, seek out a diverse set of perspectives on those

re�ections, and place that synthesis into a context that is

useful for how the community pictures the future.

is book represents such a synthesis and should be seen

as a seminal collection of perspectives on the (I will argue,

still emerging and quickly evolving) �eld of software

engineering and operations.

No matter what industry you are in, or what product or

service your organization provides, this way of thinking is

paramount and necessary for survival for every business and

technology leader.

—John Allspaw, CTO, Etsy

Brooklyn, NY, August 2016

T

PREFACE

Aha!

he journey to complete e DevOps Handbook has been a

long one—it started with weekly working Skype calls

between the co-authors in February of 2011, with the vision

of creating a prescriptive guide that would serve as a

companion to the as-yet-un�nished book e Phoenix Project:

A Novel About IT, DevOps, and Helping Your Business Win.

More than �ve years later, with over two thousand hours

of work, e DevOps Handbook is �nally here. Completing this

book has been an extremely long process, although one that

has been highly rewarding and full of incredible learning,

with a scope that is much broader than we originally

envisioned. roughout the project, all the co-authors shared

a belief that DevOps is genuinely important, formed in a

personal “aha” moment much earlier in each of our

professional careers, which I suspect many of our readers will

resonate with.

Gene Kim

I’ve had the privilege of studying high-performing

technology organizations since 1999, and one of the

earliest findings was that boundary-spanning between

the different functional groups of IT Operations,

Information Security, and Development was critical to

success. But I still remember the first time I saw the

magnitude of the downward spiral that would result

when these functions worked toward opposing goals.

It was 2006, and I had the opportunity to spend a

week with the group that managed the outsourced IT

Operations of a large airline reservation service. ey

described the downstream consequences of their large,

annual software releases: each release would cause

immense chaos and disruption for the outsourcer as

well as customers; there would be SLA (service level

agreement) penalties because of the customer-

impacting outages; there would be layoffs of the most

talented and experienced staff because of the resulting

profit shortfalls; there would be much unplanned work

and firefighting so that the remaining staff couldn’t

work on the ever-growing service request backlogs

coming from customers; the contract would be held

together by the heroics of middle management; and

everyone felt that the contract would be doomed to be

put out for re-bid in three years.

e sense of hopelessness and futility that resulted

created, for me, the beginnings of a moral crusade.

Development seemed to always be viewed as strategic,

but IT Operations was viewed as tactical, often

delegated away or outsourced entirely, only to return in

five years in worse shape than it was first handed over.

For many years, many of us knew that there must

be a better way. I remember seeing the talks coming out

of the 2009 Velocity Conference, describing amazing

outcomes enabled by architecture, technical practices,

and cultural norms that we now know as DevOps. I was

so excited because it clearly pointed to the better way

that we had all been searching for. And helping spread

that word was one of my personal motivations to co-

author e Phoenix Project. You can imagine how

incredibly rewarding it was to see the broader

community react to that book, describing how it helped

them achieve their own “aha” moments.

Jez Humble

My DevOps “aha” moment was at a startup in 2000—

my first job after graduating. For some time, I was one

of two technical staff. I did everything: networking,

programming, support, systems administration. We

deployed software to production by FTP directly from

our work-stations.

en in 2004 I got a job at oughtWorks, a

consultancy where my first gig was working on a project

involving about seventy people. I was on a team of eight

engineers whose full-time job was to deploy our

software into a production-like environment. In the

beginning, it was really stressful. But over a few

months, we went from manual deployments that took

two weeks to an automated deployment that took one

hour, where we could roll forward and back in

milliseconds using the blue-green deployment pattern

during normal business hours.

at project inspired a lot of the ideas in both the

Continuous Delivery book and this one. A lot of what

drives me and others working in this space is the

knowledge that, whatever your constraints, we can

always do better, and the desire to help people on their

journey.

Patrick Debois

For me, it was a collection of moments. In 2007 I was

working on a data center migration project with some

Agile teams. I was jealous that they had such high

productivity—able to get so much done in so little time.

For my next assignment, I started experimenting

with Kanban in Operations and saw how the dynamic

of the team changed. Later, at the Agile Toronto 2008

conference, I presented my IEEE paper on this, but I felt

it didn’t resonate widely in the Agile community. We

started an Agile system administration group, but I

overlooked the human side of things.

After seeing the 2009 Velocity Conference

presentation “10 Deploys per Day” by John Allspaw and

Paul Hammond, I was convinced others were thinking

in a similar way. So I decided to organize the first

DevOpsDays, accidentally coining the term DevOps.

e energy at the event was unique and contagious.

When people started to thank me because it changed

their life for the better, I understood the impact. I

haven’t stopped promoting DevOps since.

John Willis

In 2008, I had just sold a consulting business that

focused on large-scale, legacy IT operations practices

around configuration management and monitoring

(Tivoli) when I first met Luke Kanies (the founder of

Puppet Labs). Luke was giving a presentation on Puppet

at an O’Reilly open-source conference on configuration

management (CM).

At first I was just hanging out at the back of the

room, killing time and thinking, “What could this

twenty-year-old tell me about configuration

management?” After all, I had literally been working my

entire life at some of the largest enterprises in the

world, helping them architect CM and other operations

management solutions. However, about five minutes

into his session, I moved up to the first row and realized

everything I had been doing for the last twenty years

was wrong. Luke was describing what I now call second-

generation CM.

After his session, I had an opportunity to sit down

and have coffee with him. I was totally sold on what we

now call infrastructure as code. However, while we met

for coffee, Luke started going even further, explaining

his ideas. He started telling me he believed that

Operations was going to have to start behaving like

software developers. ey were going to have to keep

their configurations in source control and adopt CI/CD

delivery patterns for their workflow. Being the old IT

Operations person at the time, I think I replied to him

with something like, “at idea is going to sink like Led

Zeppelin with Ops folk.” (I was clearly wrong.)

en about a year later, in 2009, at another O’Reilly

conference, Velocity, I saw Andrew Clay Shafer give a

presentation on Agile infrastructure. In his

presentation, Andrew showed this iconic picture of a

wall between developers and Operations with a

metaphorical depiction of work being thrown over the

wall. He coined this “the wall of confusion.” e ideas he

expressed in that presentation codified what Luke was

trying to tell me a year earlier. at was the light bulb

for me. Later that year, I was the only American invited

to the original DevOpsDays in Ghent. By the time that

event was over, this thing we call DevOps was clearly in

my blood.

DevOps Myths

Clearly, the co-authors of this book all came to a similar

epiphany, even if they came there from very different

directions. But there is now an overwhelming weight of

evidence that the problems described above happen almost

everywhere, and that the solutions associated with DevOps

are nearly universally applicable.

e goal of writing this book is to describe how to

replicate the DevOps transformations we’ve been a part of or

have observed, as well as dispel many of the myths of why

DevOps won’t work in certain situations. Below are some of

the most common myths we hear about DevOps.

Myth—DevOps Is Only for Startups: While DevOps

practices have been pioneered by the web-scale, internet

“unicorn” companies such as Google, Amazon, Net�ix, and

Etsy, each of these organizations has, at some point in their

history, risked going out of business because of the problems

associated with more traditional “horse” organizations:

highly dangerous code releases that were prone to

catastrophic failure, inability to release features fast enough

to beat the competition, compliance concerns, an inability to

scale, high levels of distrust between Development and

Operations, and so forth.

However, each of these organizations was able to

transform their architecture, technical practices, and culture

to create the amazing outcomes that we associate with

DevOps. As Dr. Branden Williams, an information security

executive, said, “Let there be no more talk of DevOps

unicorns or horses but only thoroughbreds and horses

heading to the glue factory.”1

Myth—DevOps Replaces Agile: DevOps principles and

practices are compatible with Agile, with many observing that

DevOps is a logical continuation of the Agile journey that

started in 2001. Agile often serves as an effective enabler of

DevOps because of its focus on small teams continually

delivering high-quality code to customers.

Many DevOps practices emerge if we continue to manage

our work beyond the goal of “potentially shippable code” at

the end of each iteration, extending it to having our code

always in a deployable state, with developers checking into

trunk daily, and if we demonstrate our features in

production-like environments.

Myth—DevOps Is Incompatible with ITIL: Many view

DevOps as a backlash to ITIL or ITSM (IT Service

Management), which was originally published in 1989. ITIL

has broadly in�uenced multiple generations of Ops

practitioners, including one of the co-authors, and is an ever-

evolving library of practices intended to codify the processes

and practices that underpin world-class IT Operations,

spanning service strategy, design, and support.

DevOps practices can be made compatible with ITIL

processes. To support the shorter lead times and higher

deployment frequencies associated with DevOps, many areas

of ITIL become fully automated, solving many problems

associated with the con�guration and release management

processes (e.g., keeping the con�guration management

database and de�nitive software libraries up to date). And

because DevOps requires fast detection and recovery when

service incidents occur, the ITIL disciplines of service design,

incident, and problem management remain as relevant as

ever.

Myth—DevOps Is Incompatible with Information Security

and Compliance: e absence of traditional controls (e.g.,

segregation of duty, change approval processes, manual

security reviews at the end of the project) may dismay

information security and compliance professionals.

However, that doesn’t mean that DevOps organizations

don’t have effective controls. Instead of security and

compliance activities only being performed at the end of the

project, controls are integrated into every stage of daily work

in the software development life cycle, resulting in better

quality, security, and compliance outcomes.

Myth—DevOps Means Eliminating IT Operations, or

“NoOps”: Many misinterpret DevOps as the complete

elimination of the IT Operations function. However, this is

rarely the case. While the nature of IT Operations work may

change, it remains as important as ever. IT Operations

collaborates far earlier in the software life cycle with

Development, who continues to work with IT Operations

long after the code has been deployed into production.

Instead of IT Operations doing manual work that comes

from work tickets, it enables developer productivity through

APIs and self-serviced platforms that create environments,

test and deploy code, monitor and display production

telemetry, and so forth. By doing this, IT Operations becomes

more like Development (as do QA and Infosec), engaged in

product development, where the product is the platform that

developers use to safely, quickly, and securely test, deploy,

and run their IT services in production.

Myth—DevOps Is Just “Infrastructure as Code” or

Automation: While many of the DevOps patterns shown in

this book require automation, DevOps also requires cultural

norms and an architecture that allows for the shared goals to

be achieved throughout the IT value stream. is goes far

beyond just automation. As Christopher Little, a technology

executive and one of the earliest chroniclers of DevOps,

wrote, “DevOps isn’t about automation, just as astronomy

isn’t about telescopes.”2

Myth—DevOps Is Only for Open-Source Software:

Although many DevOps success stories take place in

organizations using software such as the LAMP stack (Linux,

Apache, MySQL, PHP), achieving DevOps outcomes is

independent of the technology being used. Successes have

been achieved with applications written in Microsoft.NET,

COBOL, and mainframe assembly code, as well as with SAP

and even embedded systems (e.g., HP LaserJet �rmware).

Spreading the Aha! Moment

Each of the authors has been inspired by the amazing

innovations happening in the DevOps community and the

outcomes they are creating, including safe systems of work

and enabling small teams to quickly and independently

develop and validate code that can be safely deployed to

customers. Given our belief that DevOps is a manifestation of

creating dynamic, learning organizations that continually

reinforce high trust cultural norms, it is inevitable that these

organizations will continue to innovate and win in the

marketplace.

It is our sincere hope that e DevOps Handbook will serve

as a valuable resource for many people in different ways:

• a guide for planning and executing DevOps

transformations

• a set of case studies to research and learn from

• a chronicle of the history of DevOps

• a means to create a coalition that spans Product

Owners, Architecture, Development, QA, IT

Operations, and Information Security to achieve

common goals

• a way to get the highest levels of leadership support

for DevOps initiatives, as well as a moral imperative to

change the way we manage technology organizations

to enable better effectiveness and efficiency, as well as

enabling a happier and more humane work

environment, helping everyone become lifelong

http://microsoft.net/

learners—this not only helps everyone achieve their

highest goals as human beings, but also helps their

organizations win

I

INTRODUCTION

Imagine a World Where Dev and Ops Become DevOps

magine a world where product owners, Development, QA,

IT Operations, and Infosec work together, not only to help

each other, but also to ensure that the overall organization

succeeds. By working toward a common goal, they enable the

fast �ow of planned work into production (e.g., performing

tens, hundreds, or even thousands of code deploys per day),

while achieving world-class stability, reliability, availability,

and security.

In this world, cross-functional teams rigorously test their

hypotheses of which features will most delight users and

advance the organizational goals. ey care not just about

implementing user features, but also about actively ensuring

their work �ows smoothly and frequently through the entire

value stream without causing chaos and disruption to IT

Operations or any other internal or external customer.

Simultaneously, QA, IT Operations, and Infosec are

always working on ways to reduce friction for the team,

creating the work systems that enable developers to be more

productive and get better outcomes. By adding the expertise

of QA, IT Operations, and Infosec into delivery teams and

automated self-service tools and platforms, teams are able to

use that expertise in their daily work without being

dependent on other teams.

is enables organizations to create a safe system of

work, where small teams are able to quickly and

independently develop, test, and deploy code and value

quickly, safely, securely, and reliably to customers. is allows

organizations to maximize developer productivity, enable

organizational learning, create high employee satisfaction,

and win in the marketplace.

ese are the outcomes that result from DevOps. For

most of us, this is not the world we live in. More often than

not, the system we work in is broken, resulting in extremely

poor outcomes that fall well short of our true potential. In

our world, Development and IT Operations are adversaries;

testing and Infosec activities happen only at the end of a

project, too late to correct any problems found; and almost

any critical activity requires too much manual effort and too

many handoffs, leaving us always waiting. Not only does this

contribute to extremely long lead times to get anything done,

but the quality of our work, especially production

deployments, is also problematic and chaotic, resulting in

negative impacts to our customers and our business.

As a result, we fall far short of our goals, and the whole

organization is dissatis�ed with the performance of IT,

resulting in budget reductions and frustrated, unhappy

employees who feel powerless to change the process and its

outcomes.* e solution? We need to change how we work;

DevOps shows us the best way forward.

To better understand the potential of the DevOps

revolution, let us look at the manufacturing revolution of the

1980s. By adopting Lean principles and practices,

manufacturing organizations dramatically improved plant

productivity, customer lead times, product quality, and

customer satisfaction, enabling them to win in the

marketplace.

Before the revolution, average manufacturing plant order

lead times were six weeks, with fewer than 70% of orders

shipped on time. By 2005, with the widespread

implementation of Lean practices, average product lead times

had dropped to less than three weeks, and more than 95% of

orders were shipped on time.1 Organizations that did not

implement Lean practices lost market share, and many went

out of business entirely.

Similarly, the bar has been raised for delivering

technology products and services—what was good enough in

previous decades is not good enough now. For each of the last

four decades, the cost and time required to develop and

deploy strategic business capabilities and features have

dropped by orders of magnitude. During the 1970s and

1980s, most new features required one to �ve years to

develop and deploy, often costing tens of millions of dollars.

By the 2000s, because of advances in technology and the

adoption of Agile principles and practices, the time required

to develop new functionality had dropped to weeks or

months but deploying into production still required weeks or

months, often with catastrophic outcomes.

And by 2010, with the introduction of DevOps and the

never-ending commoditization of hardware, software, and

now the cloud, features (even entire startup companies) could

be created in weeks, quickly being deployed into production

in just hours or minutes—for these organizations,

deployment �nally became routine and low risk. ese

organizations are able to perform experiments to test

business ideas, discovering which ideas create the most value

for customers and the organization as a whole, and which are

then further developed into features that can be rapidly and

safely deployed into production.

Table 0.1: e Ever-Accelerating Trend toward Faster,

Cheaper, Lower Risk Delivery of Software

1970s–1980s 1990s 2000s–Present

Era Mainframes Client/Server
Commoditization

and Cloud

Representative

technology of

era

COBOL, DB2 on

MVS, etc.

C++, Oracle,

Solaris, etc.

Java, MySQL, Red

Hat, Ruby on Rails,

PHP, etc.

Cycle time 1–5 years 3–12 months 2–12 weeks

Cost $1M–$100M $100k–$10M $10k–$1M

At risk e whole company

A product

line or

division

A product feature

Cost of failure

Bankruptcy, sell the

company, massive

layoffs

Revenue

miss, CIO’s

job

Negligible

Source: Adrian Cockcroft, “Velocity and Volume (or Speed Wins),” presentation at

FlowCon, San Francisco, CA, November 2013.

Today, organizations adopting DevOps principles and

practices often deploy changes hundreds or even thousands

of times per day. In an age where competitive advantage

requires fast time to market and relentless experimentation,

organizations that are unable to replicate these outcomes are

destined to lose in the marketplace to more nimble

competitors and could potentially go out of business entirely,

much like the manufacturing organizations that did not

adopt Lean principles.

ese days, regardless of what industry we are competing

in, the way we acquire customers and deliver value to them is

dependent on the technology value stream. Put even more

succinctly, as Jeffrey Immelt, CEO of General Electric, stated,

“Every industry and company that is not bringing software to

the core of their business will be disrupted.”2 Or as Jeffrey

Snover, Technical Fellow at Microsoft, said, “In previous

economic eras, businesses created value by moving atoms.

Now they create value by moving bits.”3

It’s difficult to overstate the enormity of this problem—it

affects every organization, independent of the industry we

operate in, the size of our organization, whether we are pro�t

or nonpro�t. Now more than ever, how technology work is

managed and performed predicts whether our organizations

will win in the marketplace or even survive. In many cases,

we will need to adopt principles and practices that look very

different from those that have successfully guided us over the

past decades. (See Appendix 1.)

Now that we have established the urgency of the problem

that DevOps solves, let us take some time to explore in more

detail the symptomatology of the problem, why it occurs, and

why, without dramatic intervention, the problem worsens

over time.

The Problem: Something in Your Organization Must

Need Improvement (Or You Wouldn’t Be Reading This

Book)

Most organizations are not able to deploy production changes

in minutes or hours, instead requiring weeks or months. Nor

are they able to deploy hundreds or thousands of changes

into production per day; instead, they struggle to deploy

monthly or even quarterly. Nor are production deployments

routine, instead involving outages and chronic �re�ghting

and heroics.

In an age where competitive advantage requires fast time

to market, high service levels, and relentless

experimentation, these organizations are at a signi�cant

competitive disadvantage. is is in large part due to their

inability to resolve a core, chronic con�ict within their

technology organization.

The Core, Chronic Conflict

In almost every IT organization, there is an inherent con�ict

between Development and IT Operations that creates a

downward spiral, resulting in ever-slower time to market for

new products and features, reduced quality, increased

outages, and, worst of all, an ever-increasing amount of

technical debt.

e term “technical debt” was �rst coined by Ward

Cunningham. Analogous to �nancial debt, technical debt

describes how decisions we make lead to problems that get

increasingly more difficult to �x over time, continually

reducing our available options in the future—even when

taken on judiciously, we still incur interest.

One factor that contributes to this is the often competing

goals of Development and IT Operations. IT organizations

are responsible for many things. Among them are the two

following goals, which must be pursued simultaneously:

• Respond to the rapidly changing competitive

landscape.

• Provide stable, reliable, and secure service to the

customer.

Frequently, Development will take responsibility for

responding to changes in the market and for deploying

features and changes into production as quickly as possible.

IT Operations will take responsibility for providing customers

with IT service that is stable, reliable, and secure, making it

difficult or even impossible for anyone to introduce

production changes that could jeopardize production.

Con�gured this way, Development and IT Operations have

diametrically opposed goals and incentives.

Dr. Eliyahu M. Goldratt, one of the founders of the

manufacturing management movement, called these types of

con�guration “the core, chronic con�ict”—when

organizational measurements and incentives across different

silos prevent the achievement of global, organizational

goals.4†

is con�ict creates a downward spiral so powerful it

prevents the achievement of desired business outcomes, both

inside and outside the IT organization. ese chronic

con�icts often put technology workers into situations that

lead to poor software and service quality and bad customer

outcomes, as well as a daily need for workarounds,

�re�ghting, and heroics, whether in Product Management,

Development, QA, IT Operations, or Information Security.

(See Appendix 2.)

Downward Spiral in Three Acts

e downward spiral in IT has three acts that are likely

familiar to most IT practitioners. e �rst act begins in IT

Operations, where our goal is to keep applications and

infrastructure running so that our organization can deliver

value to customers. In our daily work, many of our problems

are due to applications and infrastructure that are complex,

poorly documented, and incredibly fragile. is is the

technical debt and daily workarounds that we live with

constantly, always promising that we’ll �x the mess when we

have a little more time. But that time never comes.

Alarmingly, our most fragile artifacts support either our

most important revenue-generating systems or our most

critical projects. In other words, the systems most prone to

failure are also our most important and are at the epicenter of

our most urgent changes. When these changes fail, they

jeopardize our most important organizational promises, such

as availability to customers, revenue goals, security of

customer data, accurate �nancial reporting, and so forth.

e second act begins when somebody has to compensate

for the latest broken promise—it could be a product manager

promising a bigger, bolder feature to dazzle customers with

or a business executive setting an even larger revenue target.

en, oblivious to what technology can or can’t do, or what

factors led to missing our earlier commitment, they commit

the technology organization to deliver upon this new

promise.

As a result, Development is tasked with another urgent

project that inevitably requires solving new technical

challenges and cutting corners to meet the promised release

date, further adding to our technical debt—made, of course,

with the promise that we’ll �x any resulting problems when

we have a little more time.

is sets the stage for the third and �nal act, where

everything becomes just a little more difficult, bit by bit—

everybody gets a little busier, work takes a little more time,

communications become a little slower, and work queues get

a little longer. Our work becomes more tightly coupled,

smaller actions cause bigger failures, and we become more

fearful and less tolerant of making changes. Work requires

more communication, coordination, and approvals; teams

must wait just a little longer for their dependent work to get

done; and our quality keeps getting worse. e wheels begin

grinding slower and require more effort to keep turning. (See

Appendix 3.)

Although it’s difficult to see in the moment, the

downward spiral is obvious when one takes a step back. We

notice that production code deployments are taking ever-

longer to complete, moving from minutes to hours to days to

weeks. And worse, the deployment outcomes have become

even more problematic, resulting in an ever-increasing

number of customer-impacting outages that require more

heroics and �re�ghting in Operations, further depriving

them of their ability to pay down technical debt.

As a result, our product delivery cycles continue to move

slower and slower, fewer projects are undertaken, and those

that are, are less ambitious. Furthermore, the feedback on

everyone’s work becomes slower and weaker, especially the

feedback signals from our customers. And, regardless of what

we try, things seem to get worse—we are no longer able to

respond quickly to our changing competitive landscape, nor

are we able to provide stable, reliable service to our

customers. As a result, we ultimately lose in the marketplace.

Time and time again, we learn that when IT fails, the

entire organization fails. As Steven J. Spear noted in his book

e High-Velocity Edge, whether the damages “unfold slowly

like a wasting disease” or rapidly “like a �ery crash … the

destruction can be just as complete.”5

Why Does This Downward Spiral Happen Everywhere?

For over a decade, the authors of this book have observed this

destructive spiral occur in countless organizations of all types

and sizes. We understand better than ever why this

downward spiral occurs and why it requires DevOps

principles to mitigate. First, as described earlier, every IT

organization has two opposing goals, and second, every

company is a technology company, whether they know it or

not.

As Christopher Little, a software executive and one of the

earliest chroniclers of DevOps, said, “Every company is a

technology company, regardless of what business they think

they’re in. A bank is just an IT company with a banking

license.”6‡ To convince ourselves that this is the case, consider

that the vast majority of capital projects have some reliance

on IT. As the saying goes, “It is virtually impossible to make

any business decision that doesn’t result in at least one IT

change.”

In the business and �nance context, projects are critical

because they serve as the primary mechanism for change

inside organizations. Projects are typically what management

needs to approve, budget for, and be held accountable for;

therefore, they are the mechanism that achieves the goals and

aspirations of the organization, whether it is to grow or even

shrink.§

Projects are typically funded through capital spending

(e.g., factories, equipment, and major projects, and

expenditures are capitalized when payback is expected to take

years), of which 50% is now technology related. is is even

true in “low tech” industry verticals with the lowest historical

spending on technology, such as energy, metal, resource

extraction, automotive, and construction.8 In other words,

business leaders are far more reliant upon the effective

management of IT in order to achieve their goals than they

think.¶

The Costs: Human and Economic

When people are trapped in this downward spiral for years,

especially those who are downstream of Development, they

often feel stuck in a system that preordains failure and leaves

them powerless to change the outcomes. is powerlessness

is often followed by burnout, with the associated feelings of

fatigue, cynicism, and even hopelessness and despair.

Many psychologists assert that creating systems that

cause feelings of powerlessness is one of the most damaging

things we can do to fellow human beings—we deprive other

people of their ability to control their own outcomes and even

create a culture where people are afraid to do the right thing

because of fear of punishment, failure, or jeopardizing their

livelihood. is type of culture can create the conditions for

learned helplessness, where people become unwilling or

unable to act in a way that avoids the same problem in the

future.

For our employees, it means long hours, working on

weekends, and a decreased quality of life, not just for the

employee, but for everyone who depends on them, including

family and friends. It is not surprising that when this occurs,

we lose our best people (except for those who feel like they

can’t leave because of a sense of duty or obligation).

In addition to the human suffering that comes with the

current way of working, the opportunity cost of the value

that we could be creating is staggering—the authors believe

that we are missing out on approximately $2.6 trillion of

value creation per year, which is, at the time of this writing,

equivalent to the annual economic output of France, the

sixth-largest economy in the world.

Consider the following calculation—both IDC and

Gartner estimated that in 2011 approximately 5% of the

worldwide gross domestic product ($3.1 trillion) was spent

on IT (hardware, services, and telecom).10 If we estimate that

50% of that $3.1 trillion was spent on operating costs and

maintaining existing systems, and that one-third of that 50%

was spent on urgent and unplanned work or rework,

approximately $520 billion was wasted.

If adopting DevOps could enable us—through better

management and increased operational excellence—to halve

that waste and redeploy that human potential into something

that’s �ve times the value (a modest proposal), we could

create $2.6 trillion of value per year.

The Ethics of DevOps: There Is a Be�er Way

In the previous sections, we described the problems and the

negative consequences of the status quo due to the core,

chronic con�ict, from the inability to achieve organizational

goals to the damage we in�ict on fellow human beings. By

solving these problems, DevOps astonishingly enables us to

simultaneously improve organizational performance, achieve

the goals of all the various functional technology roles (e.g.,

Development, QA, IT Operations, Infosec), and improve the

human condition.

is exciting and rare combination may explain why

DevOps has generated so much excitement and enthusiasm

with so many and in such a short time, including technology

leaders, engineers, and much of the software ecosystem we

reside in.

Breaking the Downward Spiral with DevOps

Ideally, small teams of developers independently implement

their features, validate their correctness in production-like

environments, and have their code deployed into production

quickly, safely, and securely. Code deployments are routine

and predictable. Instead of starting deployments at midnight

on Friday and spending all weekend working to complete

them, deployments occur throughout the business day when

everyone is already in the office and without our customers

even noticing—except when they see new features and bug

�xes that delight them. And, by deploying code in the middle

of the workday, IT Operations is working during normal

business hours like everyone else for the �rst time in decades.

By creating fast feedback loops at every step of the

process, everyone can immediately see the effects of their

actions. Whenever changes are committed into version

control, fast automated tests are run in production-like

environments, giving continual assurance that the code and

environments operate as designed and are always in a secure

and deployable state.

Automated testing helps developers discover their

mistakes quickly (usually within minutes), which enables

faster �xes as well as genuine learning—learning that is

impossible when mistakes are discovered six months later

during integration testing, when memories and the link

between cause and effect have long faded. Instead of accruing

technical debt, problems are �xed as they are found,

mobilizing the entire organization if needed because global

goals outweigh local goals.

Pervasive production telemetry in our code and

production environments ensures that problems are detected

and corrected quickly, con�rming that everything is working

as intended and that customers are getting value from the

software we create.

In this scenario, everyone feels productive—the

architecture allows small teams to work safely and

architecturally decoupled from the work of other teams who

use self-service platforms that leverage the collective

experience of Operations and Information Security. Instead

of everyone waiting all the time, with large amounts of late,

urgent rework, teams work independently and productively

in small batches, quickly and frequently delivering new value

to customers.

Even high-pro�le product and feature releases become

routine by using dark launch techniques. Long before the

launch date, we put all the required code for the feature into

production, invisible to everyone except internal employees

and small cohorts of real users, allowing us to test and evolve

the feature until it achieves the desired business goal.

And, instead of �re�ghting for days or weeks to make the

new functionality work, we merely change a feature toggle or

con�guration setting. is small change makes the new

feature visible to ever-larger segments of customers,

automatically rolling back if something goes wrong. As a

result, our releases are controlled, predictable, reversible, and

low stress.

It’s not just feature releases that are calmer—all sorts of

problems are being found and �xed early, when they are

smaller and when they are cheaper and easier to correct. With

every �x, we also generate organizational learnings, enabling

us to prevent the problem from recurring and enabling us to

detect and correct similar problems faster in the future.

Furthermore, everyone is constantly learning, fostering a

hypothesis-driven culture where the scienti�c method is used

to ensure nothing is taken for granted—we do nothing

without measuring and treating product development and

process improvement as experiments.

Because we value everyone’s time, we don’t spend years

building features that our customers don’t want, deploying

code that doesn’t work, or �xing something that isn’t actually

the cause of our problem.

Because we care about achieving goals, we create long-

term teams that are responsible for meeting them. Instead of

project teams where developers are reassigned and shuffled

around after each release, never receiving feedback on their

work, we keep teams intact so they can keep iterating and

improving, using those learnings to better achieve their goals.

is is equally true for the product teams who are solving

problems for our external customers, as well as our internal

platform teams who are helping other teams be more

productive, safe, and secure.

Instead of a culture of fear, we have a high-trust,

collaborative culture, where people are rewarded for taking

risks. ey are able to fearlessly talk about problems as

opposed to hiding them or putting them on the back burner

—after all, we must see problems in order to solve them.

And, because everyone fully owns the quality of their

work, everyone builds automated testing into their daily

work and uses peer reviews to gain con�dence that problems

are addressed long before they can impact a customer. ese

processes mitigate risk, as opposed to approvals from distant

authorities, allowing us to deliver value quickly, reliably, and

securely—even proving to skeptical auditors that we have an

effective system of internal controls.

When something does go wrong, we conduct blameless

post-mortems, not to punish anyone but to better

understand what caused the accident and how to prevent it.

is ritual reinforces our culture of learning. We also hold

internal technology conferences to elevate our skills and

ensure that everyone is always teaching and learning.

Because we care about quality, we even inject faults into

our production environment so we can learn how our system

fails in a planned manner. We conduct planned exercises to

practice large-scale failures, randomly kill processes and

compute servers in production, and inject network latencies

and other nefarious acts to ensure we grow ever more

resilient. By doing this, we enable better resilience, as well as

organizational learning and improvement.

In this world, everyone has ownership in their work,

regardless of their role in the technology organization. ey

have con�dence that their work matters and is meaningfully

contributing to organizational goals, proven by their low-

stress work environment and their organization’s success in

the marketplace. eir proof is that the organization is

indeed winning in the marketplace.

The Business Value of DevOps

We have decisive evidence of the business value of DevOps.

From 2013 through 2016, as part of Puppet Labs’ State Of

DevOps Report, to which authors Nicole Forsgren, Jez

Humble, and Gene Kim contributed, we collected data from

over twenty-�ve thousand technology professionals with the

goal of better understanding the health and habits of

organizations at all stages of DevOps adoption.**

e �rst surprise this data revealed was how much high-

performing organizations using DevOps practices were

outperforming their non–high-performing peers in the

following areas:11

• roughput metrics

∘ code and change deployments (thirty times more

frequent)

∘ code and change deployment lead time (two

hundred times faster)

• Reliability metrics

∘ production deployments (sixty times higher

change success rate)

∘ mean time to restore service (168 times faster)

Organizational performance metrics

∘ productivity, market share, and pro�tability goals

(two times more likely to exceed)

∘ market capitalization growth (50% higher over

three years)

In other words, high performers were both more agile and

more reliable, providing empirical evidence that DevOps

enables us to break the core, chronic con�ict. High

performers deployed code thirty times more frequently, and

the time required to go from “code committed” to

“successfully running in production” was two hundred times

faster—high performers had lead times measured in minutes

or hours, while low performers had lead times measured in

weeks, months, or even quarters.

Furthermore, high performers were twice as likely to

exceed pro�tability, market share, and productivity goals.

And, for those organizations that provided a stock ticker

symbol, we found that high performers had 50% higher

market capitalization growth over three years. ey also had

higher employee job satisfaction, lower rates of employee

burnout, and their employees were 2.2 times more likely to

recommend their organization to friends as a great place to

work.†† High performers also had better information security

outcomes. By integrating security objectives into all stages of

the development and operations processes, they spent 50%

less time remediating security issues.

DevOps Helps Scale Developer Productivity

When we increase the number of developers, individual

developer productivity often signi�cantly decreases due to

communication, integration, and testing overhead.

is is highlighted in the famous book by Frederick

Brook, e Mythical Man-Month, where he explains that when

projects are late, adding more developers not only decreases

individual developer productivity but also decreases overall

productivity.13

On the other hand, DevOps shows us that when we have

the right architecture, the right technical practices, and the

right cultural norms, small teams of developers are able to

quickly, safely, and independently develop, integrate, test,

and deploy changes into production.

As Randy Shoup, formerly a director of engineering at

Google and now VP Engineering at eBay, observed, large

organizations using DevOps “have thousands of developers,

but their architecture and practices enable small teams to still

be incredibly productive, as if they were a startup.”14

e 2015 State of DevOps Report examined not only

“deploys per day” but also “deploys per day per developer.”

ey hypothesized that high performers would be able to

scale their number of deployments as team sizes grew.15

Indeed, this is what they found. Figure 0.1 shows that in

low performers, deploys per day per developer go down as

team size increases, stays constant for medium performers,

and increases linearly for high performers. In other words,

organizations adopting DevOps are able to linearly increase

the number of deploys per day as they increase their number

of developers, just as Google, Amazon, and Net�ix have

done.‡‡

Figure 0.1: Deployments per Day vs. Number of Developers

Only organizations that are deploying at least once per day are shown.

Source: Puppet Labs, 2015 State Of DevOps Report.

The Universality of the Solution

One of the most in�uential books in the Lean manufacturing

movement is e Goal: A Process of Ongoing Improvement,

written by Dr. Eliyahu M. Goldratt in 1984. It in�uenced an

entire generation of professional plant managers around the

world. It was a novel about a plant manager who had to �x his

cost and product due date issues in ninety days, otherwise his

plant would be shut down.

Later in his career, Dr. Goldratt described the letters he

received in response to e Goal. ese letters would typically

read, “You have obviously been hiding in our factory, because

you’ve described my life [as a plant manager] exactly …”17

Most importantly, these letters showed that people were able

to replicate the breakthroughs in performance that were

described in the book in their own work environments.

e Phoenix Project: A Novel About IT, DevOps, and Helping

Your Business Win, written by Gene Kim, Kevin Behr, and

George Spafford in 2013, was closely modeled after e Goal.

It is a novel that follows an IT leader who faces all the typical

problems that are endemic in IT organizations: an over-

budget, behind-schedule project that must get to market in

order for the company to survive. He experiences

catastrophic deployments; problems with availability,

security, and compliance; and so forth.

Ultimately, he and his team use DevOps principles and

practices to overcome those challenges, helping their

organization win in the marketplace. In addition, the novel

shows how DevOps practices improved the workplace

environment for the team, creating lower stress and higher

satisfaction because of greater practitioner involvement

throughout the process.

As with e Goal, there is tremendous evidence of the

universality of the problems and solutions described in e

Phoenix Project. Consider some of the statements found in the

Amazon reviews: “I �nd myself relating to the characters in

e Phoenix Project … I’ve probably met most of them over the

course of my career,” “If you have ever worked in any aspect

of IT, DevOps, or Infosec you will de�nitely be able to relate

to this book,” or “ere’s not a character in e Phoenix Project

that I don’t identify with myself or someone I know in real

life … not to mention the problems faced and overcome by

those characters.”18

The DevOps Handbook: An Essential Guide

In the remainder of this book, we will describe how to

replicate the transformation described in e Phoenix Project,

as well as provide many case studies of how other

organizations have used DevOps principles and practices to

replicate those outcomes.

e purpose of e DevOps Handbook is to give you the

theory, principles, and practices you need to successfully start

your DevOps initiative and achieve your desired outcomes.

is guidance is based on decades of sound management

theory, the study of high-performing technology

organizations, work we have done helping organizations

transform, and research that validates the effectiveness of the

prescribed DevOps practices, as well as interviews with

relevant subject matter experts and analyses of nearly one

hundred case studies presented at the DevOps Enterprise

Summit.

Broken into six parts, this book covers DevOps theories

and principles using the ree Ways, a speci�c view of the

underpinning theory originally introduced in e Phoenix

Project. e DevOps Handbook is for everyone who performs

or in�uences work in the technology value stream (which

typically includes Product Management, Development, QA,

IT Operations, and Information Security), as well as for

business and marketing leadership, where most technology

initiatives originate.

e reader is not expected to have extensive knowledge of

any of these domains, or of DevOps, Agile, ITIL, Lean, or

process improvement. Each of these topics is introduced and

explained in the book as it becomes necessary.

Our intent is to create a working knowledge of the critical

concepts in each of these domains, to serve as a primer and to

introduce the language necessary to help practitioners work

with all their peers across the entire IT value stream, and to

frame shared goals.

is book will be of value to business leaders and

stakeholders who are increasingly reliant upon the

technology organization to achieve their goals.

Furthermore, this book is intended for readers whose

organizations might not be experiencing all the problems

described in the book (e.g., long deployment lead times or

painful deployments). Even readers in this fortunate position

will bene�t from understanding DevOps principles, especially

those relating to shared goals, feedback, and continual

learning.

In Part I, we present a brief history of DevOps and

introduce the underpinning theory and key themes from

relevant bodies of knowledge that span decades. We then

present the high-level principles of the ree Ways: Flow,

Feedback, and Continual Learning and Experimentation.

Part II describes how and where to start and presents

concepts such as value streams, organizational design

principles and patterns, organizational adoption patterns,

and case studies.

Part III describes how to accelerate �ow by building the

foundations of our deployment pipeline: enabling fast and

effective automated testing, continuous integration,

continuous delivery, and architecting for low-risk releases.

Part IV discusses how to accelerate and amplify feedback

by creating effective production telemetry to see and solve

problems, better anticipate problems and achieve goals,

enable feedback so that Development and Operations can

safely deploy changes, integrate A/B testing into our daily

work, and create review and coordination processes to

increase the quality of our work.

Part V describes how we accelerate continual learning and

experimentation by establishing a just culture, converting

local discoveries into global improvements, and properly

reserving time to create organizational learning and

improvements.

Finally, in Part VI we describe how to properly integrate

security and compliance into our daily work by integrating

preventative security controls into shared source code

repositories and services, integrating security into our

deployment pipeline, enhancing telemetry to better enable

detection and recovery, protecting the deployment pipeline,

and achieving change management objectives.

By codifying these practices, we hope to accelerate the

adoption of DevOps practices, increase the success of DevOps

initiatives, and lower the activation energy required for

DevOps transformations.

* is is just a small sample of the problems found in typical IT organizations.

† In the manufacturing realm, a similar core, chronic conflict existed: the need to

simultaneously ensure on-time shipments to customers and to control costs.

How this core, chronic conflict was broken is described in Appendix 2.

‡ In 2013, the European bank HSBC employed more soware developers than

Google.7

§ For now, let us suspend the discussion of whether soware should be funded as a

“project” or a “product.” is is discussed later in the book.

¶ For instance, Dr. Vernon Richardson and his colleagues published this

astonishing finding. ey studied the 10-K SEC filings of 184 public corporations

and divided them into three groups: A) firms with material weaknesses with IT-

related deficiencies, B) firms with material weaknesses with no IT-related

deficiencies, and C) “clean firms” with no material weaknesses. Firms in Group A

saw eight times higher CEO turnover than Group C, and there was four times

higher CFO turnover in Group A than in Group C. Clearly, IT may matter far

more than we typically think.9

** e State of DevOps Report has since been repeated every year. Additionally, the

key findings from the 2013–2018 reports were collected into the book Accelerate:

e Science of Lean Soware and DevOps: Building and Scaling High Performing

Technology Organizations.

†† As measured by employee Net Promoter Score (eNPS). is is a significant

finding, as research has shown that “companies with highly engaged workers

grew revenues two and a half times as much as those with low engagement levels.

And [publicly traded] stocks of companies with a high-trust work environment

outperformed market indexes by a factor of three from 1997 through 2011.”12

‡‡ Another more extreme example is Amazon. In 2011, Amazon was performing

approximately seven thousand deploys per day. By 2015, they were performing

130,000 deploys per day.16

I
PART I : INTRODUCTION

n Part I of e DevOps Handbook, we will explore how the

convergence of several important movements in

management and technology set the stage for the DevOps

movement. We describe value streams, how DevOps is the

result of applying Lean principles to the technology value

stream, and the ree Ways: Flow, Feedback, and Continual

Learning and Experimentation.

Primary focuses within these chapters include:

• e principles of Flow, which accelerate the delivery of

work from Development to Operations to our

customers.

• e principles of Feedback, which enable us to create

ever-safer systems of work.

• e principles of Continual Learning and

Experimentation, which foster a high-trust culture

and a scienti�c approach to organizational

improvement and risk-taking as part of our daily

work.

A Brief History

DevOps and its resulting technical, architectural, and cultural

practices represent a convergence of many philosophical and

management movements. While many organizations have

developed these principles independently, understanding

that DevOps resulted from a broad stroke of movements, a

phenomenon described by John Willis (one of the co-authors

of this book) as the “convergence of Dev and Ops,” shows an

amazing progression of thinking and improbable

connections. ere are decades of lessons learned from

manufacturing, high-reliability organizations, high-trust

management models, and others that have brought us to the

DevOps practices we know today.

DevOps is the outcome of applying the most trusted

principles from the domain of physical manufacturing and

leadership to the IT value stream. DevOps relies on bodies of

knowledge from Lean, eory of Constraints, the Toyota

Production System, resilience engineering, learning

organizations, safety culture, human factors, and many

others. Other valuable contexts that DevOps draws from

include high-trust management cultures, servant leadership,

and organizational change management.

e result is world-class quality, reliability, stability, and

security at ever-lower cost and effort and accelerated �ow and

reliability throughout the technology value stream, including

Product Management, Development, QA, IT Operations, and

Infosec.

While the foundation of DevOps can be seen as being

derived from Lean, the eory of Constraints, and the Toyota

Kata movement, many also view DevOps as the logical

continuation of the Agile software journey that began in

2001.

The Lean Movement

Techniques such as value stream mapping, kanban boards,

and total productive maintenance were codi�ed for the

Toyota Production System in the 1980s. In 1997, the Lean

Enterprise Institute started researching applications of Lean

to other value streams, such as the service industry and

healthcare.

Two of Lean’s central tenets include the deeply held belief

that the manufacturing lead time required to convert raw

materials into �nished goods is the best predictor of quality,

customer satisfaction, and employee happiness, and that one

of the best predictors of short lead times is small batch sizes

of work.

Lean principles focus on how to create value for the

customer through systems thinking by creating constancy of

purpose, embracing scienti�c thinking, creating �ow and pull

(versus push), assuring quality at the source, leading with

humility, and respecting every individual.

The Agile Manifesto

e Agile Manifesto was created in 2001 at an invite-only

event by seventeen experts in what was then known as

“lightweight methods” in software development. ey wanted

to create a set of values and principles that captured the

advantage of these more adaptive methods, compared to the

prevailing software development processes such as waterfall

development and methodologies such as the Rational Uni�ed

Process.

One key principle was to “deliver working software

frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale,”1 emphasizing the

desire for small batch sizes—incremental releases instead of

large, big-bang releases. Other principles emphasized the

need for small, self-motivated teams working in a high-trust

management model.

Agile is credited for dramatically increasing the

productivity and responsiveness of many development

organizations. And interestingly, many of the key moments

in DevOps history also occurred within the Agile community

or at Agile conferences, as described below.

Agile Infrastructure and Velocity Movement

At the 2008 Agile conference in Toronto, Canada, Patrick

Debois and Andrew Shafer held a “birds of a feather” session

on applying Agile principles to infrastructure as opposed to

application code. (In its early days, this was referred to as

“Agile system administration.”) Although they were the only

people who showed up, they rapidly gained a following of

like-minded thinkers, including co-author John Willis.

CONTINUOUS

LEARNING

Around the same time, a few academics started

studying system administrators, how they

applied engineering principles to their work,

and how it impacted performance. e leading

experts included a group from IBM Research,

with ethnographies led by Dr. Eben Haber, Dr.

Eser Kandogan, and Dr. Paul Maglio. is was

extended to include behavioral quantitative

studies led by co-author Dr. Nicole Forsgren in

2007–2009. Nicole went on to lead the

research in the 2014–2019 State of DevOps

Reports, the industry-standard research into

practices and capabilities that drive software

delivery and performance; these were

published by Puppet and DORA.

Later, at the 2009 Velocity conference, John Allspaw and

Paul Hammond gave the seminal “10 Deploys per Day: Dev

and Ops Cooperation at Flickr” presentation, where they

described how they created shared goals between Dev and

Ops and used continuous integration practices to make

deployment part of everyone’s daily work. According to

�rsthand accounts, everyone attending the presentation

immediately knew they were in the presence of something

profound and of historic signi�cance.

Patrick Debois was so excited by Allspaw and Hammond’s

idea that he created the �rst DevOpsDays in Ghent, Belgium,

in 2009, where the term “DevOps” was coined.

The Continuous Delivery Movement

Building upon the development discipline of continuous

build, test, and integration, Jez Humble and David Farley

extended the concept to continuous delivery, which de�ned

the role of a “deployment pipeline” to ensure that code and

infrastructure are always in a deployable state and that all

code checked into trunk can be safely deployed into

production. is idea was �rst presented at the 2006 Agile

conference and was also independently developed in 2009 by

Tim Fitz in a blog post on his website titled “Continuous

Deployment.”*

Toyota Kata

In 2009, Mike Rother wrote Toyota Kata: Managing People for

Improvement, Adaptiveness, and Superior Results, which framed

his twenty-year journey to understand and codify the Toyota

Production System. He had been one of the graduate students

who �ew with GM executives to visit Toyota plants and

helped develop the Lean toolkit, but he was puzzled when

none of the companies adopting these practices replicated the

level of performance observed at the Toyota plants.

He concluded that the Lean community missed the most

important practice of all, which he called the improvement

kata.2 He explains that every organization has work routines,

and the improvement kata requires creating structure for the

daily, habitual practice of improvement work because daily

practice is what improves outcomes. e constant cycle of

establishing desired future states, setting target outcomes on

a cadence, and the continual improvement of daily work is

what guided improvement at Toyota.

roughout the rest of Part I, we will look at value streams,

how Lean principles can be applied to the technology value

stream, and the ree Ways of Flow, Feedback, and Continual

Learning and Experimentation.

* DevOps also extends and builds upon the practices of infrastructure as code,

which was pioneered by Dr. Mark Burgess, Luke Kanies, and Adam Jacob. In

infrastructure as code, the work of Operations is automated and treated like

application code, so that modern development practices can be applied to the

entire development stream. is further enabled fast deployment flow, including

continuous integration (pioneered by Grady Booch and integrated as one of the

key 12 practices of Extreme Programming), continuous delivery (pioneered by Jez

Humble and David Farley), and continuous deployment (pioneered by Etsy,

Wealthfront, and Eric Ries’s work at IMVU).

I

1
AGILE, CONTINUOUS DELIVERY, AND THE
THREE WAYS

n this chapter, we present an introduction to the

underpinning theory of Lean Manufacturing, as well as

the ree Ways—the principles from which the observed

DevOps behaviors can be derived.

Our focus here is primarily on theory and principles,

describing many decades of lessons learned from

manufacturing, high-reliability organizations, high-trust

management models, and others, from which DevOps

practices have been derived. e resulting concrete principles

and patterns, and their practical application to the

technology value stream, are presented in the remaining

chapters of the book.

The Manufacturing Value Stream

One of the fundamental concepts in Lean is the value stream.

We will de�ne it �rst in the context of manufacturing and

then extrapolate how it applies to DevOps and the

technology value stream.

Karen Martin and Mike Osterling de�ne a value stream in

their book Value Stream Mapping: How to Visualize Work and

Align Leadership for Organizational Transformation as “the

sequence of activities an organization undertakes to deliver

upon a customer request,” or “the sequence of activities

required to design, produce, and deliver a good or service to a

customer, including the dual �ows of information and

material.”1

In manufacturing operations, the value stream is often

easy to see and observe: it starts when a customer order is

received and the raw materials are released onto the plant

�oor. To enable fast and predictable lead times in any value

stream, there is usually a relentless focus on creating a

smooth and even �ow of work, using techniques such as

small batch sizes, reducing work in process (WIP), preventing

rework to ensure defects are not passed to downstream work

centers, and constantly optimizing systems toward global

goals.

The Technology Value Stream

Many principles and patterns that enable the fast �ow of

work in physical processes are equally applicable to

technology work (and, for that matter, for all knowledge

work). In DevOps, we typically de�ne our technology value

stream as the process required to convert a business

hypothesis into a technology-enabled service or feature that

delivers value to the customer.

e input to our process is the formulation of a business

objective, concept, idea, or hypothesis, and it starts when we

accept the work in Development, adding it to our committed

backlog of work.

From there, Development teams that follow a typical

Agile or iterative process will likely transform that idea into

user stories and some sort of feature speci�cation, which is

then implemented in code into the application or service

being built. e code is then checked into the version control

repository, where each change is integrated and tested with

the rest of the software system.

Because value is created only when our services are

running in production, we must ensure that we are not only

delivering fast �ow, but that our deployments can also be

performed without causing chaos and disruptions, such as

service outages, service impairments, or security or

compliance failures.

Focus on Deployment Lead Time

For the remainder of this book, our attention will be on

deployment lead time, a subset of the value stream described

above. is value stream begins when any engineer* in our

value stream (which includes Development, QA, IT

Operations, and Infosec) checks a change into version control

and ends when that change is successfully running in

production, providing value to the customer and generating

useful feedback and telemetry.

e �rst phase of work that includes design and

development is akin to Lean Product Development and is

highly variable and highly uncertain, often requiring high

degrees of creativity and work that may never be performed

again. Because of this, we expect high variability of process

times. In contrast, the second phase of work, which includes

testing, deployment, and operations, is akin to Lean

Manufacturing. It strives to be predictable and mechanistic,

with the goal of achieving work outputs with minimized

variability (e.g., short and predictable lead times, near zero

defects).

Instead of large batches of work being processed

sequentially through the design/development value stream

and then through the test/operations value stream (such as

when we have a large-batch waterfall process or long-lived

feature branches), our goal is to have testing, deployment,

and operations happening simultaneously with

design/development, enabling fast �ow and high quality. is

method succeeds when we work in small batches and build

quality into every part of our value stream.†

Defining Lead Time vs. Processing Time

In the Lean community, lead time is one of two measures

commonly used to measure performance in value streams,

with the other being processing time (sometimes known as

touch time or task time).‡

Whereas the lead time clock starts when the request is

made and ends when it is ful�lled, the process time clock only

starts when we begin work on the customer request—

speci�cally, it omits the time that the work is in queue,

waiting to be processed (Figure 1.1).

Figure 1.1: Lead Time vs. Process Time of a Deployment

Operation

Because lead time is what the customer experiences, we

typically focus our process improvement attention there

instead of on process time. However, the proportion of

process time to lead time serves as an important measure of

efficiency—achieving fast �ow and short lead times almost

always requires reducing the time our work is waiting in

queues.

The Common Scenario: Deployment Lead Times Requiring

Months

Many teams and organizations �nd themselves in situations

where deployment lead times require months. is is

especially common in large, complex organizations that are

working with tightly coupled, monolithic systems, often with

scarce integration test environments, long test and

production environment lead times, high reliance on manual

testing, and multiple required approval processes. When this

occurs, our value stream may look like Figure 1.2:

Figure 1.2: A Technology Value Stream with a Deployment

Lead Time of ree Months

Source: Damon Edwards, “DevOps Kaizen,” 2015.

When we have long deployment lead times, heroics are

required at almost every stage of the value stream. We may

discover that nothing works at the end of the project when

we merge all the Development team’s changes together,

resulting in code that no longer builds correctly or passes any

of our tests. Fixing each problem requires days or weeks of

investigation to determine who broke the code and how it can

be �xed, and still results in poor customer outcomes.

Our DevOps Ideal: Deployment Lead Times of Minutes

In the DevOps ideal, developers receive fast, constant

feedback on their work, enabling them to quickly and

independently implement, integrate, and validate their code

and have the code deployed into the production environment

(either by deploying the code themselves or by others).

We achieve this by continually checking small code

changes into our version control repository, performing

automated and exploratory testing against it and deploying it

into production. is enables us to have a high degree of

con�dence that our changes will operate as designed in

production and that any problems can be quickly detected

and corrected.

is is most easily achieved when we have architecture

that is modular, well encapsulated, and loosely coupled so

that small teams are able to work with high degrees of

autonomy, with failures being small and contained, and

without causing global disruptions.

In this scenario, our deployment lead time is measured in

minutes, or, in the worst case, hours. Our resulting value

stream map should look something like Figure 1.3.

Figure 1.3: A Technology Value Stream with a Lead Time of

Minutes

Observing “%C/A” as a Measure of Rework

In addition to lead times and process times, the third key

metric in the technology value stream is percent complete

and accurate (%C/A). is metric re�ects the quality of the

output of each step in our value stream.

Karen Martin and Mike Osterling state that “the %C/A

can be obtained by asking downstream customers what

percentage of the time they receive work that is ‘usable as is,’

meaning that they can do their work without having to

correct the information that was provided, add missing

information that should have been supplied, or clarify

information that should have and could have been clearer.”3

CONTINUOUS

LEARNING

Flow Metrics to Measure Delivery of

Business Value

When measuring the end-to-end value of any

value stream it is important to stay away from

proxy metrics (counting the number of lines of

code committed or solely the frequency of

deployments). While these metrics can reveal

local optimizations, they don't directly link to

business outcomes such as revenue.

Using �ow metrics provides a look into the

end-to-end value of your software delivery,

making software products and value streams

as visible as widgets on a production line. In

his book Project to Product: How to Survive and

rive in the Age of Digital Disruption with the

Flow Framework, Dr. Mik Kersten describes

�ow metrics as: �ow velocity, �ow efficiency,

�ow time, �ow load, and �ow distribution:4

• Flow velocity: number of �ow items (e.g.,

work items) that are completed in a set

time period. Helps to answer whether

value delivery is accelerating.

• Flow efficiency: the proportion of �ow

items actively worked on to the total time

that has elapsed. Identi�es inefficiencies

like long wait times and helps teams see if

work upstream is in a wait state or not.

• Flow time: a unit of business value pulled

by a stakeholder through a product’s value

stream (i.e., features, defects, risks, and

debts).Helps teams see if time to value is

getting shorter.

• Flow load: number of active or waiting

�ow items in a value stream. is is

similar to a measure of work in progress

(WIP) based on �ow items. High �ow load

leads to inefficiencies and to reduced �ow

velocity or increased �ow time. Helps

teams see if demand is outweighing

capacity.

• Flow distribution: the proportion of each

�ow item type in a value stream. Each

value stream can track and adjust these

depending on their needs in order to

maximize the business value being

delivered.

The Three Ways: The Principles Underpinning DevOps

e Phoenix Project: A Novel about IT, DevOps, and Helping Your

Business Win presents the ree Ways as the set of

underpinning principles from which all the observed DevOps

behaviors and patterns are derived (Figure 1.4).

Figure 1.4: e ree Ways

Source: Gene Kim, “e ree Ways: e Principles Underpinning DevOps,”

ITRevolution.com (blog), August 22, 2012, http://itrevolution.com/the-three-

ways-principles-underpinning-devops/.

e First Way enables fast left-to-right �ow of work from

Development to Operations to the customer. In order to

maximize �ow, we need to make work visible, reduce our

batch sizes and intervals of work, build in quality by

preventing defects from being passed to downstream work

centers, and constantly optimize for global goals.

By speeding up �ow through the technology value stream,

we reduce the lead time required to ful�ll internal or

customer requests, especially the time required to deploy

code into the production environment. By doing this, we

increase the quality of work as well as our throughput and

boost our ability to innovate and out-experiment the

competition.

e resulting practices include continuous build,

integration, test, and deployment processes, creating

environments on demand, limiting work in process (WIP),

http://itrevolution.com/
http://itrevolution.com/the-three-ways-principles-underpinning-devops/

and building systems and organizations that are safe to

change.

e Second Way enables the fast and constant �ow of

feedback from right to left at all stages of our value stream. It

requires that we amplify feedback to prevent problems from

happening again, or that we enable faster detection and

recovery. By doing this, we create quality at the source and

generate or embed knowledge where it is needed—this allows

us to create ever-safer systems of work where problems are

found and �xed long before a catastrophic failure occurs.

By seeing problems as they occur and swarming them

until effective countermeasures are in place, we continually

shorten and amplify our feedback loops, a core tenet of

virtually all modern process improvement methodologies.

is maximizes the opportunities for our organization to

learn and improve.

e ird Way enables the creation of a generative, high-

trust culture that supports a dynamic, disciplined, and

scienti�c approach to experimentation and risk-taking,

facilitating the creation of organizational learning, both from

our successes and failures. Furthermore, by continually

shortening and amplifying our feedback loops, we create

ever-safer systems of work and are better able to take risks

and perform experiments that help us learn faster than our

competition and win in the marketplace.

As part of the ird Way, we also design our system of

work so that we can multiply the effects of new knowledge,

transforming local discoveries into global improvements.

Regardless of where someone performs work, they do so with

the cumulative and collective experience of everyone in the

organization and throughout the organization’s history.

CONTINUOUS

LEARNING

Research Supported: e ree Ways

e ree Ways aren’t just a good idea:

research has shown that adopting these

strategies leads to superior outcomes for both

organizations and people.

In a six-year study led by co-author Dr.

Nicole Forsgren in the 2014–2019 State of

DevOps Reports, with Puppet and then DORA

and published in the book Accelerate: e

Science of Lean and DevOps, data shows there

are better outcomes by combining capabilities

and practices like continuous integration, test,

deployment, and working in small batches (the

First Way), fast feedback and monitoring (the

Second Way), and a generative culture (the

ird Way).5

e ree Ways help teams become elite

performers by shipping software faster and

more reliably, helping contribute to their

organization’s revenue, market share, and

customer satisfaction. Elite performers are

twice as likely to meet or exceed their

organizational performance goals. e ree

Ways also improve the well-being of those

doing the work. By adopting these practices,

the research from the State of DevOps Reports

shows decreased burnout and deployment

pain.6

CASE STUDY: NEW TO

SECOND EDITION

Approaching Cruising Altitude: American Airlines’

DevOps Journey (Part 1) (2020)

American Airlines’ DevOps journey grew out of a series

of questions, the first being simply “What is DevOps?”

“We were really starting at the very bo�om, at the

very beginning,” Maya Leibman, Executive Vice

President and Chief Information Officer of American

Airlines related at the DevOps Enterprise Summit-

London 2020.7

To get started, the team did their research but, most

importantly, they stopped making excuses. In the

beginning of DevOps, most examples were coming from

digital-native companies like Netflix and Spotify. It was

easy for the team to discount their accomplishments—

aer all, they were born in the cloud. But as more

traditional enterprises, companies like Target,

Nordstrom, and Starbucks, got on board, American

Airlines knew they didn’t have any excuses le.

The team started by,

1. se�ing concrete goals

2. formalizing their toolchain

3. bringin in coaches and mentors from outside

the company

4. experimenting and automating

5. conducting immersive practical training (to

learn while they were doing)

All of this was tied to their ultimate goal, which was

to deliver value faster.

As Leibman said:

There were so many times when a business

counterpart would bring something to the

table, a new idea, and they’d say, “Oh this is

what we want to do but it’s going to take IT

six months or a year to get it done.” And

those experiences just killed me. So the

impetus behind this was really “how do we

not be the long tent pole.” We knew there

was a be�er way of working that would help

us achieve that.8

Next, they decided what outputs they were going to

measure:9

• deployment frequency

• deployment cycle time

• change failure rate

• development cycle time

• number of incidents

• mean time to recover (MTTR)

Early successes in value stream mapping helped

team members be�er understand the end-to-end

processes of the system and inspired motivation. From

these successes, they built energy around how to a�ack

issues and improve them. They also conducted

immersive learning opportunities across IT.

These initial successes, learning about DevOps and

starting to actually practice some elements of it, led

them to the second big question on their DevOps

journey: Finance, friend or foe?

The current finance approval process was

cumbersome and lengthy, with months of approval

cycles. “I used to describe it as a process that’s designed

to make you give up,” said Leibman.10

The process looked like this:11

• No projects approved without Finance’s

involvement.

• Projects were approved but no headcount

added to do them (and no other priorities were

stopped).

• Requests were given equal scrutiny regardless

of size or risk.

• Requests were given equal scrutiny, even if the

request was a top corporate priority and there

was no question that it was going to be done.

• Projects were oen completed before they

were approved.

Even Finance knew that the process needed to

change, but a lack of trust between Finance and IT

caused a block. To help shed light on where the money

was being spent and to build trust with Finance, the

team undertook a cost mapping exercise and assigned

all the costs to their products, including the costs to run

them.

Aer this exercise, the IT team was able to be�er see

where money was actually being invested and question

whether that was the best use of it. And Finance was

able to gain the visibility they needed to trust there

weren’t large amounts of waste.

This visibility built the trust needed for

experimentation. Finance took four product teams and

gave them a set budget for the year. The teams defined

the OKRs and used the budget for the top priorities they

felt met those OKRs. This allowed the team to test

before rollout and focus on accountability and

outcomes, and Finance was able to gain even more

visibility.

Figure 1.5: American Airlines’ DevOps

Transformation Journey

Source: With permission of Ross Clanton

This success allowed them to scale the new model

against all of their products and define a new funding

process. “This was a huge accelerator in our journey,”

said Leibman.12

With Finance on board and new processes in place,

American Airlines discovered the third question in their

DevOps journey: How do we know what the score is?

With each small success, the team wanted to be�er

understand how they were doing overall. In other

words, they wanted to know what the score was.

For the American Airlines team, year one of their

DevOps journey was really focused on inputs: learning

about Agile/DevOps, focusing on products, cloud, and

security, etc. Year two of their journey focused more on

outputs, including the metrics they began measuring,

like deployment frequency and mean time to recover.

Finally in year three they started to focus not just on

inputs and outputs but on outcomes. “At the end of the

day, what do we really want to do?” said Leibman.

They came up with the following outcomes: make

money, improve Ops, increase LTR, and reduce cost.13

In year one, one of our objectives was X% of

people are going to go to Agile training. That

really represents an input. In year two, as we

started focusing more on outputs, the

objectives sort of changed to X% of teams

are going to up their agile maturity from this

level to this level. And by the time we got to

year three, agile wasn’t even an objective

anymore. We realized the inputs and outputs

are great, we have to measure them, but

ultimately we have to be focused on the

outcome.14

This finally led to the fourth question in their

DevOps journey: What’s a product? It was clear that it

was time to flesh out their taxonomy. This proved to be

one of the most challenging moments of their journey.

There were lots of opinions and no single right answer.

In the end, they decided to just get started, put

something on paper, organize around it, and fix it as

they learned. And ultimately, this all led to their fih

question: Does this feel way bigger than DevOps? To

answer that and to show some specific product success

examples, we’ll continue the American Airlines journey

later in the book.

This study illustrates applying the Three Ways

by using value stream mapping to help optimize

flow, selecting outcomes to measure in order to

establish fast feedback, and creating immersive

learning experiences to build a culture of

continual learning and experimentation.

Conclusion

In this chapter, we described the concepts of value streams,

lead time as one of the key measures of effectiveness for both

manufacturing and technology value streams, and the high-

level concepts behind each of the ree Ways, the principles

that underpin DevOps.

In the following chapters, the principles for each of the

ree Ways are described in greater detail. e �rst of these

principles is Flow, which focuses on how we create the fast

�ow of work in any value stream, whether it’s in

manufacturing or technology work. e practices that enable

fast �ow are described in Part III.

* Going forward, engineer refers to anyone working in our value stream, not just

developers.

† In fact, with techniques such as test-driven development, testing occurs even

before the first line of code is written.

‡ In this book, the term process time will be favored for the same reason Karen

Martin and Mike Osterling cite: “To minimize confusion, we avoid using the term

cycle time as it has several definitions synonymous with processing time and pace

or frequency of output, to name a few.”2

I

2
THE FIRST WAY: THE PRINCIPLES OF FLOW

n the technology value stream, work typically �ows from

Development to Operations, the functional areas between

our business and our customers. e First Way requires the

fast and smooth �ow of work from Development to

Operations in order to deliver value to customers quickly. We

optimize for this global goal instead of local goals, such as

Development feature completion rates, test �nd/�x ratios, or

Operations availability measures.

We increase �ow by making work visible, by reducing

batch sizes, and by building quality in, preventing defects

from being passed to downstream work centers. By speeding

up the �ow through the technology value stream, we reduce

the lead time required to ful�ll internal and external

customer requests, further increasing the quality of our work

while making us more responsive to customer and market

needs and able to out-experiment the competition.

Our goal is to decrease the amount of time required for

changes to be deployed into production and to increase the

reliability and quality of those services. Clues on how we do

this in the technology value stream can be gleaned from how

Lean principles were applied to the manufacturing value

stream.

Make Our Work Visible

A signi�cant difference between technology and

manufacturing value streams is that our work is invisible.

Unlike physical processes, in the technology value stream we

cannot easily see where �ow is being impeded or when work

is piling up in front of constrained work centers. Transferring

work between work centers in manufacturing is usually

highly visible and slow because inventory must be physically

moved.

However, in technology work the move can be done with

a click of a button, such as by reassigning a work ticket to

another team. Because it is so easy to move, work can bounce

between teams endlessly due to incomplete information, or

work can be passed onto downstream work centers with

problems that remain completely invisible until we are late

delivering what we promised to the customer or our

application fails in the production environment.

To help us see where work is �owing well and where work

is queued or stalled, we need to make our work as visible as

possible. One of the best methods of doing this is using visual

work boards, such as kanban boards or sprint planning

boards, where work can be represented on physical or

electronic cards. Work originates on the left (often being

pulled from a backlog), is pulled from work center to work

center (represented in columns), and �nishes when it reaches

the right side of the board, usually in a column labeled “done”

or “in production.”

Not only does our work become visible, but we can also

manage our work so that it �ows from left to right as quickly

as possible. is also helps surface unnecessary handoffs in

our work, which can introduce errors and additional delays.

Furthermore, we can measure lead time from when a card is

placed on the board to when it is moved into the “done”

column.

Ideally, our kanban board will span the entire value

stream, de�ning work as completed only when it reaches the

right side of the board (Figure 2.1). Work is not done when

Development completes the implementation of a feature.

Rather, it is only done when our application is running

successfully in production, delivering value to the customer.

Figure 2.1: An Example Kanban Board Spanning

Requirements, Dev, Test, Staging, and In Production

Source: David J. Andersen and Dominica DeGrandis, Kanban for IT Ops, training

materials for workshop, 2012.

By putting all work for each work center in queues and

making it visible, all stakeholders can more easily prioritize

work in the context of global goals. Doing this enables each

work center to single-task on the highest priority work until

it is completed, increasing throughput.

Limit Work in Process (WIP)

In manufacturing, daily work is typically dictated by a

production schedule that is generated regularly (e.g., daily,

weekly), establishing which jobs must be run based on

customer orders, order due dates, parts available, and so

forth.

In technology, our work is usually far more dynamic—this

is especially the case in shared services, where teams must

satisfy the demands of many different stakeholders. As a

result, daily work becomes dominated by the priority du jour,

often with requests for urgent work coming in through every

communication mechanism possible, including ticketing

systems, outage calls, emails, phone calls, chat rooms, and

management escalations.

Disruptions in manufacturing are also highly visible and

costly. ey often require breaking the current job and

scrapping any incomplete work in process in order to start

the new job. is high level of effort discourages frequent

disruptions.

However, interrupting technology workers is easy because

the consequences are invisible to almost everyone, even

though the negative impact to productivity may be far greater

than in manufacturing. For instance, an engineer assigned to

multiple projects must switch between tasks, incurring all the

costs of having to reestablish context, as well as cognitive

rules and goals.

Studies have shown that the time to complete even simple

tasks, such as sorting geometric shapes, signi�cantly

degrades when multitasking. Of course, because our work in

the technology value stream is far more cognitively complex

than sorting geometric shapes, the effects of multitasking on

process time is much worse.1

We can limit multitasking when we use a kanban board to

manage our work, such as by codifying and enforcing WIP

(work in process) limits for each column or work center, that

puts an upper limit on the number of cards that can be in a

column.

For example, we may set a WIP limit of three cards for

testing. When there are already three cards in the test lane,

no new cards can be added to the lane unless a card is

completed or removed from the “in work” column and put

back into queue (i.e., putting the card back to the column to

the left). Nothing can be worked on until it is �rst

represented in a work card, reinforcing that all work must be

made visible.

Dominica DeGrandis, one of the leading experts on using

kanban in DevOps value streams and author of Making Work

Visible, notes that “controlling queue size [WIP] is an

extremely powerful management tool, as it is one of the few

leading indicators of lead time—with most work items, we

don’t know how long it will take until it’s actually

completed.”2

Limiting WIP also makes it easier to see problems that

prevent the completion of work.* For instance, when we limit

WIP, we �nd that we may have nothing to do because we are

waiting on someone else. Although it may be tempting to

start new work (i.e., “It’s better to be doing something than

nothing”), a far better action would be to �nd out what is

causing the delay and help �x that problem. Bad multitasking

often occurs when people are assigned to multiple projects,

resulting in prioritization problems. In other words, as David

J. Anderson, author of Kanban: Successful Evolutionary Change

for Your Technology Business, said, “Stop starting. Start

�nishing.”4

Reduce Batch Sizes

Another key component to creating smooth and fast �ow is

performing work in small batch sizes. Prior to the Lean

manufacturing revolution, it was common practice to

manufacture in large batch sizes (or lot sizes), especially for

operations where job setup or switching between jobs was

time-consuming or costly. For example, producing large car

body panels requires setting large and heavy dies onto metal

stamping machines, a process that can take days. When

changeover cost is so expensive, we often stamp as many

panels at a time as possible, creating large batches in order to

reduce the number of changeovers.

However, large batch sizes result in skyrocketing levels of

WIP and high levels of variability in �ow that cascade

through the entire manufacturing plant. e results are long

lead times and poor quality—if a problem is found in one

body panel, the entire batch has to be scrapped.

One of the key lessons in Lean is that in order to shrink

lead times and increase quality, we must strive to continually

shrink batch sizes. e theoretical lower limit for batch size is

single-piece �ow, where each operation is performed one unit

at a time.†

e dramatic differences between large and small batch

sizes can be seen in the simple newsletter mailing simulation

described in Lean inking: Banish Waste and Create Wealth in

Your Corporation by James P. Womack and Daniel T. Jones.5

Suppose in our own example we have ten brochures to

send, and mailing each brochure requires four steps: (1) fold

the paper, (2) insert the paper into the envelope, (3) seal the

envelope, and (4) stamp the envelope.

e large batch strategy (i.e., “mass production”) would be

to sequentially perform one operation on each of the ten

brochures. In other words, we would �rst fold all ten sheets of

paper, then insert each of them into envelopes, then seal all

ten envelopes, and then stamp them.

On the other hand, in the small batch strategy (i.e.,

“single-piece �ow”), all the steps required to complete each

brochure are performed sequentially before starting on the

next brochure. In other words, we fold one sheet of paper,

insert it into the envelope, seal it, and stamp it—only then do

we start the process over with the next sheet of paper.

e difference between using large and small batch sizes

is dramatic (see Figure 2.2 on page 24). Suppose each of the

four operations takes ten seconds for each of the ten

envelopes. With the large batch size strategy, the �rst

completed and stamped envelope is produced only after 310

seconds.

Figure 2.2: Simulation of “Envelope Game”

(Fold, insert, seal, and stamp the envelope.)

Source: Stefan Luyten, “Single Piece Flow,” Medium.com, August 8, 2014,

https://medium.com/@stefanluyten/single-piece-�ow-5d2c2bec845b.

Worse, suppose we discover during the envelope sealing

operation that we made an error in the �rst step of folding—

in this case, the earliest we would discover the error is at two

hundred seconds, and we have to refold and reinsert all ten

brochures in our batch again.

In contrast, in the small batch strategy the �rst

completed stamped envelope is produced in only forty

seconds, eight times faster than the large batch strategy. And,

if we made an error in the �rst step, we only have to redo the

one brochure in our batch. Small batch sizes result in less

WIP, faster lead times, faster detection of errors, and less

rework.

http://medium.com/
https://medium.com/@stefanluyten/single-piece-flow-5d2c2bec845b

e negative outcomes associated with large batch sizes

are just as relevant to the technology value stream as in

manufacturing. Consider when we have an annual schedule

for software releases, where an entire year’s worth of code

that Development has worked on is released to production

deployment.

Like in manufacturing, this large batch release creates

sudden, high levels of WIP and massive disruptions to all

downstream work centers, resulting in poor �ow and poor

quality outcomes. is validates our common experience that

the larger the change going into production, the more

difficult the production errors are to diagnose and �x, and the

longer they take to remediate.

In a post on Startup Lessons Learned, Eric Ries states,

e batch size is the unit at which work-products move

between stages in a development [or DevOps] process.

For software, the easiest batch to see is code. Every time

an engineer checks in code, they are batching up a

certain amount of work. ere are many techniques for

controlling these batches, ranging from the tiny batches

needed for continuous deployment to more traditional

branch-based development, where all of the code from

multiple developers working for weeks or months is

batched up and integrated together.6

e equivalent to single piece �ow in the technology value

stream is realized with continuous deployment, where each

change committed to version control is integrated, tested,

and deployed into production. e practices that enable this

are described in Part IV of this book.

Reduce the Number of Handoffs

In the technology value stream, whenever we have long

deployment lead times measured in months, it is often

because there are hundreds (or even thousands) of operations

required to move our code from version control into the

production environment. To transmit code through the value

stream requires multiple departments to work on a variety of

tasks, including functional testing, integration testing,

environment creation, server administration, storage

administration, networking, load balancing, and information

security.

Each time the work passes from team to team, we require

all sorts of communication: requesting, specifying, signaling,

coordinating, and often prioritizing, scheduling,

decon�icting, testing, and verifying. is may require using

different ticketing or project management systems; writing

technical speci�cation documents; communicating via

meetings, emails, or phone calls; and using �le system shares,

FTP servers, and Wiki pages.

Each of these steps is a potential queue where work will

wait when we rely on resources that are shared between

different value streams (e.g., centralized operations). e lead

times for these requests are often so long that there is

constant escalation to have work performed within the

needed timelines.

Even under the best circumstances, some knowledge is

inevitably lost with each handoff. With enough handoffs, the

work can completely lose the context of the problem being

solved or the organizational goal being supported. For

instance, a server administrator may see a newly created

ticket requesting that user accounts be created, without

knowing what application or service the accounts are for, why

they need to be created, what all the dependencies are, or

whether the user account creations are actually recurring

work.

To mitigate these types of problems, we strive to reduce

the number of handoffs, either by automating signi�cant

portions of the work, or by building platforms and

reorganizing teams so they can self-service builds, testing,

and deployments to deliver value to the customer themselves

instead of having to be constantly dependent on others. As a

result, we increase �ow by reducing the amount of time that

our work spends waiting in queue, as well as the amount of

non–value-added time. (See Appendix 4.)

Continually Identify and Elevate Our Constraints

To reduce lead times and increase throughput, we need to

continually identify our system’s constraints and improve its

work capacity. In Beyond the Goal, Dr. Goldratt states, “In any

value stream, there is always a direction of �ow, and there is

always one and only constraint; any improvement not made

at that constraint is an illusion.”7 If we improve a work center

that is positioned before the constraint, work will merely pile

up at the bottleneck even faster, waiting for work to be

performed by the bottlenecked work center.

On the other hand, if we improve a work center

positioned after the bottleneck, it remains starved, waiting

for work to clear the bottleneck. As a solution, Dr. Goldratt

de�ned the “�ve focusing steps”:8

• Identify the system’s constraint.

• Decide how to exploit the system’s constraint.

• Subordinate everything else to the above decisions.

• Elevate the system’s constraint.

• If a constraint has been broken in the previous steps,

go back to step one but do not allow inertia to cause a

system constraint.

In typical DevOps transformations, as we progress from

deployment lead times measured in months or quarters to

lead times measured in minutes, the constraint usually

follows this progression:

• Environment creation: We cannot achieve

deployments on demand if we always have to wait

weeks or months for production or test environments.

e countermeasure is to create environments that

are on-demand and completely self-serviced, so that

they are always available when we need them.

• Code deployment: We cannot achieve deployments

on demand if each of our production code

deployments takes weeks or months to perform (e.g.,

each deployment requires 1,300 manual, error-prone

steps, involving up to three hundred engineers). e

countermeasure is to automate our deployments as

much as possible, with the goal of being completely

automated so deployments can be done self-service by

any developer.

• Test setup and run: We cannot achieve deployments

on demand if every code deployment requires two

weeks to set up our test environments and data sets

and another four weeks to manually execute all our

regression tests. e countermeasure is to automate

our tests so we can execute deployments safely and to

parallelize them so the test rate can keep up with our

code development rate.

• Overly tight architecture: We cannot achieve

deployments on demand if overly tight architecture

means that every time we want to make a code change

we have to send our engineers to scores of committee

meetings in order to get permission to make our

changes. Our countermeasure is to create more

loosely coupled architecture so that changes can be

made safely and with more autonomy, increasing

developer productivity.

After all these constraints have been broken, our

constraint will likely be Development or the product owners.

Because our goal is to enable small teams of developers to

independently develop, test, and deploy value to customers

quickly and reliably, this is where we want our constraint to

be. High performers, regardless of whether an engineer is in

Development, QA, Operations, or Infosec, state that their

goal is to help maximize developer productivity.

When the constraint is here, we are limited only by the

number of good business hypotheses we create and our

ability to develop the code necessary to test these hypotheses

with real customers.

e progression of constraints listed above are

generalizations of typical transformations—techniques to

identify the constraint in actual value streams, such as

through value stream mapping and measurements, are

described later in this book.

Eliminate Hardships and Waste in the Value Stream

Shigeo Shingo, one of the pioneers of the Toyota Production

System, believed that waste constituted the largest threat to

business viability—the commonly used de�nition in Lean is

“the use of any material or resource beyond what the

customer requires and is willing to pay for.”9 He de�ned seven

major types of manufacturing waste: inventory,

overproduction, extra processing, transportation, waiting,

motion, and defects.

More modern interpretations of Lean have noted that

“eliminating waste” can have a demeaning and dehumanizing

context; instead, the goal is reframed to reduce hardship and

drudgery in our daily work through continual learning in

order to achieve the organization’s goals. For the remainder

of this book, the term waste will imply this more modern

de�nition, as it more closely matches the DevOps ideals and

desired outcomes.

In the book Implementing Lean Software Development:

From Concept to Cash, Mary and Tom Poppendieck describe

waste and hardship in the software development stream as

anything that causes delay for the customer, such as activities

that can be bypassed without affecting the result.10 Mary and

Tom Poppendieck listed the following seven categories of

waste and hardship:11

• Partially done work: is includes any work in the

value stream that has not been completed (e.g.,

requirement documents or change orders not yet

reviewed) and work that is sitting in queue (e.g.,

waiting for QA review or server admin ticket).

Partially done work becomes obsolete and loses value

as time progresses.

• Extra processes: Any additional work being

performed in a process that does not add value to the

customer. is may include documentation not used

in a downstream work center, or reviews or approvals

that do not add value to the output. Extra processes

add effort and increase lead times.

• Extra features: Features built into the service that are

not needed by the organization or the customer (e.g.,

“gold plating”). Extra features add complexity and

effort to testing and managing functionality.

• Task switching: When people are assigned to multiple

projects and value streams, requiring them to context

switch and manage dependencies between work,

adding additional effort and time into the value

stream.

• Waiting: Any delays between work requiring

resources to wait until they can complete the current

work. Delays increase cycle time and prevent the

customer from getting value.

• Motion: e amount of effort to move information or

materials from one work center to another. Motion

waste can be created when people who need to

communicate frequently are not colocated. Handoffs

also create motion waste and often require additional

communication to resolve ambiguities.

• Defects: Incorrect, missing, or unclear information,

materials, or products create waste, as effort is needed

to resolve these issues. e longer the time between

defect creation and defect detection, the more difficult

it is to resolve the defect.

We also add the following two categories of waste from

Damon Edwards:12

• Nonstandard or manual work: Reliance on

nonstandard or manual work from others, such as

using non-rebuilding servers, test environments, and

con�gurations. Ideally, any manual work that can be

automated should be automated, self-serviced, and

available on demand. However, some types of manual

work will likely always be essential.

• Heroics: In order for an organization to achieve goals,

individuals and teams are put in a position where they

must perform unreasonable acts, which may even

become a part of their daily work (e.g., nightly 2:00 AM

problems in production, creating hundreds of work

tickets as part of every software release).

Our goal is to make these wastes and hardships—

anywhere heroics become necessary—visible, and to

systematically do what is needed to alleviate or eliminate

these burdens and hardships to achieve our goal of fast �ow.

CASE STUDY: NEW TO

SECOND EDITION

Flow and Constraint Management in Healthcare (2021)

DevOps and constraint management theroies aren’t just

for soware development or physical manufacturing.

They can be applied to nearly any situation. Just look at

this case study from the healthcare industry. At the

DevOps Enterprise Summit 2021, Dr. Chris Strear, an

emergency physician for more than nineteen years,

related his experience improving patient outcomes by

working with flow.13

Around 2007, our hospital was struggling. We

had unbelievable problems with flow. We

were boarding patients in the emergency

department for hours and hours, and

sometimes days, while they waited for an

inpatient bed to become available.

Our hospital was so crowded and flow

was so backed up that our emergency

department was on ambulance diversion for

sixty hours a month on average. Now that

means that for sixty hours a month, our

emergency department was closed to the

sickest patients in our community. One

month we hit over two hundred hours of

diversion.

It was horrible. We couldn’t keep nurses.

It was such a hard place to work that nurses

would quit. And we relied on temporary

nurses, on agencies for placing nurses, or

traveler nurses to fill in the gaps in staffing.

For the most part, these nurses weren’t

experienced enough to work in the kind of

emergency se�ing where we practiced. It felt

dangerous to come to work every day. It felt

dangerous to take care of patients. We were

just waiting around for something bad to

happen.

The president of our hospital recognized

how bad things were, and she put together a

commi�ee for flow, and I was lucky enough

to be on that commi�ee… .

[The change] was transformative. Within a

year, we had basically eliminated ambulance

diversion. We went from sixty hours a month

[of ambulance diversion] to forty-five minutes

a month. We improved the length of stay of

all of our admi�ed patients in the hospital.

We shortened the time patients spent in the

emergency department. We virtually

eliminated the patients who le the

department without being seen because the

waits were too long. And we did all of this in a

time when we had record volumes, record

ambulance traffic, and record admissions.

[The transformation] was amazing. We

took be�er care of patients. It was safer. And

it felt so much easier to take care of patients.

It was such an amazing turnaround, in fact,

that we were able to stop hiring temporary

nurses. We were able to fill our staff

completely with dedicated emergency nurses

who were qualified to work there. In fact, our

department became the number one place

for emergency nurses to want to work in the

Portland/Vancouver area.

Honestly, I’d never been a part of

anything that amazing before, and I haven’t

been since. We made patient care be�er for

tens of thousands of patients, and we made

life be�er for hundreds of healthcare workers

in our hospital.14

So how did they manage this turnaround?

Sometime before, Chris had been introduced to the

book e Goal. Constraint management had a profound

influence on him and the way he tackled the problem of

flow at his hospital.

So I get asked a bunch of times, what’s the

difference? I don’t have all the answers, but

I’ve seen some trends. I’ve seen some

recurrent themes. Flow needs to be important

to leaders, not just in words, but in deeds.

They need to walk the walk and not just talk

the talk. And a lot of them don’t do that.

Part of that is they need to create the

bandwidth. The hospital leaders aren’t going

to be the ones who are actually going to be

making the changes day to day. What they

have to do is, they have to allow the people

who are going to be making those changes to

have enough room on their plate to put in the

work. If a nurse manager, for instance, has

fieen projects, fieen commi�ee meetings

that they have to go to day in and day out,

and the leader comes along and says, “Flow’s

important,” but now flow is their sixteenth

task and the sixteenth meeting that they have

to go to, really, it doesn’t say that it’s

important. All it says is it’s sixteenth most

important.

And then there’s managers that aren’t

going to have time to put in for the sixteenth

project. Leaders need to figure out what really

is important and what can wait, what can

take a back burner, and then take an active

role in clearing some of that work off of

people’s plates so that they can do a job. It

doesn’t just make those people who have to

do the work more effective; it conveys to

them in a very real, tangible, palpable sense

that this new project, flow, is the most

important task.

You have to break down silos. You’re

looking at flow through a system. You’re not

looking at flow on an inpatient unit or flow

just in the emergency department, because

each of these departments, when taken

individually, has competing interests. When

you move a patient out of the emergency

department and onto an inpatient unit, you’re

creating work for the inpatient unit. You

incentivize people differently throughout the

hospital.

When you’re discussing how to make flow

be�er, and somebody says no, it can’t just

stop at that. No can’t be the final word. I

heard time and time again, “We can’t do that

because that’s not how we’ve done things.”

And that’s ridiculous. No is okay, as long as

it’s followed up with another idea to try.

Because if I have a lousy idea, but it’s the only

idea out there, then you know what? My

lousy idea is the best idea we got going, and

so that’s the one we try.

Leaders need to make sure that they’re

measuring things correctly and that they’re

rewarding things thoughtfully. And what do I

mean by that? Well, part of silos in a hospital

se�ing is that a manager for a particular

department is oen measured on how things

go just in that department. And they’re

rewarded accordingly. People behave based

on how they’re measured and how they’re

rewarded. So if improving flow in the

emergency department is what’s right for

patients and what’s right for the hospital

system, but it may shi burden onto another

unit, and that other unit then falls off in their

metrics, that should be okay because flow

through the hospital is improved. Who cares

about flow through an individual unit?

Make sure that what you’re measuring is

commensurate with what your overall goals

are. Make sure people are rewarded

appropriately, and they’re not unfairly

penalized for improving flow through the

system. You need to think about the system,

not about the department.

And finally, how we’ve set things up,

that’s all artificial, that’s a constraint. It’s not a

natural law of physics. Keep that in mind

because so much resistance comes from the

uncertainty of doing something differently.

There’s oen this mindset that because

we haven’t done something a certain way

before, it can’t be done. But we’ve made all of

this stuff up. How a body responds to a

treatment, that’s not artificial, that is a

natural law. But where you put a patient,

who’s in charge of them, how you move a

patient from one unit to another, we all just

made that up and then perpetuated it. That’s

all negotiable.15

This case study concretely illustrates using

Goldra�’s Theory of Constraint and his five

focusing steps to identify and illuminate that

constraint and thus improve flow. In this

example, the flow of people through the hospital

system shows that this theory can be applied to

any environment, not just manufacturing or

soware development.

Conclusion

Improving �ow through the technology value stream is

essential to achieving DevOps outcomes. We do this by

making work visible, limiting WIP, reducing batch sizes and

the number of handoffs, continually identifying and

evaluating our constraints, and eliminating hardships in our

daily work.

e speci�c practices that enable fast �ow in the DevOps

value stream are presented in Part IV of this book. In the next

chapter, we present e Second Way: e Principles of

Feedback.

* Taiichi Ohno compared enforcing WIP limits to draining water from the river of

inventory in order to reveal all the problems that obstruct fast flow.3

† Also known as “batch size of one” or “1x1 flow,” terms that refer to batch size and

a WIP limit of one.

W

3
THE SECOND WAY: THE PRINCIPLES OF
FEEDBACK

hile the First Way describes the principles that enable

the fast �ow of work from left to right, the Second

Way describes the principles that enable the reciprocal fast

and constant feedback from right to left at all stages of the

value stream. Our goal is to create an ever-safer and more

resilient system of work.

is is especially important when working in complex

systems, when catastrophic outcomes, such as a

manufacturing worker being hurt on the job or a nuclear

reactor meltdown in progress, can result from errors.

In technology, our work happens almost entirely within

complex systems with a high risk of catastrophic

consequences. As in manufacturing, we often discover

problems only when large failures are underway, such as a

massive production outage or a security breach resulting in

the theft of customer data.

We make our systems of work safer by creating fast,

frequent, high-quality information �ow throughout our value

stream and our organization, which includes feedback and

feedforward loops. is allows us to detect and remediate

problems while they are smaller, cheaper, and easier to �x; to

avert problems before they cause catastrophe; and to create

organizational learning that we integrate into future work.

When failures and accidents occur, we treat them as

opportunities for learning, as opposed to causes for

punishment and blame. To achieve all of the above, let us �rst

explore the nature of complex systems and how they can be

made safer.

Working Safely within Complex Systems

One of the de�ning characteristics of a complex system is

that it de�es any single person’s ability to see the system as a

whole and understand how all the pieces �t together.

Complex systems typically have a high degree of

interconnectedness of tightly coupled components and

system-level behavior that cannot be explained merely in

terms of the behavior of the system components.

Dr. Charles Perrow studied the ree Mile Island partial

nuclear meltdown, observing that it was impossible for

anyone to understand how the reactor would behave in all

circumstances or how it might fail.1 When a problem was

underway in one component, it was difficult to isolate it from

other components. Failures quickly cascaded through the

paths of least resistance in unpredictable ways.

Dr. Sidney Dekker, who also codi�ed some key elements

of safety culture, observed another characteristic of complex

systems: doing the same thing twice will not predictably or

necessarily lead to the same result.2 It is this characteristic

that makes static checklists and best practices, while valuable,

insufficient to prevent catastrophes from occurring or

manage them effectively. (See Appendix 5.)

erefore, because failure is inherent and inevitable in

complex systems, we must design a safe system of work,

whether in manufacturing or technology, where we can

perform work without fear, con�dent that most errors will be

detected quickly, long before they cause catastrophic

outcomes, such as worker injury, product defects, or negative

customer impact.

After he decoded the mechanics of the Toyota Production

System as part of his doctoral thesis at Harvard Business

School, Dr. Steven Spear stated that designing perfectly safe

systems is likely beyond our abilities, but we can make it safer

to work in complex systems when the four following

conditions are met:3*

• Complex work is managed so that problems in design

and operations are revealed.

• Problems are swarmed and solved, resulting in quick

construction of new knowledge.

• New local knowledge is exploited globally throughout

the organization.

• Leaders create other leaders who continually grow

these types of capabilities.

Each of these capabilities is required to work safely in a

complex system. In the next sections, the �rst two

capabilities and their importance are described, as well as

how they have been created in other domains and what

practices enable them in the technology value stream. (e

third and fourth capabilities are described in Chapter 4.)

See Problems as They Occur

In a safe system of work, we must constantly test our design

and operating assumptions. Our goal is to increase

information �ow in our system from as many areas as

possible, sooner, faster, cheaper, and with as much clarity

between cause and effect as possible. e more assumptions

we can invalidate, the faster we can �nd and �x problems,

increasing our resilience, agility, and ability to learn and

innovate.

We do this by creating feedback and feedforward loops

into our system of work. Dr. Peter Senge, in his book e Fifth

Discipline: e Art & Practice of the Learning Organization,

described feedback loops as a critical part of learning

organizations and systems thinking.5 Feedback and

feedforward loops cause effects within a system to reinforce

or counteract each other.

In manufacturing, the absence of effective feedback often

contributes to major quality and safety problems. In one well-

documented case at the General Motors Fremont

manufacturing plant, there were no effective procedures in

place to detect problems during the assembly process, nor

were there explicit procedures on what to do when problems

were found. As a result, there were instances of engines being

put in backward, cars missing steering wheels or tires, and

cars even having to be towed off the assembly line because

they wouldn’t start.6

In contrast, in high-performing manufacturing

operations there is fast, frequent, and high-quality

information �ow throughout the entire value stream—every

work operation is measured and monitored, and any defects

or signi�cant deviations are quickly found and acted upon by

the people doing the work. is is the foundation of what

enables quality, safety, and continual learning and

improvement.

In the technology value stream, we often get poor

outcomes because of the absence of fast feedback. For

instance, in a waterfall software project, we may develop code

for an entire year and get no feedback on quality until we

begin the testing phase—or, worse, when we release our

software to customers. When feedback is this delayed and

infrequent, it is too slow to enable us to prevent undesirable

outcomes.

In contrast, our goal is to create fast feedback and

feedforward loops wherever work is performed, at all stages

of the technology value stream, encompassing Product

Management, Development, QA, Infosec, and Operations.

is includes the creation of automated build, integration,

and test processes so that we can immediately detect when a

change has been introduced that takes us out of a correctly

functioning and deployable state.

We also create pervasive telemetry so we can see how all

our system components are operating in testing and

production environments so that we can quickly detect when

they are not operating as expected. Telemetry also allows us

to measure whether we are achieving our intended goals and,

ideally, is radiated to the entire value stream so we can see

how our actions affect other portions of the system as a

whole.

Feedback loops not only enable quick detection and

recovery of problems but also inform us on how to prevent

these problems from occurring again in the future. Doing this

increases the quality and safety of our system of work and

creates organizational learning.

As Elisabeth Hendrickson, VP of Engineering at Pivotal

Software, Inc. and author of Explore It!: Reduce Risk and

Increase Con�dence with Exploratory Testing, said, “When I

headed up quality engineering, I described my job as ‘creating

feedback cycles.’ Feedback is critical because it is what allows

us to steer. We must constantly validate between customer

needs, our intentions and our implementations. Testing is

merely one sort of feedback.”7

CONTINUOUS

LEARNING

Feedback Types and Cycle Times

According to Elisabeth Hendrickson in her

2015 DevOps Enterprise Summit

presentation, there are six types of feedback in

software development:8

• Dev Tests: As a programmer, did I write

the code I intended to write?

• Continuous Integration (CI) and

Testing: As a programmer, did I write the

code I intended to write without violating

any existing expectations in the code?

• Exploratory Testing: Did we introduce

any unintended consequences?

• Acceptance Testing: Did I get the feature

I asked for?

• Stakeholder Feedback: As a team, are we

headed in the right direction?

• User Feedback: Are we producing

something our customers/users love?

And each type of feedback takes a different

amount of time. ink of it as a series of

concentric circles. e fastest loops are at the

developer’s station (local tests, test-driven

development, etc.) and the longest are the

customer or user feedback at the very end of

the cycle (as seen in Figure 3.1)

Figure 3.1: Feedback Cycle Times

Source: Hendrickson, Elisabeth. “DOES15—Elisabeth Hendrickson

—Its All About Feedback.” Posted by DevOps Enterprise Summit,

November 5, 2015. YouTube video, 34:47.

https://www.youtube.com/watch?v=r2BFTXBundQ.

Swarm and Solve Problems to Build New Knowledge

Obviously, it is not sufficient to merely detect when the

unexpected occurs. When problems occur, we must swarm

them, mobilizing whoever is required to solve the problem.

According to Dr. Spear, the goal of swarming is to contain

problems before they have a chance to spread, and to

diagnose and treat the problem so that it cannot recur. “In

doing so,” he says, “they build ever-deeper knowledge about

how to manage the systems for doing our work, converting

inevitable up-front ignorance into knowledge.”9

e paragon of this principle is the Toyota Andon cord. In a

Toyota manufacturing plant, above every work center is a

cord that every worker and manager is trained to pull when

something goes wrong; e.g., a part is defective, a required

part is not available, or even if work takes longer than

documented.†

https://www.youtube.com/watch?v=r2BFTXBundQ

When the Andon cord is pulled, the team leader is alerted

and immediately works to resolve the problem. If the problem

cannot be resolved within a speci�ed time (e.g., �fty-�ve

seconds), the production line is halted so that the entire

organization can be mobilized to assist with problem

resolution until a successful countermeasure has been

developed.

Instead of working around the problem or scheduling a �x

“when we have more time,” we swarm to �x it immediately—

this is nearly the opposite of the behavior at the GM Fremont

plant described earlier.

Swarming is necessary for the following reasons:

• It prevents the problem from progressing

downstream, where the cost and effort to repair it

increases exponentially and technical debt is allowed

to accumulate.

• It prevents the work center from starting new work,

which will likely introduce new errors into the system.

• If the problem is not addressed, the work center could

potentially have the same problem in the next

operation (e.g., �fty-�ve seconds later), requiring

more �xes and work. (See Appendix 6.)

is practice of swarming seems contrary to common

management practice, as we are deliberately allowing a local

problem to disrupt operations globally. However, swarming

enables learning. It prevents the loss of critical information

due to fading memories or changing circumstances. is is

especially critical in complex systems, where many problems

occur because of some unexpected, idiosyncratic interaction

of people, processes, products, places, and circumstances—as

time passes, it becomes impossible to reconstruct exactly

what was going on when the problem occurred.

As Dr. Spear notes, swarming is part of the “disciplined

cycle of real-time problem recognition, diagnosis … and

treatment (countermeasures or corrective measures in

manufacturing vernacular). It [is] the discipline of the

Shewhart cycle—plan, do, check, act—popularized by Dr. W.

Edwards Deming, but accelerated to warp speed.”10

It is only through the swarming of ever-smaller problems

discovered ever-earlier in the life cycle that we can de�ect

problems before a catastrophe occurs. In other words, when

the nuclear reactor melts down, it is already too late to avert

the worst outcomes.

To enable fast feedback in the technology value stream,

we must create the equivalent of an Andon cord and the

related swarming response. is requires that we also create

the culture that makes it safe, and even encouraged, to pull

the Andon cord when something goes wrong, whether it is

when a production incident occurs or when errors occur

earlier in the value stream, such as when someone introduces

a change that breaks our continuous build or test processes.

When conditions trigger an Andon cord pull, we swarm to

solve the problem and prevent the introduction of new work

until the issue has been resolved.‡ is provides fast feedback

for everyone in the value stream (especially the person who

caused the system to fail), enables us to quickly isolate and

diagnose the problem, and prevents further complicating

factors that can obscure cause and effect.

Preventing the introduction of new work enables

continuous integration and deployment, which is “single-

piece �ow” in the technology value stream. All changes that

pass our continuous build and integration tests are deployed

into production, and any changes that cause any tests to fail

trigger our Andon cord and are swarmed until resolved.

CASE STUDY: NEW TO

SECOND EDITION

Pulling the Andon Cord at Excella (2018)

Excella is an IT consulting firm. In 2019 at the DevOps

Enterprise Summit, Zack Ayers, Scrum Master, and

Joshua Cohen, Sr. Developer, discussed their

experiments using an Andon cord to decrease cycle

time, improve collaboration, and achieve a culture of

higher psychological safety.11

Excella noticed during a team retrospective that

their cycle times were beginning to rise. They had what

Joshua Cohen described as a case of the “almost dones.”

He noted, “During standup, our developers would give

an update on the feature they were working on the

previous day. They would say, ‘Hey, I made a lot of

progress. I’m almost done.’ And the next morning they

would say, ‘Hey, I ran into some issues but I worked

through them. I just have a few more tests to run. I’m

almost done.’”12

This case of the “almost dones” was happening too

frequently. The team decided this was an area they

wanted to improve. They noticed that teammates were

only bringing up issues at specific times, like during

standups. They wanted the team to shi their practice

to collaborating as soon as the issue was identified, not

waiting until the next day’s standup or meeting.

The team decided to experiment with the idea of an

Andon cord. They had two key parameters: (1) When the

cord was “pulled,” everyone would stop work to identify

a path toward resolution. (2) The cord would be pulled

whenever someone on the team felt stuck or needed

team's help.

Instead of a literal string or cord to pull, the team

created a bot in Slack as a metaphorical Andon cord.

When someone typed in andon, the bot would @here

the team, notifying everyone in Slack. But they didn’t

want to end it there. They also created an

“if/this/then/that” integration in Slack that would turn

on a rotating red light, string lights, and even a dancing

“tube” man in the office.

To measure their Andon cord experiment, the team

decided to focus on reduction in cycle time as the key

metric for success, as well as increasing the team’s

collaboration and ge�ing rid of the “almost dones” by

talking about issues when they arose.

In the beginning of the experiment in 2018, their

cycle time hovered around three days in progress. Over

the following weeks, as the Andon cord began to be

pulled, they saw a slight decrease in cycle time. A few

weeks later, they stopped pulling the Andon cord and

saw their cycle time rise to nearly eleven days, an all-

time high.13

They evaluated what was happening with the

experiment. They realized that while pulling the cord

was fun, they weren’t pulling it oen enough because

people were afraid to ask for help and they didn’t want

to disturb their teammates.

In order to alleviate this, they changed how they

defined when teammates should pull the Andon cord.

Instead of the cord being pulled whenever a team

member was stuck, they would pull the cord whenever

they needed the opinion of the team.

With this change, they saw a huge uptick in the

number of Andon cord pulls and a corresponding

decrease in cycle time.

Each time the team saw Andon cord pulls drop, they

found new ways to incentivize pulls, and each time they

saw their cycle times decrease with increased pulls. The

team continued to iterate and eventually moved the

Andon cord experiment into a practice and finally scaled

it product wide, using “Andon: Code Red” to report

major issues.

Figure 3.2: Cycle Time vs. Andon Pulls at Excella

Source: Zach Ayers and Joshua Cohen. “Andon Cords in Development

Teams—Driving Continuous Learning,” presentation at the DevOps

Enterprise Summit Las Vegas, 2019.

https://videolibrary.doesvirtual.com/?video=504281981.

In addition to cycle time, they found that the Andon

cord promoted psychological safety. Teammates spoke

up more and offered more creative solutions.

As Jeff Gallimore, Chief Technology and Innovation

Officer and Cofounder of Excella, explains:

One of the counterintuitive learnings from

this experiment was it challenged the

generally held belief that, for developers and

engineers in particular, you shouldn’t

interrupt flow because it hurts individual

https://videolibrary.doesvirtual.com/?video=504281981

productivity. However, that’s exactly what the

Andon cord does, for the benefit of team flow

and productivity.14

This case study highlights the amazing

effectiveness of swarming to solve problems

before a local issue can become a global issue,

and how the creative integration of an Andon

cord system helps decrease cycle times and

improve collaboration.

Keep Pushing Quality Closer to the Source

We may inadvertently perpetuate unsafe systems of work due

to the way we respond to accidents and incidents. In complex

systems, adding more inspection steps and approval

processes actually increases the likelihood of future failures.

e effectiveness of approval processes decreases as we push

decision-making further away from where the work is

performed. Doing so not only lowers the quality of decisions

but also increases our cycle time, thus decreasing the

strength of the feedback between cause and effect and

reducing our ability to learn from successes and failures.§

is can be seen even in smaller and less complex

systems. When top-down, bureaucratic, command-and-

control systems become ineffective, it is usually because the

variance between “who should do something” and “who is

actually doing something” is too large, due to insufficient

clarity and timeliness.

Examples of ineffective quality controls, per Lean

Enterprise, include:16

• Requiring another team to complete tedious, error-

prone, and manual tasks that could be easily

automated and run as needed by the team who needs

the work performed.

• Requiring approvals from busy people who are distant

from the work, forcing them to make decisions

without adequate knowledge of the work or the

potential implications, or to merely rubber stamp

their approvals.

• Creating large volumes of documentation of

questionable detail, which become obsolete shortly

after they are written.

• Pushing large batches of work to teams and special

committees for approval and processing and then

waiting for responses.

Instead, we need everyone in our value stream to �nd and

�x problems in their area of control as part of their daily

work. By doing this, we push quality and safety

responsibilities and decision-making to where the work is

performed, instead of relying on approvals from distant

executives.

We use peer reviews of our proposed changes to gain

whatever assurance is needed that our changes will operate as

designed. We automate as much of the quality checking

typically performed by a QA or Information Security

department as possible. Instead of developers needing to

request or schedule a test to be run, these tests can be

performed on demand, enabling developers to quickly test

their own code and even deploy those changes into

production themselves.

By doing this, we truly make quality everyone’s

responsibility as opposed to it being the sole responsibility of

a separate department. Information security is not just

Information Security’s job, just as availability isn’t merely the

job of Operations.

Having developers share responsibility for the quality of

the systems they build not only improves outcomes but also

accelerates learning. is is especially important for

developers, as they are typically the team that is furthest

removed from the customer. As Gary Gruver observes, “It’s

impossible for a developer to learn anything when someone

yells at them for something they broke six months ago—

that’s why we need to provide feedback to everyone as quickly

as possible, in minutes, not months.”17

Enable Optimizing for Downstream Work Centers

In the 1980s, designing for manufacturability principles

sought to design parts and processes so that �nished goods

could be created with the lowest cost, highest quality, and

fastest �ow. Examples include designing parts that are wildly

asymmetrical to prevent them from being put on backward

and designing screw fasteners so that they are impossible to

over-tighten.

is was a departure from how design was typically done,

which focused on the external customers but overlooked

internal stakeholders, such as the people performing the

manufacturing.

Lean de�nes two types of customers that we must design

for: the external customer (who most likely pays for the

service we are delivering) and the internal customer (who

receives and processes the work immediately after us).

According to Lean, our most important customer is our next

step downstream. Optimizing our work for them requires

that we have empathy for their problems in order to better

identify the design problems that prevent fast and smooth

�ow.

In the technology value stream, we optimize for

downstream work centers by designing for operations, where

operational non-functional requirements (e.g., architecture,

performance, stability, testability, con�gurability, and

security) are prioritized as highly as user features.

By doing this, we create quality at the source, resulting in

a set of codi�ed, non-functional requirements that we can

proactively integrate into every service we build.

Conclusion

Creating fast feedback is critical to achieving quality,

reliability, and safety in the technology value stream. We do

this by seeing problems as they occur, swarming and solving

problems to build new knowledge, pushing quality closer to

the source, and continually optimizing for downstream work

centers.

e speci�c practices that enable fast �ow in the DevOps

value stream are presented in Part IV of this book. In the next

chapter, we present the ird Way, the Principles of

Continual Learning and Experimentation.

* Dr. Spear extended his work to explain the long-lasting successes of other

organizations, such as the Toyota supplier network, Alcoa, and the US Navy’s

Nuclear Power Propulsion Program.4

† In some of its plants, Toyota has moved to using an Andon button.

‡ Astonishingly, when the number of Andon cord pulls drop, plant managers will

actually decrease the tolerances to get an increase in the number of Andon cord

pulls in order to continue to enable more learnings and improvements and to

detect ever-weaker failure signals.

§ In the 1700s, the British government engaged in a spectacular example of top-

down, bureaucratic command and control, which proved remarkably ineffective.

At the time, Georgia was still a colony, and despite the fact that the British

government was three thousand miles away and lacked firsthand knowledge of

local land chemistry, rockiness, topography, accessibility to water, and other

conditions, it tried to plan Georgia’s entire agricultural economy. e results of the

attempt were dismal and le Georgia with the lowest levels of prosperity and

population in the thirteen colonies.15

W

4
THE THIRD WAY: THE PRINCIPLES OF
CONTINUAL LEARNING AND
EXPERIMENTATION

hile the First Way addresses work�ow from left to

right and the Second Way addresses the reciprocal

fast and constant feedback from right to left, the ird Way

focuses on creating a culture of continual learning and

experimentation. ese are the principles that enable

constant creation of individual knowledge, which is then

turned into team and organizational knowledge.

In manufacturing operations with systemic quality and

safety problems, work is typically rigidly de�ned and

enforced. For instance, in the GM Fremont plant described in

the previous chapter, workers had little ability to integrate

improvements and learnings into their daily work, with

suggestions for improvement “apt to meet a brick wall of

indifference.”1

In these environments, there is also often a culture of fear

and low trust, where workers who make mistakes are

punished, and those who make suggestions or point out

problems are viewed as whistleblowers and troublemakers.

When this occurs, leadership is actively suppressing, even

punishing, learning and improvement, perpetuating quality

and safety problems.

In contrast, high-performing manufacturing operations

require and actively promote learning—instead of work being

rigidly de�ned, the system of work is dynamic, with line

workers performing experiments in their daily work to

generate new improvements enabled by rigorous

standardization of work procedures and documentation of

the results.

In the technology value stream, our goal is to create a

high-trust culture, reinforcing that we are all lifelong learners

who must take smart risks in our daily work. By applying a

scienti�c approach to both process improvement and product

development, we learn from our successes and failures,

identifying which ideas don’t work and reinforcing those that

do. Moreover, any local learnings are rapidly turned into

global improvements, so that new techniques and practices

that improve the technology value stream in one area can be

used by the entire organization.

CONTINUOUS

LEARNING

Continual learning and experimentation do

more than just improve the performance of

our systems. ese practices also create an

inspiring, rewarding workplace where we are

excited to work and collaborate with our peers.

Research led by the State of DevOps Reports

presents compelling �ndings. For example,

employees from organizations that embrace

practices from the ird Way are 2.2 times

more likely to recommend their team or

organization to friends and have higher job

satisfaction and lower levels of burnout.

Recent research from McKinsey also

reports that culture—which includes

psychological safety, collaboration, and

practicing continuous improvement—is a key

driver of developer velocity and organizational

value.2

We reserve time for the improvement of daily work and

time to further accelerate and ensure learning. We

consistently introduce stress into our systems to force

continual improvement. We even simulate and inject failures

in our production services under controlled conditions to

increase our resilience.

By creating this continual and dynamic system of

learning, we enable teams to rapidly and automatically adapt

to an ever-changing environment, which ultimately helps us

win in the marketplace.

Enabling Organizational Learning and a Safety Culture

When we work within a complex system, by de�nition it is

impossible for us to perfectly predict all the outcomes for any

action we take. is is what contributes to unexpected, or

even catastrophic, outcomes and accidents in our daily work,

even when we take precautions and work carefully.

When these accidents affect our customers, we seek to

understand why they happened. e root cause is often

deemed to be human error, and the all-too-common

management response is to “name, blame, and shame” the

person who caused the problem.* And, either subtly or

explicitly, management hints that the person guilty of

committing the error will be punished. ey then create more

processes and approvals to prevent the error from happening

again.

Dr. Sidney Dekker, who codi�ed several key elements of

safety culture and coined the term just culture, wrote,

“Responses to incidents and accidents that are seen as unjust

can impede safety investigations, promote fear rather than

mindfulness in people who do safety-critical work, make

organizations more bureaucratic rather than more careful,

and cultivate professional secrecy, evasion, and self-

protection.”3

ese issues are especially problematic in the technology

value stream—our work is almost always performed within a

complex system, and how management chooses to react to

failures and accidents leads to a culture of fear, which then

makes it unlikely that problems and failure signals are ever

reported. e result is that problems remain hidden until a

catastrophe occurs.

Dr. Ron Westrum was one of the �rst to observe the

importance of organizational culture on safety and

performance. He observed that in healthcare organizations,

the presence of “generative” cultures was one of the top

predictors of patient safety.4 Dr. Westrum de�ned three types

of culture:5†

Pathological organizations are characterized by large

amounts of fear and threat. People often hoard

information, withhold it for political reasons, or

distort it to make themselves look better. Failure

is often hidden.

Bureaucratic organizations are characterized by rules

and processes, often to help individual

departments maintain their “turf.” Failure is

processed through a system of judgment, resulting

in either punishment or justice and mercy.

Generative organizations are characterized by

actively seeking and sharing information to better

enable the organization to achieve its mission.

Responsibilities are shared throughout the value

stream, and failure results in re�ection and

genuine inquiry.

Just as Dr. Westrum found in healthcare organizations, a

high-trust, generative culture also predicted software delivery

and organizational performance in technology value

streams.6

In the technology value stream, we establish the

foundations of a generative culture by striving to create a safe

system of work. When accidents and failures occur, instead of

looking for human error, we look for how we can redesign the

system to prevent the accident from happening again.

Table 4.1: e Westrum Organizational Typology Model

How organizations process information.

Pathological

Organization
Bureaucratic Organization

Generative

Organization

Information is hidden Information may be ignored
Information is

actively sought

Messengers are “shot” Messengers are tolerated
Messengers are

trained

Responsibilities are

shirked

Responsibilities are

compartmented

Responsibilities are

shared

Bridging between

teams is discouraged

Bridging between teams

allowed but discouraged

Bridging between

teams is rewarded

Failure is covered up
Organization is just;

merciful
Failure causes injury

New ideas are crushed New ideas create problems
New ideas are

welcomed

Source: Ron Westrum, “A typology of organisation culture,”

BMJ Quality & Safety 13, no. 2 (2004), doi:10.1136/qshc.2003.009522.

For instance, we may conduct a blameless post-mortem

(also known as a retrospective) after every incident to gain

the best understanding of how the accident occurred and

agree upon what the best countermeasures are to improve

the system, ideally preventing the problem from occurring

again and enabling faster detection and recovery.

By doing this, we create organizational learning. As

Bethany Macri, an engineer at Etsy who led the creation of

the Morgue tool to help with recording of post-mortems,

stated, “By removing blame, you remove fear; by removing

fear, you enable honesty; and honesty enables prevention.”7

Dr. Spear observes that the result of removing blame and

putting organizational learning in its place is that

“organizations become ever more self-diagnosing and self-

improving, skilled at detecting problems [and] solving

them.”8

Many of these attributes were also described by Dr. Peter

Senge as attributes of learning organizations. In e Fifth

Discipline, he wrote that these characteristics help customers,

ensure quality, create competitive advantage and an

energized and committed workforce, and uncover the truth.9

Institutionalize the Improvement of Daily Work

Teams are often not able or not willing to improve the

processes they operate within. In many organizations, they

are not given the capacity or authority to experiment with

improvement work and change their processes based on what

they discover. e result is not only that they continue to

suffer from their current problems, but their suffering also

grows worse over time. Mike Rother observed in Toyota Kata

that in the absence of improvements, processes don’t stay the

same—due to chaos and entropy, processes actually degrade

over time.10

In the technology value stream, when we avoid �xing our

problems, relying instead on accumulated, daily

workarounds, our problems and technical debt accumulate

until all we are doing is performing workarounds, trying to

avoid disaster, with no cycles left over for doing productive

work. is is why Mike Orzen, author of Lean IT, observed,

“Even more important than daily work is the improvement of

daily work.”11

We improve daily work by explicitly reserving time to pay

down technical debt, �x defects, and refactor and improve

problematic areas of our code and environments. We do this

by reserving cycles in each development interval, or by

scheduling kaizen blitzes, which are periods when engineers

self-organize into teams to work on �xing any problem they

want.

e result of these practices is that everyone �nds and

�xes problems in their area of control all the time, as part of

their daily work. When we �nally �x the daily problems that

we’ve worked around for months (or years), we can eradicate

from our systems the less obvious problems. By detecting and

responding to these ever-weaker failure signals, we �x

problems when it is not only easier and cheaper but also

when the consequences are smaller.

Consider the following example that improved workplace

safety at Alcoa, an aluminum manufacturer with $7.8 billion

in revenue in 1987. Aluminum manufacturing requires

extremely high heat, high pressures, and corrosive chemicals.

In 1987, Alcoa had a frightening safety record, with 2% of the

ninety thousand employee workforce being injured each year

—that’s seven injuries per day. When Paul O’Neill started as

CEO, his �rst goal was to have zero injuries to employees,

contractors, and visitors.12

O’Neill wanted to be noti�ed within twenty-four hours of

anyone being injured on the job—not to punish, but to

ensure and promote that learnings were being generated and

incorporated to create a safer workplace. Over the course of

ten years, Alcoa reduced their injury rate by 95%.13

e reduction in injury rates allowed Alcoa to focus on

smaller problems and weaker failure signals—instead of

notifying O’Neill only when injuries occurred, they started

reporting any close calls as well. ‡ 14 By doing this, they

improved workplace safety over the subsequent twenty years

and have one of the most enviable safety records in the

industry.

As Dr. Spear writes,

Alcoans gradually stopped working around the

difficulties, inconveniences, and impediments they

experienced. Coping, fire fighting, and making do were

gradually replaced throughout the organization by a

dynamic of identifying opportunities for process and

product improvement. As those opportunities were

identified and the problems were investigated, the

pockets of ignorance that they reflected were converted

into nuggets of knowledge.15

is did more than reduce safety incidents; this helped

give the company a greater competitive advantage in the

market.

Similarly, in the technology value stream, as we make our

system of work safer, we �nd and �x problems from ever-

weaker failure signals. For example, we may initially perform

blameless post-mortems only for customer-impacting

incidents. Over time, we may perform them for lesser team-

impacting incidents and near misses as well.

Transform Local Discoveries into Global Improvements

When new learnings are discovered locally, there must also be

some mechanism to enable the rest of the organization to use

and bene�t from that knowledge. In other words, when

teams or individuals have experiences that create expertise,

our goal is to convert that tacit knowledge (i.e., knowledge

that is difficult to transfer to another person by means of

writing it down or verbalizing) into explicit, codi�ed

knowledge, which becomes someone else’s expertise through

practice.

is ensures that when anyone else does similar work,

they do so with the cumulative and collective experience of

everyone in the organization who has ever done the same

work. A remarkable example of turning local knowledge into

global knowledge is the US Navy’s Nuclear Power Propulsion

Program (also known as “NR” for “Naval Reactors”), which

has over 5,700 reactor-years of operation without a single

reactor-related casualty or escape of radiation.16

e NR is known for their intense commitment to

scripted procedures and standardized work, and the need for

incident reports for any departure from procedure or normal

operations to accumulate learnings, no matter how minor the

failure signal—they constantly update procedures and system

designs based on these learnings.

e result is that when a new crew sets out to sea on their

�rst deployment, they and their officers bene�t from the

collective knowledge of 5,700 accident-free reactor years.

Equally impressive is that their own experiences at sea will be

added to this collective knowledge, helping future crews

safely achieve their own missions.

In the technology value stream, we must create similar

mechanisms to create global knowledge, such as making all

our blameless post-mortem reports searchable by teams

trying to solve similar problems, and by creating shared

source code repositories that span the entire organization,

where shared code, libraries, and con�gurations that embody

the best collective knowledge of the entire organization can

be easily utilized. All these mechanisms help convert

individual expertise into artifacts that the rest of the

organization can use.

Inject Resilience Pa�erns into Our Daily Work

Lower-performing manufacturing organizations buffer

themselves from disruptions in many ways—in other words,

they bulk up or add waste. For instance, to reduce the risk of

a work center being idle (due to inventory arriving late,

inventory that had to be scrapped, etc.), managers may

choose to stockpile more inventory at each work center.

However, that inventory buffer also increases WIP, which has

all sorts of undesired outcomes, as previously discussed.

Similarly, to reduce the risk of a work center going down

due to machinery failure, managers may increase capacity by

buying more capital equipment, hiring more people, or even

increasing �oor space. All these options increase costs.

In contrast, high performers achieve the same results (or

better) by improving daily operations, continually

introducing tension to elevate performance, as well as

engineering more resilience into their system.

Consider a typical experiment at one of Aisin Seiki

Global’s mattress factories, one of Toyota’s top suppliers.

Suppose they had two production lines, each capable of

producing one hundred units per day. On slow days, they

would send all production onto one line, experimenting with

ways to increase capacity and identify vulnerabilities in their

process, knowing that if overloading the line caused it to fail,

they could send all production to the second line.

By relentless and constant experimentation in their daily

work, they were able to continually increase capacity, often

without adding any new equipment or hiring more people.

e emergent pattern that results from these types of

improvement rituals not only improves performance but also

improves resilience, because the organization is always in a

state of tension and change. is process of applying stress to

increase resilience was named antifragility by author and risk

analyst Dr. Nassim Nicholas Taleb.17

In the technology value stream, we can introduce the

same type of tension into our systems by seeking to always

reduce deployment lead times, increase test coverage,

decrease test execution times, and even by rearchitecting if

necessary to increase developer productivity or increase

reliability.

We may also perform game day exercises, where we

rehearse large scale failures, such as turning off entire data

centers. Or we may inject ever-larger scale faults into the

production environment (such as the famous Net�ix Chaos

Monkey, which randomly kills processes and compute servers

in production) to ensure that we’re as resilient as we want to

be.

Leaders Reinforce a Learning Culture

Traditionally, leaders are expected to be responsible for

setting objectives, allocating resources for achieving those

objectives, and establishing the right combination of

incentives. Leaders also establish the emotional tone for the

organizations they lead. In other words, leaders lead by

“making all the right decisions.”

However, there is signi�cant evidence that shows

greatness is not achieved by leaders making all the right

decisions—instead, the leader’s role is to create the

conditions so their team can discover greatness in their daily

work. In other words, creating greatness requires both leaders

and workers, each of whom are mutually dependent upon

each other.

Jim Womack, author of Gemba Walks, described the

complementary working relationship and mutual respect that

must occur between leaders and frontline workers. According

to Womack, this relationship is necessary because neither can

solve problems alone—leaders are not close enough to the

work, which is required to solve any problem, and frontline

workers do not have the broader organizational context or

the authority to make changes outside of their area of

work.18§

Leaders must elevate the value of learning and disciplined

problem-solving. Mike Rother formalized these methods in

what he calls the coaching kata. e result is one that mirrors

the scienti�c method, where we explicitly state our True

North goals, such as “sustain zero accidents” in the case of

Alcoa, or “double throughput within a year” in the case of

Aisin.19

ese strategic goals then inform the creation of iterative,

shorter-term goals, which are cascaded and then executed by

establishing target conditions at the value-stream or work-

center level (e.g., “reduce lead time by 10% within the next

two weeks”).

ese target conditions frame the scienti�c experiment:

we explicitly state the problem we are seeking to solve, our

hypothesis of how our proposed countermeasure will solve it,

our methods for testing that hypothesis, our interpretation

of the results, and our use of learnings to inform the next

iteration.

e leader helps coach the person conducting the

experiment with questions that may include:

• What was your last step and what happened?

• What did you learn?

• What is your condition now?

• What is your next target condition?

• What obstacle are you working on now?

• What is your next step?

• What is your expected outcome?

• When can we check?

is problem-solving approach, in which leaders help

workers see and solve problems in their daily work, is at the

core of the Toyota Production System, learning organizations,

the Improvement Kata, and high-reliability organizations.

Mike Rother observes that he sees Toyota “as an organization

de�ned primarily by the unique behavior routines it

continually teaches to all its members.”20

In the technology value stream, this scienti�c approach

and iterative method guides all of our internal improvement

processes, but also how we perform experiments to ensure

that the products we build actually help our internal and

external customers achieve their goals.

CASE STUDY: NEW TO

SECOND EDITION

The Story of Bell Labs (1925)21

With a history spanning the development of sound

motion pictures and technicolor, the transistor, Unix,

electronic switching systems, and beyond, Bell Labs has

been a symbol of innovation and continued success for

almost a hundred years. With nine Nobel prizes and four

Turing Awards, Bell Labs has applied breakthrough

concepts to develop products used by nearly every

human being on the planet. What was behind the

creation of a culture so pervasive that it was seemingly

present “in the air” to produce these types of

breakthroughs?

Starting in 1925, Bell Labs was created to consolidate

the research activities of Bell Systems. And while many

of its products improved telecommunication systems, it

never limited itself to a narrow field of focus. It was in

this atmosphere that Walter Shewhart (who started at

Bell Labs) developed his groundbreaking statistical-

control concepts and later collaborated on them with W.

Edwards Deming to create the Shewhart-Deming PDCA

(Plan, Do, Check, Act) continuous improvement cycle.

Their work formed the basis for the Toyota Production

System.

In The Idea Factory: Bell Labs and the Great Age of

American Innovation, Jon Gertner talks about Mervin

Kelly, who envisioned an “institute of creative

technology” where a cross-skilled team across multiple

disciplines could openly collaborate and experiment,

recognizing that any breakthrough would come from a

team rather than a specific individual.22

This aligns with the concept of scenius, a term

coined by the pioneering composer Brian Eno. Gene Kim

commonly refers to it, and Dr. Mik Kersten discusses it in

his book Project to Product, as well as in the blog post

“Project to Product: From Stories to Scenius.”23 As Eno is

credited as saying: “Scenius stands for the intelligence

and the intuition of a whole cultural scene. It is the

communal form of the concept of the genius.”24

Gertner explains that it was clear to the researchers

and engineers at Bell Labs that the ultimate aim of their

organization was to transform new knowledge into new

things.25 In other words, the goal was to transform

innovation into the delivery of something of societal

value. Bell Labs had a culture that kept it continually

successful because change and challenging the status

quo were its hallmarks.

A vital aspect of the culture was that there should be

no fear of failures. As Kelly explained, “The odds of

creating a new and popular technology were always

stacked against the innovator; only where the

environment allowed failure could truly groundbreaking

ideas be pursued.”26

Even concepts like Chaos Monkey and the SRE

model have their roots in Bell Labs’ work in the

hardening of telecommunication systems, which

achieved five-nines availability by disrupting these

systems as part of the normal testing cycle and then

ensured their robustness through the automation of

recovery actions.

So as we talk today about collaboration using cross-

skilled teams, continuous improvement, providing

psychological safety, and harnessing the ideas of our

teams, take note that these concepts were present in

the DNA of how Bell Labs operated. And while many

people today may not know which company invented

the transistor or provided the brilliant rainbow colors of

Oz, the concepts behind these innovations are very

much alive almost a century later.

One of the striking characteristics found in this

glimpse into Bell Labs’ scenius is their

commitment to building a culture that allows

teams to discover greatness by engendering

collaboration both vertically and horizontally.

Conclusion

e principles of the ird Way address the need for valuing

organizational learning, enabling high trust and boundary-

spanning between functions, accepting that failures will

always occur in complex systems, and making it acceptable to

talk about problems so we can create a safe system of work. It

also requires institutionalizing the improvement of daily

work, converting local learnings into global learnings that can

be used by the entire organization, as well as continually

injecting tension into our daily work.

Although fostering a culture of continual learning and

experimentation is the principle of the ird Way, it is also

interwoven into the First and Second Ways. In other words,

improving �ow and feedback requires an iterative and

scienti�c approach that includes framing of a target

condition, stating a hypothesis of what will help us get there,

designing and conducting experiments, and evaluating the

results. e results are not only better performance but also

increased resilience and improved organizational adaptability.

* e “name, blame, shame” pattern is part of the Bad Apple eory criticized by

Dr. Sidney Dekker and extensively discussed in his book e Field Guide to

Understanding Human Error.

† Dr. Westrum talks more extensively about generative cultures in his interview

with Gene Kim on e Idealcast podcast.

‡ It is astonishing, instructional, and truly moving to see the level of conviction and

passion that Paul O’Neill has about the moral responsibility leaders have to create

workplace safety.

§ Leaders are responsible for the design and operation of processes at a higher level

of aggregation where others have less perspective and authority.

I
PART I CONCLUSION

n Part I of e DevOps Handbook, we looked back at

several movements in history that helped lead to the

development of DevOps. We also looked at the three main

principles that form the foundation for successful DevOps

organizations: the principles of Flow, Feedback, and

Continual Learning and Experimentation. In Part II, we will

begin to look at how to start a DevOps movement in your

organization.

Additional Resources for Part I

Beyond e Phoenix Project by Gene Kim and John Willis is an

audio series that chronicles the origins and evolution of

DevOps (itrevolution.com/book/beyond-phoenix-project-

audiobook/).

e State of DevOps Reports from DORA consistently produce

excellent metrics and insights into the DevOps community

(devops-research.com/research.html).

e Octoverse Report from GitHub, like the State of DevOps

Reports, provides excellent metrics on the state of work in the

software industry (devops-research.com/research.html).

oughtworks’ Tech Radar is a great place to �nd upcoming

and emerging tools and trends (thoughtworks.com/radar).

If you’re looking to learn more about Ron Westrum’s

Organization Typology and Generative Cultures, check out

his two part interview on e Idealcast, hosted by Gene Kim

(itrevolution.com/the-idealcast-podcast/).

At the 2017 DevOps Enterprise Summit, Gene Kim

conducted a panel on the convergence of Safety Culture and

Lean with Sidney Dekker, Dr. Steven Spear, and Dr. Richard

Cook (videolibrary.doesvirtual.com/?video=524027004).

http://itrevolution.com/book/beyond-phoenix-project-audiobook/
http://devops-research.com/research.html
http://devops-research.com/research.html
http://thoughtworks.com/radar
http://itrevolution.com/the-idealcast-podcast/
http://videolibrary.doesvirtual.com/?video=524027004

e whitepaper Getting Started with Dojos is a great resource if

you’re looking to build a learning culture

(itrevolution.com/resources).

e Measuring Software Quality whitepaper clearly breaks

down some beginning metrics to track quality in software

(itrevolution.com/resources).

Making Work Visible: Exposing Time eft to Optimize Work &

Flow by Dominica DeGrandis is an excellent resource to help

you bring more transparency into your work

(itrevolution.com/making-work-visible-by-dominica-

degrandis/).

And you can learn more about the Naval Reactor program in

e Idealcas episode featuring Admiral John Richardson

(https://itrevolution.com/the-idealcast-podcast/).

http://itrevolution.com/resources
http://itrevolution.com/resources
http://itrevolution.com/making-work-visible-by-dominica-degrandis/
https://itrevolution.com/the-idealcast-podcast/

H
PART II : INTRODUCTION

ow do we decide where to start a DevOps

transformation in our organization? Who needs to be

involved? How should we organize our teams, protect their

work capacity, and maximize their chances of success? ese

are the questions we aim to answer in Part II of e DevOps

Handbook.

In the following chapters, we will walk through the

process of initiating a DevOps transformation. We’ll begin by

evaluating the value streams in our organization, locating a

good place to start, and forming a strategy to create a

dedicated transformation team with speci�c improvement

goals and eventual expansion. For each value stream being

transformed, we identify the work being performed and then

look at organizational design strategies and organizational

archetypes that best support the transformation goals.

Primary focuses in these chapters include:

• selecting which value streams to start with

• understanding the work being done in our candidate

value streams

• designing our organization and architecture with

Conway’s Law in mind

• enabling market-oriented outcomes through more

effective collaboration between functions throughout

the value stream

• protecting and enabling our teams

Beginning any transformation is full of uncertainty—we

are charting a journey to an ideal end state but where

virtually all the intermediate steps are unknown. ese next

chapters are intended to provide a thought process to guide

your decisions, provide actionable steps you can take, and

illustrate case studies as examples.

C

5
SELECTING WHICH VALUE STREAM TO
START WITH

hoosing a value stream for DevOps transformation

deserves careful consideration. Not only does the value

stream we choose dictate the difficulty of our transformation,

but it also dictates who will be involved in the

transformation. It will affect how we need to organize into

teams and how we can best enable the teams and individuals

in them.

Another challenge was noted by Michael Rembetsy, who

helped lead the DevOps transformation as the Director of

Operations at Etsy in 2009. He observed, “We must pick our

transformation projects carefully—when we’re in trouble, we

don’t get very many shots. erefore, we must carefully pick

and then protect those improvement projects that will most

improve the state of our organization.”1

Nordstrom’s DevOps Transformation

Let us examine how the Nordstrom team started their

DevOps transformation initiative in 2013, which Courtney

Kissler, their VP of E-Commerce and Store Technologies,

described at the DevOps Enterprise Summit in 2014 and

2015.

Founded in 1901, Nordstrom is a leading fashion retailer

focused on delivering the best possible shopping experience

to its customers. In 2015, Nordstrom had annual revenue of

$13.5 billion.2

e stage for Nordstrom’s DevOps journey was likely set

in 2011 during one of their annual board of directors

meetings.3 at year, one of the strategic topics discussed

was the need for online revenue growth. ey studied the

plight of Blockbuster, Borders, and Barnes & Noble, which

demonstrated the dire consequences when traditional

retailers were late creating competitive e-commerce

capabilities. ese organizations were clearly at risk of losing

their position in the marketplace or even going out of

business entirely.*

At that time, Courtney Kissler was the senior director of

Systems Delivery and Selling Technology and was responsible

for a signi�cant portion of the technology organization,

including their in-store systems and online e-commerce site.

As Kissler described,

In 2011, the Nordstrom technology organization was

very much optimized for cost—we had outsourced

many of our technology functions, we had an annual

planning cycle with large batch, “waterfall” software

releases. Even though we had a 97% success rate of

hitting our schedule, budget, and scope goals, we were

ill-equipped to achieve what the five-year business

strategy required from us, as Nordstrom started

optimizing for speed instead of merely optimizing for

cost.5

Kissler and the Nordstrom technology management team

had to decide where to start their initial transformation

efforts. ey didn’t want to cause upheaval in the whole

system. Instead, they wanted to focus on very speci�c areas

of the business so they could experiment and learn. eir goal

was to demonstrate early wins, which would give everyone

con�dence that these improvements could be replicated in

other areas of the organization. How exactly that would be

achieved was still unknown.

ey focused on three areas: the customer mobile

application, their in-store restaurant systems, and their

digital properties. Each of these areas had business goals that

weren’t being met; thus, they were more receptive to

considering a different way of working. e stories of the �rst

two focus areas are described below.

e Nordstrom mobile application had experienced an

inauspicious start. As Kissler said, “Our customers were

extremely frustrated with the product, and we had uniformly

negative reviews when we launched it in the App Store.”6

Worse, the existing structure and processes were designed so

that updates could only be released twice per year. In other

words, any �xes to the application would have to wait months

to reach the customer.

eir �rst goal was to enable faster or on-demand

releases, providing faster iteration and the ability to respond

quickly to customer feedback. ey created a product team

that was solely dedicated to supporting the mobile

application. ey had the goal of enabling the mobile

application team to be able to independently implement, test,

and deliver value to customers. By doing this, the mobile

application team would no longer have to depend on and

coordinate with scores of other teams inside Nordstrom.

Furthermore, the mobile application team moved from

planning once per year to a continuous planning process. e

result was a single prioritized backlog of work for the mobile

app based on customer need—gone were all the con�icting

priorities when the team had to support multiple products.

Over the following year, they eliminated testing as a

separate phase of work; instead, they integrated it into

everyone’s daily work. † ey doubled the features being

delivered per month and halved the number of defects—

creating a successful outcome.

eir second area of focus was the systems supporting

their in-store Café Bistro restaurants. Unlike the mobile app

value stream, where the business need was to reduce time to

market and increase feature throughput, the business need

here was to decrease cost and increase quality. In 2013,

Nordstrom had completed eleven “restaurant re-concepts,”

which required changes to the in-store applications, causing a

number of customer-impacting incidents. Plus, they had

planned forty-four more of these re-concepts for 2014—four

times as many as in the previous year.

As Kissler stated, “One of our business leaders suggested

that we triple our team size to handle these new demands,

but I proposed that we had to stop throwing more bodies at

the problem and instead improve the way we worked.”7

Kissler’s team was able to identify problematic areas, such

as their work intake and deployment processes, which is

where they focused their improvement efforts. ey were able

to reduce code deployment lead times by 60% and reduce the

number of production incidents 60–90%.

ese successes gave the teams con�dence that DevOps

principles and practices were applicable to a wide variety of

value streams. Kissler was promoted to VP of E-Commerce

and Store Technologies in 2014.

In 2015, Kissler said that in order for the selling or

customer-facing technology organization to enable the

business to meet their goals, “… we needed to increase

productivity in all our technology value streams, not just in a

few. At the management level, we created an across-the-board

mandate to reduce cycle times by 20% for all customer-facing

services.”8

She continued, “is is an audacious challenge. We have

many problems in our current state—process and cycle times

are not consistently measured across teams, nor are they

visible. Our �rst target condition requires us to help all our

teams measure, make [the work] visible, and perform

experiments to start reducing their process times, iteration

by iteration.”9 Kissler concluded,

From a high-level perspective, we believe that

techniques such as value stream mapping, reducing our

batch sizes toward single-piece flow, as well as using

continuous delivery and microservices will get us to our

desired state. However, while we are still learning, we

are confident that we are heading in the right direction,

and everyone knows that this effort has support from

the highest levels of management.10

In this chapter, various models are presented that will

enable us to replicate the thought processes that the

Nordstrom team used to decide which value streams to start

with. We will evaluate our candidate value streams in many

ways, including whether they are a green�eld or a brown�eld

service, a system of engagement or a system of record. We will

also estimate the risk/reward balance of transforming and

assess the likely level of resistance we may get from the teams

we would work with.

Greenfield vs. Brownfield Services

We often categorize our software services or products as

either green�eld or brown�eld. ese terms were originally

used for urban planning and building projects. Green�eld

development is when we build on undeveloped land.

Brown�eld development is when we build on land that was

previously used for industrial purposes, potentially

contaminated with hazardous waste or pollution. In urban

development, many factors can make green�eld projects

simpler than brown�eld projects—there are no existing

structures that need to be demolished nor are there toxic

materials that need to be removed.

In technology, a green�eld project is a new software

project or initiative, likely in the early stages of planning or

implementation, where we build our applications and

infrastructure from scratch, with few constraints. Starting

with a green�eld software project can be easier, especially if

the project is already funded and a team is either being

created or is already in place. Furthermore, because we are

starting from scratch, we can worry less about existing code

bases, architectures, processes, and teams.

Green�eld DevOps projects are often pilots to

demonstrate feasibility of public or private clouds, piloting

deployment automation, and similar tools. An example of a

green�eld DevOps project is the Hosted LabVIEW product in

2009 at National Instruments, a thirty-year-old organization

with �ve thousand employees and $1 billion in annual

revenue.

To bring this product to market quickly, a new team was

created. ey were allowed to operate outside of the existing

IT processes and explore the use of public clouds. e initial

team included an applications architect, a systems architect,

two developers, a system automation developer, an

operations lead, and two offshore operations staff. By using

DevOps practices, they were able to deliver Hosted LabVIEW

to market in half the time of their normal product

introductions.11

On the other end of the spectrum are brown�eld DevOps

projects. ese are existing products or services that are

already serving customers and have potentially been in

operation for years or even decades. Brown�eld projects often

come with signi�cant amounts of technical debt, such as

having no test automation or running on unsupported

platforms. In the Nordstrom example presented earlier in

this chapter, both the in-store restaurant systems and e-

commerce systems were brown�eld projects.

Although many believe that DevOps is primarily for

green�eld projects, DevOps has been used to successfully

transform brown�eld projects of all sorts. In fact, over 60%

of the transformation stories shared at the DevOps

Enterprise Summit in 2014 were for brown�eld projects.12 In

these cases, there was a large performance gap between what

the customer needed and what the organization was

currently delivering, and the DevOps transformations

created tremendous business bene�ts.

Indeed, research from the State of DevOps Reports found

that the age of the application or even the technology used

was not a signi�cant predictor of performance; instead, what

predicted performance was whether the application was

architected (or could be re-architected) for testability and

deployability.13

Teams supporting brown�eld projects may be very

receptive to experimenting with DevOps, particularly when

there is a widespread belief that traditional methods are

insufficient to achieve their goals—and especially if there is a

strong sense of urgency around the need for improvement.‡

When transforming brown�eld projects, we may face

signi�cant impediments and problems, especially when no

automated testing exists or when there is a tightly coupled

architecture that prevents small teams from developing,

testing, and deploying code independently. How we overcome

these issues is discussed throughout this book.

Examples of successful brown�eld transformations

include:

• American Airlines (2020): DevOps practices can also

be applied to legacy COTS (commercial off-the-shelf

product). At American Airlines, their loyalty product

runs on Seibel. AA moved it onto a hybrid cloud model

and then invested in CI/CD pipelines to automate

delivery and infrastructure end to end for their loyalty

product. Since that move, teams are deploying more

frequently, with more than �fty automated

deployments in just a few months, plus twice as fast

loyalty web service response times and 32% cost

optimization in the cloud. What’s more, this move

caused the conversation between the business and IT

to change. Instead of the business waiting on IT for

changes, the teams are able to deploy more frequently

and seamlessly than the business can validate and

accept. Now the product teams, in partnership with

the business and IT teams, are looking at how to

optimize the end-to-end process to achieve higher

deployment frequency.14

• CSG (2013): In 2013, CSG International had $747

million in revenue and over thirty-�ve hundred

employees, enabling over ninety thousand customer

service agents to provide billing operations and

customer care to over �fty million video, voice, and

data customers, executing over six billion

transactions, and printing and mailing over seventy

million paper bill statements every month. eir

initial scope of improvement was bill printing, one of

their primary businesses, and involved a COBOL

mainframe application and the twenty surrounding

technology platforms. As part of their

transformation, they started performing daily

deployments into a production-like environment and

doubled the frequency of customer releases from

twice annually to four times annually. As a result, they

signi�cantly increased the reliability of the application

and reduced code deployment lead times from two

weeks to less than one day.15

• Etsy (2009): In 2009, Etsy had thirty-�ve employees

and was generating $87 million in revenue, but after

they “barely survived the holiday retail season,” they

started transforming virtually every aspect of how the

organization worked, eventually turning the company

into one of the most admired DevOps organizations

and setting the stage for a successful 2015 IPO.16

• HP LaserJet (2007): By implementing automated

testing and continuous integration, HP created faster

feedback and enabled developers to quickly con�rm

that their command codes actually worked. You can

read the full case study in Chapter 11.

CASE STUDY: NEW TO

SECOND EDITION

Kessel Run: The Brownfield Transformation of a Mid-Air

Refueling System (2020)

In October 2015, the US Air Force struck a Doctors

Without Borders hospital in Afghanistan, believing it to

be an enemy stronghold. Afghan commandos were

under fire, and the US needed to respond quickly.

Unclassified analysis later showed that a number of

failures contributed to this devastating outcome: there

was no time to fully brief the crew and the aircra didn’t

have the latest data to identify the hospital. As Adam

Furtado, Chief of Platform for Kessel Run, put it,

“basically, a failed IT ecosystem caused an AC130

gunship to a�ack the wrong building.”17

Furtado continued to explain at the DevOps

Enterprise Summit-Virtual Las Vegas 2020, “What

happened here was not some kind of black swan event,

it was predictable and it’s going to happen again.”18 They

needed a solution.

Named aer Han Solo’s famous smuggling route, an

homage to their own need to “smuggle” these new ways

of working into the Department of Defense (DOD),

Kessel Run is the continuing effort within the US Air

Force to solve the tough business challenges that

traditional defense IT isn’t solving effectively. Made up

of a small coalition, the group tests modern soware

practices, processes, and principles. Their focus is on

the mission and a disregard for the status quo.

In the beginning, around 2010, walking into the

DOD to work was like walking into a time machine, a

completely analog environment circa 1974 where many

collaborative tools, like chats and Google Docs, weren’t

possible. As Adam Furtado says, “You shouldn’t have to

go back in time to go to work.”19

Eric Schmidt, Executive Chairman at Google, even

testified to the US Congress in September of 2020 that

“the DOD violates every rule of modern product

development.”20

These kinds of problems weren’t exclusive to the

DOD. According to the US Digital Service, 94% of

federal IT projects across the entire government were

behind schedule or over budget, and 40% of them were

never delivered.21

The Kessel Run coalition was watching companies

like Adidas and Walmart become soware companies.

They wanted to transform the US Air Force into a

soware company that could win wars. So they turned

their a�ention to the critcal business outcome in front

of them: modernizing the Air Force’s Air Operation

Center.

There are several physical Air Operation Centers

(AOCs) around the world from which the US Air Force

strategizes, plans, and executes air campaigns. Due to

archaic infrastructure, all this work is done by specific

people, in specific buildings, located in specific

locations, to access specific data on specific hardware, a

brick-and-mortar approach that has been in place for

decades. The only updates they’ve been able to

implement are Microso Office updates.

“You might think I’m lying, but a recent search

showed 2.8 million Excel and PowerPoint files on one of

the servers in one of the locations,” said Adam

Furtado.22

Gall’s Law states that if you want a complex system

to work, build a simpler system first, then improve over

time. The Kessel Run coalition did just that by applying

the Strangler Fig Pa�ern, otherwise known as the

Encasement Strategy, to incrementally and iteratively

implement more modern soware systems and

processes at twenty-two physical locations, each with

their own soware and hardware, while keeping the

whole system working.

They started with a specific process: mid-air

refueling. This process requires massive coordination to

ensure refueling tankers are where they need to be, at

the right time, at the right altitude, with the right

hardware to refuel the correct aircra. The process

involved several pilots to plan every day using color

pucks, an Excel macro, and lots of data entry. They had

become largely efficient, but only to the point that their

brains would allow, and they couldn’t react quickly to

changes.

Kessel Run brought in a team to digitize their

process using DevOps principles, extreme programming,

and balanced team models. They got their initial

minimally viable product out to users in just weeks. This

early program created enough efficiency that it kept one

aircra and its crew from flying every day, a fuel savings

of $214,000 a day.23

They kept iterating. Aer thirty iterations, they were

able to double the savings, keeping two aircra and

crew on the ground a day. The new approach saved $13

million in fuel a month and cut the planning crew in

half.24

While this case study shows a great DevOps

transformation in general, it also wonderfully

illustrates transforming brownfield practices.

Kessel Run successfully reduced the complexity

and improved the reliability and stability of the

mid-air refueling system, helping the US Air

Force to move and change faster and more

safely.

Consider Both Systems of Record and Systems of

Engagement

e Gartner global research and advisory �rm popularized

the notion of bimodal IT, referring to the wide spectrum of

services that typical enterprises support.25 Within bimodal

IT there are systems of record, the ERP-like systems that run

our business (e.g., MRP, HR, �nancial reporting systems),

where the correctness of the transactions and data are

paramount; and systems of engagement, which are customer-

facing or employee-facing systems, such as e-commerce

systems and productivity applications.

Systems of record typically have a slower pace of change

and often have regulatory and compliance requirements (e.g.,

SOX). Gartner calls these types of systems “Type 1,” where

the organization focuses on “doing it right.”26

Systems of engagement typically have a much higher pace

of change to support rapid feedback loops that enable them

to experiment to discover how to best meet customer needs.

Gartner calls these types of systems “Type 2,” where the

organization focuses on “doing it fast.”27

It may be convenient to divide up our systems into these

categories; however, we know that the core, chronic con�ict

between “doing it right” and “doing it fast” can be broken

with DevOps. e data from six years of State of DevOps

Reports show that high-performing organizations are able to

simultaneously deliver higher levels of throughput and

reliability.28

Furthermore, because of how interdependent our systems

are, our ability to make changes to any of these systems is

limited by the system that is most difficult to safely change,

which is almost always a system of record.

Scott Prugh, VP of Product Development at CSG,

observed, “We’ve adopted a philosophy that rejects bi-modal

IT because every one of our customers deserve speed and

quality. is means that we need technical excellence,

whether the team is supporting a thirty-year-old mainframe

application, a Java application, or a mobile application.”29

Consequently, when we improve brown�eld systems, we

should not only strive to reduce their complexity and improve

their reliability and stability, but also make them faster, safer,

and easier to change. Even when new functionality is added

just to green�eld systems of engagement, they often cause

reliability problems in the brown�eld systems of record they

rely on. By making these downstream systems safer to

change, we help the entire organization more quickly and

safely achieve its goals.

Start With the Most Sympathetic and Innovative

Groups

Within every organization, there will be teams and

individuals with a wide range of attitudes toward the

adopting new ideas. Geoffrey A. Moore �rst depicted this

spectrum in the form of the technology adoption life cycle in

Crossing the Chasm, where the chasm represents the classic

difficulty of reaching groups beyond the innovators and early

adopters (see Figure 5.1).30

Figure 5.1: e Technology Adoption Curve

Source: Moore and McKenna, Crossing the Chasm, 15.

In other words, new ideas are often quickly embraced by

innovators and early adopters, while others with more

conservative attitudes resist them (the early majority, late

majority, and laggards). Our goal is to �nd those teams that

already believe in the need for DevOps principles and

practices and that possess a desire and demonstrated ability

to innovate and improve their own processes. Ideally, these

groups will be enthusiastic supporters of the DevOps journey.

Especially in the early stages, we will not spend much

time trying to convert the more conservative groups. Instead,

we will focus our energy on creating successes with less risk-

averse groups and build out our base from there (a process

that is discussed further in the next section). Even if we have

the highest levels of executive sponsorship, we will avoid the

big-bang approach (i.e., starting everywhere all at once),

choosing instead to focus our efforts in a few areas of the

organization, ensuring that those initiatives are successful,

and expanding from there.§

Expanding DevOps Across Our Organization

Regardless of how we scope our initial effort, we must

demonstrate early wins and broadcast our successes. We do

this by breaking up our larger improvement goals into small,

incremental steps. is not only creates our improvements

faster, it also enables us to discover when we have made the

wrong choice of value stream—by detecting our errors early,

we can quickly back up and try again, making different

decisions armed with our new learnings.

As we generate successes, we earn the right to expand the

scope of our DevOps initiative. We want to follow a safe

sequence that methodically grows our levels of credibility,

in�uence, and support. e following list, adapted from a

course taught by Dr. Roberto Fernandez, a William F. Pounds

Professor in Management at MIT, describes the ideal phases

used by change agents to build and expand their coalition and

base of support:31

• Find innovators and early adopters: In the

beginning, we focus our efforts on teams who actually

want to help—these are our kindred spirits and fellow

travelers who are the �rst to volunteer to start the

DevOps journey. In the ideal, these are also people

who are respected and have a high degree of in�uence

over the rest of the organization, giving our initiative

more credibility.

• Build critical mass and silent majority: In the next

phase, we seek to expand DevOps practices to more

teams and value streams with the goal of creating a

stable base of support. By working with teams who

are receptive to our ideas, even if they are not the

most visible or in�uential groups, we expand our

coalition who are generating more successes, creating

a “bandwagon effect” that further increases our

in�uence. We speci�cally bypass dangerous political

battles that could jeopardize our initiative.

• Identify the holdouts: e “holdouts” are the high-

pro�le, in�uential detractors who are most likely to

resist (and maybe even sabotage) our efforts. In

general, we tackle this group only after we have

achieved a silent majority and have established

enough successes to successfully protect our initiative.

Expanding DevOps across an organization is no small

task. It can create risk to individuals, departments, and the

organization as a whole. But as Ron van Kemenade, CIO of

ING, who helped transform the organization into one of the

most admired technology organizations, said, “Leading

change requires courage, especially in corporate

environments where people are scared and �ght you. But if

you start small, you really have nothing to fear. Any leader

needs to be brave enough to allocate teams to do some

calculated risk-taking.”32

CASE STUDY: NEW TO

SECOND EDITION

Scaling DevOps across the Business: American Airlines’

DevOps Journey (Part 2) (2020)

As we learned in Part 1 of the American Airlines DevOps

transformation, their journey spanned several years. By

year three, they had realized that DevOps was really a

bigger transformation than just a way of working in IT—

it was a business transformation.

Their next challenge became how to scale these

new ways of working across the entire business to

accelerate and further execute their transformation and

their learnings. They brought in Ross Clanton as Chief

Architect and Managing Director to help guide them to

the next level.

To drive the conversation across the organization,

American Airlines focused on two things:33 the why

(building a competitive advantage) and the how

(business and IT teams working together to maximize

business value).

To scale the vision that was set in IT, “deliver value

faster,” they mapped out a transformation based on the

following structure of four key pillars:34

• delivery excellence: how we work (practices,

product mindset)

• operating excellence: how we’re structured

(product taxonomy, funding model, operating

model, prioritization)

• people excellence: growing talent and culture

(including evolving leadership behaviors)

• technology excellence: modernization

(infrastructure and technology foundation,

automation, move to the cloud, etc.)

Figure 5.2: American Airlines’ Delivery

Transformation

Source: Maya Leibman and Ross Clanton, “DevOps: Approaching Cruising

Altitude,” presentation at DevOps Enterprise Summit-Virtual Las Vegas

2020, videolibrary.doesvirtual.com/?video=467488959.

Once they had their transformation scaling strategy

in place, they had to focus on scaling the culture across

the business in order to continue to drive the

transformation forward.

As Clanton said in his presentation at DevOps

Enterprise Summit in 2020, quoting Peter Drucker,

“Culture eats strategy for breakfast.”35

To scale the culture, they focused on three key

a�ributes:36

1. Passion: teams focused on delighting customers,

being the best at ge�ing be�er, embrace failure

and get stronger because of it.

2. Selflessness: collaborate and share knowledge

and code across organization, innersourcing,

making space for others’ voices and helping

others win.

3. Accountability: own the outcomes even when

they’re hard; how you do something is as

http://videolibrary.doesvirtual.com/?video=467488959

important as what you do.

By focusing on these three cultural pillars, the teams

at American Airlines are now “empowered and going out

of their way to empower others,” according to Clanton.37

As the global pandemic hit in 2020, American Airlines

focused on the following values to ensure their teams

could still achieve success and results even amidst

global change:38

• action and doing over analysis

• collaboration over silos

• clarity of mission over trying to do everything

• empowerment over personal stamp on every

effort (set the goals and empower teams to get

there)

• ge�ing something out (MVP) versus ge�ing

something perfect

• “We can do this” versus hierarchy

(collaboration across org boundaries)

• finishing versus starting (limiting WIP and

focusing on top priorities)

Instead of throwing requirements over a wall,

American Airlines now has a team of stakeholders from

the business, IT, Design, etc. They pivoted their planning

model so leaders define clear outcomes and the teams

are able to decide how they deliver on those outcomes.

The teams deliver by focusing on small tasks that add

value incrementally. By keeping tasks small, the teams

are able to finish quickly (driving value faster) and focus

on finishing not starting.

To enable all of this change, leadership needed to

change their ways of working as well. Leaders have

pivoted to serving the teams, removing impediments

and constraints that prevent the teams from delivering

value. Instead of status meetings, leadership a�end

playback meetings (demos) to see what the teams are

doing and provide guidance in the moment.

American Airlines also realized that to help change

the mindset of leaders and to get everyone aligned in

thinking, talking, and acting from an Agile/DevOps

perspective, they needed to provide a new vocabulary.

Table 5.1 shows some of the ways they helped pivot the

conversation.

As Doug Parker, CEO of American Airlines related,

… [the transformation] is making us more

efficient, we get projects done more quickly,

the projects delivered are more designed to

what the users need … it’s already making a

huge difference to how to manage projects at

American Airlines.

What I’m most proud of is the champion

of delivery transformation is not IT anymore;

it’s the business leaders who embraced it.

They see how much faster they’re ge�ing the

work done, and they’re spreading the word

everywhere else. And that’s making a big

difference.39

Table 5.1: American Airlines’ New Vocabulary

Before After

I want to create a pop-up to

incentivize people to download the

mobile app.

Fragile applications are

prone to failure.

What did our competitors do?
What do our customers

value?

When will this project be done?
When do we start seeing

value?

What went wrong?
What did we learn and how

can I help?

I want a completely new website.

What’s the �rst thing we can

try to experiment with this

idea?

Source: Maya Leibman and Ross Clanton, “DevOps: Approaching

Cruising Altitude,” presentation at DevOps Enterprise Summit-

Virtual Las Vegas 2020, ideolibrary.doesvirtual.com/?

video=467488959.

American Airlines built a critical mass and silent

majority by focusing on the how and why, as well

as changing the vocabulary to achieve a common

language.

CASE STUDY: NEW FOR

SECOND EDITION

Saving the Economy From Ruin (With a Hyperscale

PaaS) at HMRC (2020)

http://ideolibrary.doesvirtual.com/?video=467488959

HMRC, Her Majesty’s Revenue and Customs, is the tax

collection agency for the UK government. In 2020,

HMRC distributed hundreds of billions of pounds to UK

citizens and businesses in an unprecedented financial

support package that would eventually see around 25%

of the entire UK workforce supported by public money.

HMRC built the technology to do this in just four weeks,

under conditions of incredible pressure and

uncertainty.40

HMRC’s challenges went way beyond aggressive

timescales. “We knew we would have millions of users,

but nobody could actually tell us how many. So

whatever we built had to be accessible to everyone and

had to be capable of paying out billions into bank

accounts within hours of launch. It also needed to be

secure, with checks being conducted before money was

paid out,” says Ben Conrad, HMRC’s Head of Agile

Delivery, at the 2021 DevOps Enterprise Summit-

Europe.41

And they nailed it. All the services launched on time,

with most launching a week or two ahead of

expectations without any issues, resulting in a 94% user

satisfaction rating.42 HMRC went from being the least

popular of all government departments to the people

customers relied on to help out.

In order to achieve this amazing result, HMRC

adopted some key processes and leveraged a mature

digital platform, one that had evolved over the last

seven years to allow teams to build digital services

rapidly and deliver them at hyper-scale.

HMRC’s platform (the Multichannel Digital Tax

Platform or MDTP) is a collection of infrastructure

technologies that enable the organization to serve

content to users over the internet. Business domains

within HMRC can expose tax services to the public by

funding a small cross-functional team to build a

microservice or a set of microservices on the platform.

MDTP removes much of the pain and complexity of

ge�ing a digital service in front of a user by providing

tenants with a suite of common components that are

necessary to develop and run high-quality digital

products.

MDPT is the largest digital platform in the UK

government and one of the largest platforms in the UK

as a whole. It hosts about 1,200 microservices built by

more than two thousand people split into seventy teams

across eight geographic locations (although, since

March 2020, the teams have all worked 100%

remotely).43 These teams make about one hundred

deployments into production every day.

“The teams use agile methods, with deliberately

lightweight governance, and they’re trusted to make

changes themselves whenever and as ever they see fit,”

says Ma� Hya�, Technical Delivery Manager with Equal

Experts. “It only takes a few seconds to push changes

through our infrastructure, so ge�ing products and

services in front of users happens really fast.”44

Pivotal to the success of the platform has been a

constant focus on three key things: culture, tooling, and

practices. MDTP’s goal is to make it easy to add teams,

build services, and deliver value quickly. The platform

has evolved around that goal so that a cross-functional

team can be spun up quickly and then use the common

tooling to design, develop, and operate a new public-

facing service.

In practice, the MDPT provides a place for a digital

team’s code to live and automated pipelines for the

code to be built and deployed through various

environments and into production, where the team can

get rapid user feedback. Common telemetry tooling is

configured to enable a team to monitor its services via

automated dashboards and alerting mechanisms so that

they always know what’s going on. The platform

provides teams with collaboration tools to help them

communicate, internally and between one another, so

that they can work effectively, both remotely and in

person. This is all made available to a team more or less

instantly, with minimal configuration or manual steps

required. The idea is to free the digital team so it can

focus solely on solving business problems.

With over two thousand people making changes,

potentially several times a day, things could get very

messy. To avoid this, MDTP uses the concept of an

opinionated platform (also known as a paved road

platform or guardrails). For instance, if you build a

microservice, it must be wri�en in Scala and use the

Play framework. If your service needs persistence, it

must use Mongo. If a user needs to perform a common

action like uploading a file, then the team must use a

common platform service to enable that when there is

one. Essentially, a li�le bit of governance is baked into

the platform itself. The benefit to the teams of sticking

to the rails is that they can deliver services

extraordinarily quickly.

But the benefits don’t stop there. By limiting the

technology used on the platform, it’s far simpler to

support. Moreover, digital teams are prevented from

spending time rolling their own solutions to problems

that have already been solved elsewhere.

“We can provide common services and reusable

components that we know work with all the services. It

also allows people to move between services, and,

indeed, allows the services to move to new teams

without worrying about whether our people have the

required skills to do the job,” says Hya�.45

Another key differentiator is that MDTP abstracts

the need to care about infrastructure away from digital

teams, allowing them to focus solely on their apps.

“They can still observe the infrastructure through tools

like Kibana and Grafana, but none of the service teams

have access to AWS accounts themselves,” Hya�

notes.46

Importantly, the opinions of this “opinionated

platform” can and do change according to user needs

and demands, with a focus on self-service. “A service

can be created, developed, and deployed on our

platform without any direct involvement from platform

teams at all,” Hya� says.47

MDTP plays an important role in enabling the rapid

delivery of the COVID-19 financial support package, but

this isn’t the whole story. A herculean effort by the team

was still required. Good decision-making and fast

adaptation of processes also proved vital.

“The most important aspect of delivering a system

at speed is the ability for engineers to ‘just get on with

it,’” says Hya�.48 A combination of balanced governance,

established best practices, and a mandate from HMRC

teams to use proven tooling meant they weren’t risking

new technology problems or security concerns that

would have ultimately delayed delivery.

To meet the aggressive timescales, the teams also

adapted their composition and communication. A

platform engineer was embedded into each COVID-19

digital service team to safely “short-circuit” existing

processes. This allowed the teams to eliminate risks

early and maximize collaboration, particularly on

requests for new infrastructure components and for help

with performance testing. Those working on the key

services were also made easily identifiable via

collaboration tooling, like Slack, so that requests for

help could be prioritized, not just by the platform teams

but by the whole two thousand–strong digital

community.

The ability of the teams and business leaders to

adapt so quickly in unison and then flex back into place

once the services were launched is a great

demonstration of the mature DevOps culture at HMRC.

The HMRC case study illustrates how much can

be accomplished using a PaaS in any large

organization.

Conclusion

Peter Drucker, a leader in the development of management

education, observed that “little �sh learn to be big �sh in

little ponds.”49 By carefully choosing where and how to start,

we are able to experiment and learn in areas of our

organization that create value without jeopardizing the rest

of the organization. By doing this, we build our base of

support, earn the right to expand the use of DevOps in our

organization, and gain the recognition and gratitude of an

ever-larger constituency.

* ese organizations were sometimes known as the “killer B’s that are dying.”4

†e practice of relying on a stabilization phase or hardening phase at the end of a

project oen has very poor outcomes because it means problems are not being

found and fixed as part of daily work and are le unaddressed, potentially

snowballing into larger issues.

‡at the services that have the largest potential business benefit are brownfield

systems shouldn’t be surprising. Aer all, these are the systems that are most relied

upon and have the largest number of existing customers or highest amount of

revenue depending upon them.

§ Big-bang, top-down transformations are possible, such as the Agile

transformation at PayPal in 2012 that was led by their vice president of

technology, Kirsten Wolberg. However, as with any sustainable and successful

transformation, this required the highest level of management support and a

relentless, sustained focus on driving the necessary outcomes.

O

6
UNDERSTANDING THE WORK IN OUR VALUE
STREAM, MAKING IT VISIBLE, AND
EXPANDING IT ACROSS THE ORGANIZATION

nce we have identi�ed a value stream to which we want

to apply DevOps principles and patterns, our next step

is to gain a sufficient understanding of how value is delivered

to the customer: what work is performed and by whom, and

what steps we can take to improve �ow.

Nordstrom’s Experience With Value Stream Mapping

In the previous chapter, we learned about the DevOps

transformation led by Courtney Kissler and the team at

Nordstrom. Over the years, they have learned that one of the

most efficient ways to start improving any value stream is to

conduct a workshop with all the major stakeholders and

perform a value stream mapping exercise—a process

(described later in this chapter) designed to help capture all

the steps required to create value.1

Kissler’s favorite example of the valuable and unexpected

insights that can come from value stream mapping is when

her team tried to improve the long lead times associated with

requests going through the Cosmetics Business Office

application, a COBOL mainframe application that supported

all the �oor and department managers of their in-store

beauty and cosmetic departments.2

is application allowed department managers to register

new salespeople for various product lines carried in their

stores so they could track sales commissions, enable vendor

rebates, and so forth.

Kissler explained:

I knew this particular mainframe application well—

earlier in my career I supported this technology team,

so I know firsthand that for nearly a decade, during each

annual planning cycle, we would debate about how we

needed to get this application off the mainframe. Of

course, like in most organizations, even when there was

full management support, we never seemed to get

around to migrating it.

My team wanted to conduct a value stream mapping

exercise to determine whether the COBOL application

really was the problem, or maybe there was a larger

problem that we needed to address. ey conducted a

workshop that assembled everyone with any

accountability for delivering value to our internal

customers, including our business partners, the

mainframe team, the shared service teams, and so

forth.

What they discovered was that when department

managers were submitting the “product line

assignment” request form, we were asking them for an

employee number, which they didn’t have—so they

would either leave it blank or put in something like “I

don’t know.” Worse, in order to fill out the form,

department managers would have to inconveniently

leave the store floor in order to use a PC in the back

office. e end result was all this wasted time, with work

bouncing back and forth in the process.3

CONTINUOUS

LEARNING

Incremental Work

It’s important to note that improvements can

start with incremental work. With a better

understanding of the entire value stream and

where the real constraints were, the team

could make targeted improvements—many of

which were much less expensive and much

more effective than originally imagined. Even

if the COBOL environment eventually needs to

be migrated—maybe someday it becomes the

constraint—the teams were able to take smart,

targeted steps to speed up the process to value

delivery along the way.

During the workshop, the participants conducted several

experiments, including deleting the employee number �eld in

the form and letting another department get that

information in a downstream step. ese experiments,

conducted with the help of department managers, showed a

four-day reduction in processing time. e team later

replaced the PC application with an iPad application that

allowed managers to submit the necessary information

without leaving the store �oor, and the processing time was

further reduced to seconds.

Kissler said proudly,

With those amazing improvements, all the demands to

get this application off the mainframe disappeared.

Furthermore, other business leaders took notice and

started coming to us with a whole list of further

experiments they wanted to conduct with us in their

own organizations. Everyone in the business and

technology teams was excited by the outcome because

[it] solved a real business problem, and, most

importantly, they learned something in the process.4

Identifying the Teams Supporting Our Value Stream

As this Nordstrom example demonstrates, in value streams of

any complexity no one person knows all the work that must

be performed in order to create value for the customer—

especially since the required work must be performed by

many different teams who are often far removed from each

other on the organization charts, geographically, or by

incentives.

As a result, after we select a candidate application or

service for our DevOps initiative, we must identify all the

members of the value stream who are responsible for working

together to create value for the customers being served. In

general, this includes:

• Product owner: the internal voice of the business that

de�nes the next set of functionality in the service.

• Development: the team responsible for developing

application functionality in the service.

• QA: the team responsible for ensuring that feedback

loops exist to ensure the service functions as desired.

• IT Operations/SRE: the team often responsible for

maintaining the production environment and helping

ensure that required service levels are met.

• Infosec: the team responsible for securing systems

and data.

• Release managers: the people responsible for

managing and coordinating the production

deployment and release processes.

• Technology executives or value stream manager: in

Lean literature, someone who is responsible for

“ensuring that the value stream meets or exceeds the

customer [and organizational] requirements for the

overall value stream, from start to �nish.”5

Create a Value Stream Map to See the Work

After we identify our value stream members, our next step is

to gain a concrete understanding of how work is performed,

documented in the form of a value stream map. In our value

stream, work likely begins with the product owner in the

form of a customer request or the formulation of a business

hypothesis. Some time later, this work is accepted by

Development, where features are implemented in code and

checked into our version control repository. Builds are then

integrated, tested in a production-like environment, and

�nally deployed into production, where they (ideally) create

value for our customers.

In many traditional organizations, this value stream will

consist of hundreds, if not thousands, of steps, requiring

work from hundreds of people. Because documenting any

value stream map this complex likely requires multiple days,

we may conduct a multi-day workshop, where we assemble all

the key constituents and remove them from the distractions

of their daily work.

Our goal is not to document every step and associated

minutiae, but to sufficiently understand the areas in our

value stream that are jeopardizing our goals of fast �ow, short

lead times, and reliable customer outcomes. Ideally, we have

assembled those people with the authority to change their

portion of the value stream.*

Damon Edwards, co-founder of Rundeck, observed,

In my experience, these types of value stream mapping

exercises are always an eye-opener. Often, it is the first

time when people see how much work and heroics are

required to deliver value to the customer. For

Operations, it may be the first time that they see the

consequences that result when developers don’t have

access to correctly configured environments, which

contributes to even more crazy work during code

deployments. For Development, it may be the first time

they see all the heroics that are required by Test and

Operations in order to deploy their code into

production, long after they flag a feature as

“completed.”6

Using the full breadth of knowledge brought by the teams

engaged in the value stream, we should focus our

investigation and scrutiny on the following areas:

• places where work must wait weeks or even months,

such as getting production-like environments, change

approval processes, or security review processes

• places where signi�cant rework is generated or

received

Our �rst pass of documenting our value stream should

only consist of high-level process blocks. Typically, even for

complex value streams, groups can create a diagram with �ve

to �fteen process blocks within a few hours. Each process

block should include the lead time and process time for a

work item to be completed, as well as the %C/A (percent

complete and accurate) as measured by the downstream

consumers of the output.†

Figure 6.1: An Example of a Value Stream Map

Source: Humble, Molesky, and O’Reilly, Lean Enterprise, 139.

We use the metrics from our value stream map to guide

our improvement efforts. In the Nordstrom example, they

focused on the low %C/A rates on the request form submitted

by department managers due to the absence of employee

numbers. In other cases, it might be long lead times or low

%C/A rates when delivering correctly con�gured test

environments to Development teams, or it might be the long

lead times required to execute and pass regression testing

before each software release.

Once we identify the metric we want to improve, we

should perform the next level of observations and

measurements to better understand the problem and then

construct an idealized, future value stream map, which serves

as a target condition to achieve by some date (e.g., usually

three to twelve months).

Leadership helps de�ne this future state and then guides

and enables the team to brainstorm hypotheses and

countermeasures to achieve the desired improvement to that

state, perform experiments to test those hypotheses, and

interpret the results to determine whether the hypotheses

were correct. e teams keep repeating and iterating, using

any new learnings to inform the next experiments.

Creating a Dedicated Transformation Team

One of the inherent challenges with initiatives such as

DevOps transformations is that they are inevitably in con�ict

with ongoing business operations. Part of this is a natural

outcome of how successful businesses evolve. An

organization that has been successful for any extended period

of time (years, decades, or even centuries) has created

mechanisms to perpetuate the practices that made them

successful, such as product development, order

administration, and supply chain operations.

Many techniques are used to perpetuate and protect how

current processes operate, such as specialization, focus on

efficiency and repeatability, bureaucracies that enforce

approval processes, and controls to protect against variance.

In particular, bureaucracies are incredibly resilient and are

designed to survive adverse conditions—one can remove half

the bureaucrats, and the process will still survive.

While this is good for preserving the status quo, we often

need to change how we work to adapt to changing conditions

in the marketplace. Doing this requires disruption and

innovation, which puts us at odds with groups who are

currently responsible for daily operations and the internal

bureaucracies, and who will almost always win.

In their book e Other Side of Innovation: Solving the

Execution Challenge, Dr. Vijay Govindarajan and Dr. Chris

Trimble, both faculty members of Dartmouth College’s Tuck

School of Business, described their studies of how disruptive

innovation is achieved despite these powerful forces of daily

operations. ey documented how customer-driven auto

insurance products were successfully developed and marketed

at Allstate, how the pro�table digital publishing business was

created at the Wall Street Journal, the development of the

breakthrough trail-running shoe at Timberland, and the

development of the �rst electric car at BMW.7

Based on their research, Dr. Govindarajan and Dr.

Trimble assert that organizations need to create a dedicated

transformation team that is able to operate outside of the

rest of the organization responsible for daily operations. ey

called these the “dedicated team” and the “performance

engine” respectively.8

First and foremost, we will hold this dedicated team

accountable for achieving a clearly de�ned, measurable,

system-level result (e.g., “reduce the deployment lead time

from code committed into version control to successfully

running in production by 50%”).

In order to execute such an initiative, we do the following:

• Assign members of the dedicated team to be solely

allocated to the DevOps transformation efforts (as

opposed to “maintain all your current responsibilities

but spend 20% of your time on this new DevOps

thing”).

• Select team members who are generalists, who have

skills across a wide variety of domains.

• Select team members who have longstanding and

mutually respectful relationships with key areas of the

organization.

• Create a separate physical space or virtual space (such

as dedicated chat channels) for the dedicated team, if

possible, to maximize communication �ow within the

team and to create some isolation from the rest of the

organization.

If possible, we will free the transformation team from

many of the rules and policies that restrict the rest of the

organization, as National Instruments did (described in the

previous chapter). After all, established processes are a form

of institutional memory—we need the dedicated team to

create the new processes and learnings required to generate

our desired outcomes, creating new institutional memory.

Creating a dedicated team is not only good for the team

but also good for the performance engine. By creating a

separate team, we create the space for them to experiment

with new practices and protect the rest of the organization

from the potential disruptions and distractions associated

with such experimentation.

Agree On a Shared Goal

One of the most important parts of any improvement

initiative is to de�ne a measurable goal with a clearly de�ned

deadline, between six months and two years in the future. It

should require considerable effort but still be achievable. And

achievement of the goal should create obvious value for the

organization as a whole and for our customers.

ese goals and the time frame should be agreed upon by

the executives and be known to everyone in the organization.

We also want to limit the number of these types of initiatives

going on simultaneously to prevent us from overly taxing the

organizational change management capacity of leaders and

the organization. Examples of improvement goals might

include:

• Reduce the percentage of the budget spent on product

support and unplanned work by 50%.

• Ensure lead time from code check-in to production

release is one week or less for 95% of changes.

• Ensure releases can always be performed during

normal business hours with zero downtime.

• Integrate all the required information security

controls into the deployment pipeline to pass all

required compliance requirements.

Once the high-level goal is made clear, teams should

decide on a regular cadence to drive the improvement work.

Like product development work, we want transformation

work to be done in an iterative, incremental manner. A

typical iteration will be in the range of two to four weeks. For

each iteration, the teams should agree on a small set of goals

that generates value and makes some progress toward the

long-term goal. At the end of each iteration, teams should

review their progress and set new goals for the next iteration.

Keep Our Improvement Planning Horizons Short

In any DevOps transformation project, we need to keep our

planning horizons short, just as if we were in a startup doing

product or customer development. Our initiative should

strive to generate measurable improvements or actionable

data within weeks (or, in the worst case, months).

By keeping our planning horizons and iteration intervals

short, we achieve the following:

• �exibility and the ability to reprioritize and replan

quickly

• decrease the delay between work expended and

improvement realized, which strengthens our

feedback loop, making it more likely to reinforce

desired behaviors—when improvement initiatives are

successful, it encourages more investment

• faster learning generated from the �rst iteration,

meaning faster integration of our learnings into the

next iteration

• reduction in activation energy to get improvements

• quicker realization of improvements that make

meaningful differences in our daily work

• less risk that our project is killed before we can

generate any demonstrable outcomes

Reserve 20% of Capacity for Non-Functional

Requirements and Reducing Technical Debt

A problem common to any process improvement effort is how

to properly prioritize it—after all, organizations that need it

most are those that have the least amount of time to spend

on improvement. is is especially true in technology

organizations because of technical debt.

Organizations that struggle with �nancial debt only make

interest payments and never reduce the loan principal, and

they may eventually �nd themselves in situations where they

can no longer service the interest payments. Similarly,

organizations that don’t pay down technical debt can �nd

themselves so burdened with daily workarounds for problems

left un�xed that they can no longer complete any new work.

In other words, they are now only making the interest

payment on their technical debt.

We will actively manage this technical debt by ensuring

that we invest at least 20% of all Development and

Operations capacity on refactoring and investing in

automation work and architecture and non-functional

requirements (NFRs). ese are sometimes referred to as the

“ilities,” such as maintainability, manageability, scalability,

reliability, testability, deployability, and security.

After the near-death experience of eBay in the late 1990s,

Marty Cagan, author of Inspired: How to Create Products

Customers Love, the seminal book on product design and

management, codi�ed the following lesson:

e deal [between product owners and] engineering

goes like this: Product management takes 20% of the

team’s capacity right off the top and gives this to

engineering to spend as they see fit. ey might use it

to rewrite, re-architect, or re-factor problematic parts of

the code base … whatever they believe is necessary to

avoid ever having to come to the team and say, “we need

to stop and rewrite [all our code].” If you’re in really bad

shape today, you might need to make this 30% or even

more of the resources. However, I get nervous when I

find teams that think they can get away with much less

than 20%.9

Figure 6.2: Invest 20% of Capacity in those Who Create

Positive, User-Invisible Value

Source: “Machine Learning and Technical Debt with D. Sculley,” Software

Engineering Daily podcast, November 17, 2015,

http://softwareengineeringdaily.com/2015/11/17/machine-learning-and-

technical-debt-with-d-sculley/.

http://softwareengineeringdaily.com/2015/11/17/machine-learning-and-technical-debt-with-d-sculley/

Cagan notes that when organizations do not pay their

“20% tax,” technical debt will increase to the point where an

organization inevitably spends all of its cycles paying down

technical debt.10 At some point, the services become so

fragile that feature delivery grinds to a halt because all the

engineers are working on reliability issues or working around

problems.

By dedicating 20% of our cycles so that Dev and Ops can

create lasting countermeasures to the problems we encounter

in our daily work, we ensure that technical debt doesn’t

impede our ability to quickly and safely develop and operate

our services in production. Elevating added pressure of

technical debt from workers can also reduce levels of

burnout.

CASE

STUDY

Operation InVersion at LinkedIn (2011)

LinkedIn’s Operation InVersion presents an interesting

case study that illustrates the need to pay down

technical debt as a part of daily work. Six months aer

their successful IPO in 2011, LinkedIn continued to

struggle with problematic deployments that became so

painful that they launched Operation InVersion, where

they stopped all feature development for two months in

order to overhaul their computing environments,

deployments, and architecture.11

LinkedIn was created in 2003 to help users “connect

to your network for be�er job opportunities.”12 By the

end of their first week of operation, they had 2,700

members; one year later, they had over one million

members, and have grown exponentially since then.13 By

November 2015, LinkedIn had over 350 million

members, who generate tens of thousands of requests

per second, resulting in millions of queries per second

on the LinkedIn back-end systems.14

From the beginning, LinkedIn primarily ran on their

homegrown Leo application, a monolithic Java

application that served every page through servlets and

managed JDBC connections to various back-end Oracle

databases. However, to keep up with growing traffic in

their early years, two critical services were decoupled

from Leo: the first handled queries around the member

connection graph entirely in memory, and the second

was member search, which layered over the first.

By 2010, most new development was occurring in

new services, with nearly one hundred services running

outside of Leo. The problem was that Leo was only

being deployed once every two weeks.15

Josh Clemm, a senior engineering manager at

LinkedIn, explained that by 2010, the company was

having significant problems with Leo. Despite vertically

scaling Leo by adding memory and CPUs, “Leo was

oen going down in production; it was difficult to

troubleshoot and recover, and difficult to release new

code… . It was clear we needed to ‘kill Leo’ and break it

up into many small functional and stateless services.”16

In 2013, journalist Ashlee Vance of Bloomberg

described how “when LinkedIn would try to add a

bunch of new things at once, the site would crumble

into a broken mess, requiring engineers to work long

into the night and fix the problems.”17

By fall 2011, late nights were no longer a rite of

passage or a bonding activity, because the problems had

become intolerable. Some of LinkedIn’s top engineers,

including Kevin Sco�, who had joined as VP of

Engineering three months before their initial public

offering, decided to completely stop engineering work

on new features and dedicate the whole department to

fixing the site’s core infrastructure. They called the effort

Operation InVersion.

Sco� launched Operation InVersion as a way to

“inject the beginnings of a cultural manifesto into his

team’s engineering culture. There would be no new

feature development until LinkedIn’s computing

architecture was revamped—it’s what the business and

his team needed.”18

Sco� described one downside “You go public, have

all the world looking at you, and then we tell

management that we’re not going to deliver anything

new while all of engineering works on this [InVersion]

project for the next two months. It was a scary thing.”19

Vance described the massively positive results of

Operation InVersion:

LinkedIn created a whole suite of soware

and tools to help it develop code for the site.

Instead of waiting weeks for their new

features to make their way onto LinkedIn’s

main site, engineers could develop a new

service, have a series of automated systems

examine the code for any bugs and issues the

service might have interacting with existing

features, and launch it right to the live

LinkedIn site … LinkedIn’s engineering corps

[now] performs major upgrades to the site

three times a day.20

By creating a safer system of work, the value they

created included fewer late-night cram sessions, with

more time to develop new, innovative features.

As Josh Clemm described in his article on scaling at

LinkedIn,

Scaling can be measured across many

dimensions, including organizational… .

[Operation InVersion] allowed the entire

engineering organization to focus on

improving tooling and deployment,

infrastructure, and developer productivity. It

was successful in enabling the engineering

agility we need to build the scalable new

products we have today… . [In] 2010, we

already had over 150 separate services. Today,

we have over 750 services.21

Kevin Sco� stated,

Your job as an engineer and your purpose as a

technology team is to help your company

win. If you lead a team of engineers, it’s be�er

to take a CEO’s perspective. Your job is to

figure out what it is that your company, your

business, your marketplace, your competitive

environment needs. Apply that to your

engineering team in order for your company

to win.22

By allowing LinkedIn to pay down nearly a decade of

technical debt, Operation InVersion enabled stability

and safety while se�ing the next stage of growth for the

company. However, it required two months of total

focus on non-functional requirements, at the expense of

all the promised features made to the public markets

during an IPO. By finding and fixing problems as part of

our daily work, we manage our technical debt so that

we avoid these “near-death” experiences.

This case study is a good example of paying off

technical debt, creating a stable and safe

environment as a result. The burdens of daily

workarounds were lied and the team was able

to once again focus on delivering new features to

delight their customers.

Increase the Visibility of Work

To know if we are making progress toward our goal, it’s

essential that everyone in the organization knows the current

state of work. ere are many ways to make the current state

visible, but what’s most important is that the information we

display is up to date, and that we constantly revise what we

measure to make sure it’s helping us understand progress

toward our current target conditions.

e following section discusses patterns that can help

create visibility and alignment across teams and functions.

Use Tools to Reinforce Desired Behavior

As Christopher Little, a software executive and one of the

earliest chroniclers of DevOps, observed, “Anthropologists

describe tools as a cultural artifact. Any discussion of culture

after the invention of �re must also be about tools.”23

Similarly, in the DevOps value stream, we use tools to

reinforce our culture and accelerate desired behavior changes.

One goal is that our tooling reinforces that Development

and Operations not only have shared goals but also have a

common backlog of work, ideally stored in a common work

system and using a shared vocabulary, so that work can be

prioritized globally.

By doing this, Development and Operations may end up

creating a shared work queue, instead of each silo using a

different one (e.g., Development uses JIRA while Operations

uses ServiceNow). A signi�cant bene�t of this is that when

production incidents are shown in the same work systems as

development work, it will be obvious when ongoing incidents

should halt other work, especially if we have a kanban board.

Another bene�t of having Development and Operations

using a shared tool is a uni�ed backlog, where everyone

prioritizes improvement projects from a global perspective,

selecting work that has the highest value to the organization

or most reduces technical debt. As we identify technical debt,

we add it to our prioritized backlog if we can’t address it

immediately. For issues that remain unaddressed, we can use

our “20% time for non-functional requirements” to �x the

top items from our backlog.

Other technologies that reinforce shared goals are chat

rooms, such as IRC channels, HipChat, Camp�re, Slack,

Flowdock, and OpenFire. Chat rooms allow the fast sharing

of information (as opposed to �lling out forms that are

processed through prede�ned work�ows), the ability to invite

other people as needed, and history logs that are

automatically recorded for posterity and can be analyzed

during post-mortem sessions.

An amazing dynamic is created when we have a

mechanism that allows any team member to quickly help

other team members, or even people outside their own team

—the time required to get information or needed work can go

from days to minutes. In addition, because everything is

being recorded, we may not need to ask someone else for help

in the future—we simply search for it.

However, the rapid communication environment

facilitated by chat rooms can also be a drawback. As Ryan

Martens, the founder and CTO of Rally Software, observes,

“In a chat room, if someone doesn’t get an answer in a couple

of minutes, it’s totally accepted and expected that you can

bug them again until they get what they need.”24

e expectations of immediate response can, of course,

lead to undesired outcomes. A constant barrage of

interruptions and questions can prevent people from getting

necessary work done. As a result, teams may decide that

certain types of requests should go through more structured

and asynchronous tools.

Conclusion

In this chapter, we identi�ed all the teams supporting our

value stream and captured in a value stream map what work

is required in order to deliver value to the customer. e value

stream map provides the basis for understanding our current

state, including our lead time and %C/A metrics for

problematic areas, and informs how we set a future state.

is enables dedicated transformation teams to rapidly

iterate and experiment to improve performance. We also

make sure that we allocate a sufficient amount of time for

improvement, �xing known problems and architectural

issues, including our non-functional requirements. e case

studies from Nordstrom and LinkedIn demonstrate how

dramatic improvements can be made in lead times and

quality when we �nd problems in our value stream and pay

down technical debt.

* Which makes it all the more important that we limit the level of detail being

collected—everyone’s time is valuable and scarce.

† Conversely, there are many examples of using tools in a way that guarantees no

behavior changes occur. For instance, an organization commits to an agile

planning tool but then configures it for a waterfall process, which merely

maintains the status quo.

I

7
HOW TO DESIGN OUR ORGANIZATION AND
ARCHITECTURE WITH CONWAY’S LAW IN
MIND

n the previous chapters, we identi�ed a value stream to

start our DevOps transformation and established shared

goals and practices to enable a dedicated transformation team

to improve how we deliver value to the customer.

In this chapter, we will start thinking about how to

organize ourselves to best achieve our value stream goals.

After all, how we organize our teams affects how we perform

our work. Dr. Melvin Conway performed a famous

experiment in 1968 with a contract research organization

that had eight people who were commissioned to produce a

COBOL and an ALGOL compiler. He observed, “After some

initial estimates of difficulty and time, �ve people were

assigned to the COBOL job and three to the ALGOL job. e

resulting COBOL compiler ran in �ve phases, the ALGOL

compiler ran in three.”1

ese observations led to what is now known as Conway’s

Law, which states that “organizations which design systems

… are constrained to produce designs which are copies of the

communication structures of these organizations… . e

larger an organization is, the less �exibility it has and the

more pronounced the phenomenon.”2

Eric S. Raymond, author of the book e Cathedral and the

Bazaar: Musings on Linux and Open Source by an Accidental

Revolutionary, crafted a simpli�ed (and now, more famous)

version of Conway’s Law in his Jargon File: “e organization

of the software and the organization of the software team

will be congruent; commonly stated as ‘if you have four

groups working on a compiler, you’ll get a 4-pass compiler.’”3

In other words, how we organize our teams has a

powerful effect on the software we produce, as well as our

resulting architectural and production outcomes. In order to

get fast �ow of work from Development into Operations,

with high quality and great customer outcomes, we must

organize our teams and our work so that Conway’s Law works

to our advantage. Done poorly, Conway’s Law will prevent

teams from working safely and independently; instead, they

will be tightly coupled, all waiting on each other for work to

be done, with even small changes creating potentially global,

catastrophic consequences.

Conway’s Law at Etsy

An example of how Conway’s Law can either impede or

reinforce our goals can be seen in a technology that was

developed at Etsy called Sprouter. Etsy’s DevOps journey

began in 2009, and its technical teams were early developers

and proponents of the ideas in this book. Etsy’s 2014 revenue

was nearly $200 million, and the company had a successful

IPO in 2015.4

Originally developed in 2007, Sprouter connected people,

processes, and technology in ways that created many

undesired outcomes. Sprouter, shorthand for “stored

procedure router,” was originally designed to help make life

easier for the developers and database teams. As Ross Snyder,

a senior engineer at Etsy, said during his presentation at

Surge 2011, “Sprouter was designed to allow the Dev teams to

write PHP code in the application, the DBAs to write SQL

inside Postgres, with Sprouter helping them meet in the

middle.”5

Sprouter resided between their front-end PHP application

and the Postgres database, centralizing access to the database

and hiding the database implementation from the application

layer. e problem was that adding any changes to business

logic resulted in signi�cant friction between developers and

the database teams.

As Snyder observed, “For nearly any new site

functionality, Sprouter required that the DBAs write a new

stored procedure. As a result, every time developers wanted

to add new functionality, they would need something from

the DBAs, which often required them to wade through a ton

of bureaucracy.”6

In other words, developers creating new functionality had

a dependency on the DBA team, which needed to be

prioritized, communicated, and coordinated, resulting in

work sitting in queues, meetings, longer lead times, and so

forth.7 is is because Sprouter created a tight coupling

between the development and database teams, preventing

developers from being able to independently develop, test,

and deploy their code into production.

e stored procedures for the database were also tightly

coupled to Sprouter. Any time a stored procedure was

changed, it required changes to Sprouter too. e result was

that Sprouter became an ever-larger single point of failure.

Snyder explained that everything was so tightly coupled and

required such a high level of synchronization as a result that

almost every deployment caused a mini-outage.8

Both the problems associated with Sprouter and their

eventual solution can be explained by Conway’s Law. Etsy

initially had two teams, the developers and the DBAs, who

were each responsible for two layers of the service: the

application logic layer and the stored procedure layer.9 Two

teams working on two layers, as Conway’s Law predicts.

Sprouter was intended to make life easier for both teams,

but it didn’t work as expected—when business rules changed,

instead of changing only two layers, they now needed to

make changes to three layers (in the application, in the stored

procedures, and now in Sprouter). e resulting challenges of

coordinating and prioritizing work across three teams

signi�cantly increased lead times which in turn caused

reliability problems, as is con�rmed in the 2019 State of

DevOps Report.10

In the spring of 2009, as part of what Snyder called “the

great Etsy cultural transformation,” Chad Dickerson joined as

the new CTO. Dickerson put into motion many things,

including a massive investment into site stability, having

developers perform their own deployments into production,

as well as beginning a two-year journey to eliminate

Sprouter.11

To do this, the team decided to move all the business logic

from the database layer into the application layer, removing

the need for Sprouter. ey created a small team that wrote a

PHP object-relational mapping (ORM) layer,* enabling the

front-end developers to make calls directly to the database

and reducing the number of teams required to change

business logic from three teams down to one team.12

As Snyder described, “We started using the ORM for any

new areas of the site and migrated small parts of our site

from Sprouter to the ORM over time. It took us two years to

migrate the entire site off of Sprouter. And even though we

all grumbled about Sprouter the entire time, it remained in

production throughout.”13

By eliminating Sprouter, Etsy also eliminated the

problems associated with multiple teams needing to

coordinate for business logic changes, decreased the number

of handoffs, and signi�cantly increased the speed and success

of production deployments, improving site stability.

Furthermore, because small teams could independently

develop and deploy their code without requiring another

team to make changes in other areas of the system, developer

productivity increased.

Sprouter was �nally removed from production and Etsy’s

version control repositories in early 2001. As Snyder said,

“Wow, it felt good.”14†

As Snyder and Etsy experienced, how we design our

organization dictates how work is performed and, therefore,

the outcomes we achieve. roughout the rest of this chapter,

we will explore how Conway’s Law can negatively impact the

performance of our value stream and, more importantly, how

we organize our teams to use Conway’s Law to our advantage.

Organizational Archetypes

In the �eld of decision sciences, there are three primary types

of organizational structures that inform how we design our

DevOps value streams with Conway’s Law in mind: functional,

matrix, and market. ey are de�ned by Dr. Roberto

Fernandez as follows:16

• Functional-oriented organizations optimize for

expertise, division of labor, or reducing cost. ese

organizations centralize expertise, which helps enable

career growth and skill development, and they often

have tall hierarchical organizational structures. is

has been the prevailing method of organization for

Operations (i.e., server admins, network admins,

database admins, and so forth are all organized into

separate groups).

• Matrix-oriented organizations attempt to combine

functional and market orientation. However, as many

who work in or manage matrix organizations observe,

they often result in complicated organizational

structures, such as individual contributors reporting

to two managers or more, and sometimes achieving

neither the goals of functional or market orientation.‡

• Market-oriented organizations optimize for

responding quickly to customer needs. ese

organizations tend to be �at, composed of multiple

cross-functional disciplines (e.g., marketing,

engineering, etc.), which often leads to potential

redundancies across the organization. is is how

many prominent organizations adopting DevOps

operate—in extreme examples, such as at Amazon or

Net�ix, each service team is simultaneously

responsible for feature delivery and service support.§

With these three categories of organizations in mind, let’s

explore further how an overly functional orientation,

especially in Operations, can cause undesired outcomes in the

technology value stream, as Conway’s Law would predict.

Problems Oen Caused by Overly Functional

Orientation (“Optimizing for Cost”)

In traditional IT Operations organizations, we often use

functional orientation to organize our teams by their

specialties. We put the database administrators in one group,

the network administrators in another, the server

administrators in a third, and so forth. One of the most

visible consequences of this is long lead times, especially for

complex activities like large deployments where we must

open up tickets with multiple groups and coordinate work

handoffs, resulting in our work waiting in long queues at

every step.

Compounding the issue, the person performing the work

often has little visibility or understanding of how their work

relates to any value stream goals (e.g., “I’m just con�guring

servers because someone told me to.”). is places workers in

a creativity and motivation vacuum.

e problem is exacerbated when each Operations

functional area has to serve multiple value streams (i.e.,

multiple Development teams) who all compete for their

scarce cycles. In order for Development teams to get their

work done in a timely manner, we often have to escalate

issues to a manager or director, and eventually to someone

(usually an executive) who can �nally prioritize the work

against the global organizational goals instead of the

functional silo goals. is decision must then get cascaded

down into each of the functional areas to change the local

priorities, and this, in turn, slows down other teams. When

every team expedites their work, the net result is that every

project ends up moving at the same slow crawl.

In addition to long queues and long lead times, this

situation results in poor handoffs, large amounts of rework,

quality issues, bottlenecks, and delays. is gridlock impedes

the achievement of important organizational goals, which

often far outweigh the desire to reduce costs.¶

Similarly, functional orientation can also be found with

centralized QA and Infosec functions, which may have

worked �ne (or at least, well enough) when performing less

frequent software releases. However, as we increase the

number of Development teams and their deployment and

release frequencies, most functionally oriented organizations

will have difficulty keeping up and delivering satisfactory

outcomes, especially when their work is being performed

manually. Now, we’ll study how market-oriented

organizations work.

Enable Market-Oriented Teams (“Optimizing for

Speed”)

Broadly speaking, to achieve DevOps outcomes, we need to

reduce the effects of functional orientation (“optimizing for

cost”) and enable market orientation (“optimizing for speed”)

so we can have many small teams working safely and

independently, quickly delivering value to the customer.

Taken to the extreme, market-oriented teams are

responsible not only for feature development but also for

testing, securing, deploying, and supporting their service in

production, from idea conception to retirement. ese teams

are designed to be cross-functional and independent—able to

design and run user experiments, build and deliver new

features, deploy and run their service in production, and �x

any defects without manual dependencies on other teams,

thus enabling them to move faster. is model has been

adopted by Amazon and Net�ix and is touted by Amazon as

one of the primary reasons behind their ability to move fast

even as they grow.18

To achieve market orientation, we won’t do a large, top-

down reorganization, which often creates large amounts of

disruption, fear, and paralysis. Instead, we will embed the

functional engineers and skills (e.g., Ops, QA, Infosec) into

each service team, or create a platform organization that

provides an automated technology platform for service teams

to self-serve everything they need to test, deploy, monitor,

and manage their services in testing and production

environments.

is enables each service team to independently deliver

value to the customer without having to open tickets with

other groups, such as IT Operations, QA, or Infosec.**

Research supports this approach: DORA’s 2018 and 2019

State of DevOps Reports found that teams see superior

performance in speed and stability when functional work like

database change management, QA, and Infosec is integrated

throughout the software delivery process.19

Making Functional Orientation Work

Having just recommended market-orientated teams, it is

worth pointing out that it is possible to create effective, high-

velocity organizations with functional orientation. Cross-

functional and market-oriented teams are one way to achieve

fast �ow and reliability, but they are not the only path. We

can also achieve our desired DevOps outcomes through

functional orientation, as long as everyone in the value

stream views customer and organizational outcomes as a

shared goal, regardless of where they reside in the

organization.

Figure 7.1: Functional vs. Market Orientation

Left: Functional orientation: all work �ows through centralized IT Operations.

Right: Market orientation: all product teams can deploy their loosely coupled

components self-service into production.

Source: Humble, Molesky, and O’Reilly, Lean Enterprise, Kindle edition,

4523 & 4592.

For example, high performance with a functional-

oriented and centralized Operations group is possible, as long

as service teams get what they need from Operations reliably

and quickly (ideally on demand) and vice versa. Many of the

most admired DevOps organizations retain functional

orientation of Operations, including Etsy, Google, and

GitHub.

What these organizations have in common is a high-trust

culture that enables all departments to work together

effectively, where all work is transparently prioritized and

there is sufficient slack in the system to allow high-priority

work to be completed quickly. is is, in part, enabled by

automated self-service platforms that build quality into the

products everyone is building.

In the Lean manufacturing movement of the 1980s, many

researchers were puzzled by Toyota’s functional orientation,

which was at odds with the best practice of having cross-

functional, market-oriented teams. ey were so puzzled it

was called “the second Toyota paradox.”20

As Mike Rother wrote in Toyota Kata,

As tempting as it seems, one cannot reorganize your

way to continuous improvement and adaptiveness.

What is decisive is not the form of the organization, but

how people act and react. e roots of Toyota’s success

lie not in its organizational structures, but in developing

capability and habits in its people. It surprises many

people, in fact, to find that Toyota is largely organized in

a traditional, functional-department style.21

It is this development of habits and capabilities in people

and the workforce that are the focus of our next sections.

Testing, Operations, and Security as Everyone’s Job

Every Day

In high-performing organizations, everyone within a team

shares a common goal—quality, availability, and security

aren’t the responsibility of individual departments but are a

part of everyone’s job every day.

is means that the most urgent problem of the day may

be working on or deploying a customer feature or �xing a Sev

1 production incident. Alternatively, the day may require

reviewing a fellow engineer’s change, applying emergency

security patches to production servers, or making

improvements so that fellow engineers are more productive.

Re�ecting on shared goals between Development and

Operations, Jody Mulkey, CTO at Ticketmaster, said, “For

almost 25 years, I used an American football metaphor to

describe Dev and Ops. You know, Ops is defense, who keeps

the other team from scoring, and Dev is offense, trying to

score goals. And one day, I realized how �awed this metaphor

was, because they never all play on the �eld at the same time.

ey’re not actually on the same team!”22

He continued, “e analogy I use now is that Ops are the

offensive linemen, and Dev are the ‘skill’ positions (like the

quarterback and wide receivers) whose job it is to move the

ball down the �eld—the job of Ops is to help make sure Dev

has enough time to properly execute the plays.”23

A striking example of how shared pain can reinforce

shared goals is when Facebook was undergoing enormous

growth in 2009. ey were experiencing signi�cant problems

related to code deployments—while not all issues caused

customer-impacting issues, there was chronic �re�ghting and

long hours. Pedro Canahuati, their director of production

engineering, described a meeting full of Ops engineers where

someone asked that all people not working on an incident

close their laptops, and no one could.24

One of the most signi�cant things they did to help change

the outcomes of deployments was to have all Facebook

engineers, engineering managers, and architects rotate

through on-call duty for the services they built. By doing this,

everyone who worked on the service experienced visceral

feedback on the upstream architectural and coding decisions

they made, which made an enormous positive impact on the

downstream outcomes.

Enable Every Team Member to Be a Generalist

In extreme cases of a functionally oriented Operations

organization, we have departments of specialists, such as

network administrators, storage administrators, and so forth.

When departments over specialize, it causes siloization, which

Dr. Spear describes as when departments “operate more like

sovereign states.”25 Any complex operational activity then

requires multiple handoffs and queues between the different

areas of the infrastructure, leading to longer lead times (e.g.,

because every network change must be made by someone in

the networking department).

Because we rely upon an ever-increasing number of

technologies, we must have engineers who have specialized

and achieved mastery in the technology areas we need.

However, we don’t want to create specialists who are “frozen

in time,” only understanding and able to contribute to that

one area of the value stream.

One countermeasure is to enable and encourage every

team member to be a generalist. We do this by providing

opportunities for engineers to learn all the skills necessary to

build and run the systems they are responsible for, and

regularly rotating people through different roles. e term

full-stack engineer is now commonly used (sometimes as a rich

source of parody) to describe generalists who are familiar—at

least have a general level of understanding—with the entire

application stack (e.g., application code, databases, operating

systems, networking, cloud).

Table 7.1: Specialists vs. Generalists vs. “E-Shaped” Staff

(experience, expertise, exploration, and execution)

“I-shaped” (Specialists) “T-shaped” (Generalists) “E-shaped”

Deep expertise in one area Deep expertise in one area
Deep expertise

in a few areas

Very few skills or experience

in other areas

Broad skills across many

areas

Experience

across many

areas

Proven

execution

skills

Always

innovating

Creates bottlenecks quickly
Can step up to remove

bottlenecks

Almost

limitless

potential

Insensitive to downstream

waste and impact

Sensitive to downstream

waste and impact
—

Prevents planning �exibility

or absorption of variability

Helps make planning

�exible and absorbs

variability

—

Source: Scott Prugh, “Continuous Delivery,” ScaledAgileFramework.com, February

14, 2013, http://scaledagileframework.com/continuous-delivery/.

Scott Prugh writes that CSG International has undergone

a transformation that brings most resources required to build

and run the product onto one team, including analysis,

architecture, development, test, and operations. “By cross-

training and growing engineering skills, generalists can do

orders of magnitude more work than their specialist

http://scaledagileframework.com/
http://scaledagileframework.com/continuous-delivery/

counterparts, and it also improves our overall �ow of work by

removing queues and wait time.”26

is approach is at odds with traditional hiring practices,

but, as Prugh explains, it is well worth it. “Traditional

managers will often object to hiring engineers with generalist

skill sets, arguing that they are more expensive and that ‘I can

hire two server administrators for every multi-skilled

operations engineer.’”27 However, the business bene�ts of

enabling faster �ow are overwhelming. Furthermore, as

Prugh notes, “[I]nvesting in cross training is the right thing

for [employees’] career growth and makes everyone’s work

more fun.”28

When we value people merely for their existing skills or

performance in their current role rather than for their ability

to acquire and deploy new skills, we (often inadvertently)

reinforce what Dr. Carol Dweck describes as the �xed mindset,

where people view their intelligence and abilities as static

“givens” that can’t be changed in meaningful ways.29

Instead, we want to encourage learning, help people

overcome learning anxiety, help ensure that people have

relevant skills and a de�ned career road map, and so forth. By

doing this, we help foster a growth mindset in our engineers—

after all, a learning organization requires people who are

willing to learn. By encouraging everyone to learn, as well as

providing training and support, we create the most

sustainable and least expensive way to create greatness in our

teams—by investing in the development of the people we

already have.

As Jason Cox, Director of Systems Engineering at Disney,

described, “Inside of Operations, we had to change our hiring

practices. We looked for people who had ‘curiosity, courage,

and candor,’ who were not only capable of being generalists

but also renegades… . We want to promote positive

disruption so our business doesn’t get stuck and can move

into the future.”30 As we’ll see in the next section, how we

fund our teams also affects our outcomes.

Fund Not Projects but Services and Products

Another way to enable high-performing outcomes is to create

stable service teams with ongoing funding to execute their

own strategy and road map of initiatives. ese teams have

the dedicated engineers needed to deliver on concrete

commitments made to internal and external customers, such

as features, stories, and tasks.

Contrast this to the more traditional model where

Development and Test teams are assigned to a “project” and

then reassigned to another project as soon as the project is

completed and funding runs out. is leads to all sorts of

undesired outcomes, including developers being unable to see

the long-term consequences of decisions they make (a form

of feedback) and a funding model that only values and pays

for the earliest stages of the software life cycle—which,

tragically, is also the least expensive part for successful

products or services.††

Our goal with a product-based funding model is to value

the achievement of organizational and customer outcomes,

such as revenue, customer lifetime value, or customer

adoption rate, ideally with the minimum of output (e.g.,

amount of effort or time, lines of code). Contrast this to how

projects are typically measured, such as whether they are

completed within the promised budget, time, and scope.

Design Team Boundaries in Accordance with Conway’s

Law

As organizations grow, one of the largest challenges is

maintaining effective communication and coordination

between people and teams, and creating and maintaining a

shared understanding and mutual trust becomes even more

important. As many teams shift to embrace new patterns of

work, the importance of collaboration is becoming even more

apparent. It is common for teams to now include fully

remote, hybrid, and distributed work con�gurations with

team members stretched across not only office or home

boundaries but time zones and sometimes even contractual

boundaries (such as when work is performed by an

outsourced team). Collaboration is further impeded when the

primary communication mechanisms are work tickets and

change requests.‡‡

As we saw in the Etsy Sprouter example at the beginning

of this chapter, the way we organize teams can create poor

outcomes, a side effect of Conway’s Law. ese include

splitting teams by function (e.g., by putting developers and

testers in different locations or by outsourcing testers

entirely) or by architectural layer (e.g., application, database).

ese con�gurations require signi�cant communication

and coordination between teams, but still result in a high

amount of rework, disagreements over speci�cations, poor

handoffs, and people sitting idle waiting for somebody else.

Ideally, our software architecture should enable small

teams to be independently productive, sufficiently decoupled

from each other so that work can be done without excessive

or unnecessary communication and coordination.

Create Loosely Coupled Architectures to Enable

Developer Productivity and Safety

When we have a tightly coupled architecture, small changes

can result in large-scale failures. As a result, anyone working

in one part of the system must constantly coordinate with

anyone else working in another part of the system they may

affect, including navigating complex and bureaucratic change

management processes.

Furthermore, to test that the entire system works

together requires integrating changes with the changes from

hundreds, or even thousands, of other developers, which

may, in turn, have dependencies on tens, hundreds, or

thousands of interconnected systems. Testing is done in

scarce integration test environments, which often require

weeks to obtain and con�gure. e result is not only long lead

times for changes (typically measured in weeks or months)

but also low developer productivity and poor deployment

outcomes.

In contrast, when we have an architecture that enables

small teams of developers to independently implement, test,

and deploy code into production safely and quickly, we can

increase and maintain developer productivity and improve

deployment outcomes. ese characteristics can be found in

service-oriented architectures (SOAs) �rst described in the

1990s, in which services are independently testable and

deployable. A key feature of SOAs is that they’re composed of

loosely coupled services with bounded contexts.§§

Having architecture that is loosely coupled means that

services can update in production independently, without

having to update other services. Services must be decoupled

from other services and, just as important, from shared

databases (although they can share a database service,

provided they don’t have any common schemas).

Bounded contexts are described in the book Domain-

Driven Design by Eric J. Evans. e idea is that developers

should be able to understand and update the code of a service

without knowing anything about the internals of its peer

services. Services interact with their peers strictly through

APIs and thus don’t share data structures, database

schemata, or other internal representations of objects.

Bounded contexts ensure that services are

compartmentalized and have well-de�ned interfaces, which

also enable easier testing.

Randy Shoup, former Engineering Director for Google

App Engine, observed that “organizations with these types of

service-oriented architectures, such as Google and Amazon,

have incredible �exibility and scalability. ese organizations

have tens of thousands of developers where small teams can

still be incredibly productive.”33

Keep Team Sizes Small (the “Two-Pizza Team” Rule)

Conway’s Law helps us design our team boundaries in the

context of desired communication patterns but it also

encourages us to keep our team sizes small, reducing the

amount of inter-team communication and encouraging us to

keep the scope of each team’s domain small and bounded.

As part of its transformation initiative away from a

monolithic code base in 2002, Amazon used the two-pizza

rule to keep team sizes small—a team only as large as can be

fed with two pizzas—usually about �ve to ten people.34

is limit on size has four important effects:

• It ensures the team has a clear, shared

understanding of the system they are working on. As

teams get larger, the amount of communication

required for everybody to know what’s going on scales

in a combinatorial fashion.

• It limits the growth rate of the product or service

being worked on. By limiting the size of the team, we

limit the rate at which their system can evolve. is

also helps to ensure the team maintains a shared

understanding of the system.

• It decentralizes power and enables autonomy. Each

two-pizza team (2PT) is as autonomous as possible.

e team’s lead, working with the executive team,

decides on the key business metric that the team is

responsible for, known as the �tness function, which

becomes the overall evaluation criteria for the team’s

experiments. e team is then able to act

autonomously to maximize that metric.¶¶

• Leading a two-pizza team is a way for employees to

gain some leadership experience in an environment

where failure does not have catastrophic

consequences. An essential element of Amazon’s

strategy was the link between the organizational

structure of a two-pizza team and the architectural

approach of a service-oriented architecture.

Amazon CTO, Werner Vogels, explained the advantages of

this structure to Larry Dignan of Baseline in 2005.

Dignan writes:

Small teams are fast … and don’t get bogged down in so-

called administrivia… . Each group assigned to a

particular business is completely responsible for it… .

e team scopes the fix, designs it, builds it,

implements it and monitors its ongoing use. is way,

technology programmers and architects get direct

feedback from the business people who use their code

or applications—in regular meetings and informal

conversations.36

CONTINUOUS

LEARNING

In Team Topologies: Organizing Business and

Technology Teams for Fast Flow, Matthew

Skelton and Manuel Pais present team and

organizational patterns to optimize software

delivery. e book illustrates an important

theme shared in this chapter: good team

designs reinforce good software delivery, and

good software delivery reinforces more

effective teams.

Skelton and Pais also highlight best

practices for teams:

• Trust and communication take time.

ey suggest it takes at least three

months for team members to reach high

performance, and suggest keeping teams

together at least a year to bene�t from

their work together.

• Just-right sizing. ey suggest eight is

an ideal number, which is similar to the

two-pizza team used by Amazon, and

note that 150 is an upper limit (citing

Dunbar’s number).***

• Communication (can be) expensive.

Skelton and Pais wisely point out that

while within-team communication is

good, any time teams have demands or

constraints on other teams, it leads to

queues, context switching, and overhead.

e authors also outline four types of

teams, and discuss strengths and weaknesses

based on the organization, cognitive load

requirements of each, and modes of team

interaction.

• Stream-aligned teams: An end-to-end

team that owns the full value stream. is

is similar to the market orientation

described here.

• Platform teams: Platform teams create

and support reusable technology often

used by stream-aligned teams, such as

infrastructure or content management.

is team may often be a third party.

• Enabling teams: is team contains

experts who help other teams improve,

such as a Center of Excellence.

• Complicated-subsystem teams: Teams

that own development and maintenance

of a subcomponent of the system that is

so complicated it requires specialist

knowledge.

• Other: e authors also touch on other

team types, such as SRE (site reliability

engineer) and service experience.

Another example of how architecture can profoundly

improve productivity is the API Enablement program at

Target, Inc.

CASE

STUDY

API Enablement at Target (2015)

Target is the sixth-largest retailer in the US and spends

over $1 billion on technology annually. Heather

Mickman, a former director of development for Target,

described the beginnings of their DevOps journey: “In

the bad old days, it used to take ten different teams to

provision a server at Target, and when things broke, we

tended to stop making changes to prevent further

issues, which of course makes everything worse.”37

The hardships associated with ge�ing environments

and performing deployments created significant

difficulties for development teams, as did ge�ing access

to data they needed.

As Mickman described:

The problem was that much of our core data,

such as information on inventory, pricing, and

stores, was locked up in legacy systems and

mainframes. We oen had multiple sources of

truths of data, especially between e-

commerce and our physical stores, which

were owned by different teams, with different

data structures and different priorities… .

The result was that if a new development

team wanted to build something for our

guests, it would take three to six months to

build the integrations to get the data they

needed. Worse, it would take another three to

six months to do the manual testing to make

sure they didn’t break anything critical

because of how many custom point-to-point

integrations we had in a very tightly coupled

system. Having to manage the interactions

with the twenty to thirty different teams,

along with all their dependencies, required

lots of project managers because of all the

coordination and handoffs. It meant that

development was spending all their time

waiting in queues instead of delivering results

and ge�ing stuff done.38

This long lead time for retrieving and creating data

in their systems of record jeopardized important

business goals, such as integrating the supply chain

operations of Target’s physical stores and their e-

commerce site, which now required ge�ing inventory to

stores and customer homes. This pushed the Target

supply chain well beyond what it was designed for,

which was merely to facilitate the movement of goods

from vendors to distribution centers and stores.

In an a�empt to solve the data problem, in 2012

Mickman led the API Enablement team to enable

development teams to “deliver new capabilities in days

instead of months.”39 They wanted any engineering

team inside Target to be able to get and store the data

they needed, such as information on their products or

their stores, including operating hours, location,

whether there was a Starbucks on-site, and so forth.

Time constraints played a large role in team

selection. As Mickman explained:

Because our team also needed to deliver

capabilities in days, not months, I needed a

team who could do the work, not give it to

contractors—we wanted people with kickass

engineering skills, not people who knew how

to manage contracts. And to make sure our

work wasn’t si�ing in queue, we needed to

own the entire stack, which meant that we

took over the Ops requirements as well. … We

brought in many new tools to support

continuous integration and continuous

delivery. And because we knew that if we

succeeded, we would have to scale with

extremely high growth, we brought in new

tools such as the Cassandra database and

Kaa message broker. When we asked for

permission, we were told no, but we did it

anyway because we knew we needed it.40

In the following two years, the API Enablement team

enabled fiy-three new business capabilities, including

Ship to Store and Gi Registry, as well as their

integrations with Instacart and Pinterest. As Mickman

described, “Working with Pinterest suddenly became

very easy, because we just provided them our APIs.”41

In 2014, the API Enablement team served over 1.5

billion API calls per month. By 2015, this had grown to

seventeen billion calls per month and spanning ninety

different APIs. To support this capability, they routinely

performed eighty deployments per week.42

These changes have created major business benefits

for Target—digital sales increased 42% during the 2014

holiday season and increased another 32% in Q2.

During the Black Friday weekend of 2015, over 280,000

in-store pickup orders were created. By 2015, their goal

was to enable 450 of their 1,800 stores to be able to

fulfill e-commerce orders, up from one hundred.43

“The API Enablement team shows what a team of

passionate change agents can do,” Mickman says. “And

it helped set us up for the next stage, which is to expand

DevOps across the entire technology organization.”44

This case study is takeaway rich, but one of the

clearest pictures it paints is how architecture

affects the size and organization of a team and

vice versa, per Conway’s Law.

Conclusion

rough the Etsy and Target case studies, we can see how

architecture and organizational design can dramatically

improve our outcomes. Done incorrectly, Conway’s Law will

ensure that the organization creates poor outcomes,

preventing safety and agility. Done well, the organization

enables developers to safely and independently develop, test,

and deploy value to the customer.

* Among many things, an ORM abstracts a database, enabling developers to

conduct queries and data manipulation as if they were merely another object in

the programming language. Popular ORMs include Hibernate for Java,

SQLAlchemy for Python, and ActiveRecord for Ruby on Rails.

† Sprouter was one of many technologies used in development and production

that Etsy eliminated as part of their transformation.15

‡ For more on how to work with matrix-oriented organizations, check out the

DevOps Enterprise Forum paper Making Matrixed Organizations Successful with

DevOps: Tactics for Transformation in a Less an Optimal Organization, which

you can download at ITRevolution.com/Resources.

§ However, as will be explained later, equally prominent organizations such as Etsy

and GitHub have functional orientation.

¶ Adrian Cockcro remarked, “For companies who are now coming off of five-

year IT outsourcing contracts, it’s like they’ve been frozen in time, during one of

the most disruptive times in technology.”17 In other words, IT outsourcing is a

tactic used to control costs through contractually enforced stasis, with firm fixed

prices that schedule annual cost reductions. However, it oen results in

organizations being unable to respond to changing business and technology

needs.

http://itrevolution.com/Resources

** For the remainder of this book, we will use service teams interchangeably with

feature teams, product teams, development teams, and delivery teams. e intent

is to specify the team primarily developing, testing, and securing the code so

that value is delivered to the customer.

†† As John Lauderbach, VP of Information Technology at Roche Bros.

Supermarkets, quipped, “Every new application is like a free puppy. It’s not the

upfront capital cost that kills you… . It’s the ongoing maintenance and

support.”31

‡‡ When the first edition was released, most work cultures did not embrace remote

or hybrid arrangements. In the intervening years, advancing technology, shiing

norms, and the COVID-19 pandemic have shown teams and organizations that

remote work and hybrid schedules are not only possible but productive. As such,

this paragraph has been modified to account for shiing ways of working.

§§ ese properties are also found in “microservices,” which build upon the

principles of SOA. One popular set of patterns for modern web architecture

based on these principles is the “12-factor app.”32

¶¶ In the Netflix culture, one of the seven key values is “highly aligned, loosely

coupled.”35

*** Dunbar's number refers to the number of people with whom one can maintin

stable social relationships with (150). It was created by British anthropologist

Robin Dunbar in the 1990s.

O

8
HOW TO GET GREAT OUTCOMES BY
INTEGRATING OPERATIONS INTO THE DAILY
WORK OF DEVELOPMENT

ur goal is to enable user-oriented outcomes where many

small teams can quickly and independently deliver

value to customers. is can be a challenge to achieve when

Operations is centralized and functionally oriented, having to

serve the needs of many different development teams with

potentially wildly different needs. e result can often be long

lead times for needed Ops work, constant reprioritization

and escalation, and poor deployment outcomes.

We can create more market-oriented outcomes by better

integrating Ops capabilities into Dev teams, making both

more efficient and productive. In this chapter, we’ll explore

many ways to achieve this, both at the organizational level

and through daily rituals. By doing this, Ops can signi�cantly

improve the productivity of Dev teams throughout the entire

organization, as well as enable better collaboration and

organizational outcomes.

Big Fish Games

At Big Fish Games, which develops and supports hundreds of

mobile and thousands of PC games and had more than $266

million in revenue in 2013, VP of IT Operations Paul Farrall

was in charge of the centralized Operations organization.1 He

was responsible for supporting many different business units

that each had a great deal of autonomy.

Each of these business units had dedicated Development

teams who often chose wildly different technologies. When

these groups wanted to deploy new functionality, they would

have to compete for a common pool of scarce Ops resources.

Furthermore, everyone was struggling with unreliable test

and integration environments, as well as extremely

cumbersome release processes.

Farrall thought the best way to solve this problem was by

embedding Ops expertise into Development teams. He

observed,

When Dev teams had problems with testing or

deployment, they needed more than just technology or

environments. What they also needed was help and

coaching. At first, we embedded Ops engineers and

architects into each of the Dev teams, but there simply

weren’t enough Ops engineers to cover that many

teams. We were able to help more teams with what we

called an Ops liaison model and with fewer people.2

Farrall de�ned two types of Ops liaisons: the business

relationship manager and the dedicated release engineer.3

e business relationship managers worked with product

management, line-of-business owners, project management,

Dev management, and developers. ey became intimately

familiar with product group business drivers and product

road maps, acted as advocates for product owners inside of

Operations, and helped their product teams navigate the

Operations landscape to prioritize and streamline work

requests.

Similarly, the dedicated release engineer became

intimately familiar with the product’s Development and QA

issues and helped product management get what they needed

from the Ops organization to achieve their goals. ey were

familiar with the typical Dev and QA requests for Ops and

would often executed the necessary work themselves. As

needed, they would also pull in dedicated technical Ops

engineers (e.g., DBAs, Infosec, storage engineers, network

engineers) and help determine which self-service tools the

entire Operations group should prioritize building.

By doing this, Farrall was able to help Dev teams across

the organization become more productive and achieve their

team goals. Furthermore, he helped the teams prioritize

around his global Ops constraints, reducing the number of

surprises discovered mid-project and ultimately increasing

the overall project throughput.

Farrall notes that both working relationships with

Operations and code release velocity were noticeably

improved as a result of the changes. He concludes, “e Ops

liaison model allowed us to embed IT Operations expertise

into the Dev and Product teams without adding new

headcount.”4

e DevOps transformation at Big Fish Games shows how

a centralized Operations team was able to achieve the

outcomes typically associated with user-oriented teams. We

can employ the three following broad strategies:

• Create self-service capabilities to enable developers in

the service teams to be productive.

• Embed Ops engineers into the service teams.

• Assign Ops liaisons to the service teams when

embedding Ops is not possible.

CONTINUOUS

LEARNING

We can see how this approach at Big Fish

Games follows both a platform team and

enabling team approach, as outlined in Team

Topologies by Matthew Skelton and Manuel

Pais and summarized in the last chapter.

A single platform team provides

infrastructure functionality for the entire

organization and supports market-oriented

teams. e Ops liaisons also act as members of

the enabling teams.

Lastly, Ops engineers can be integrated into the Dev

team’s rituals that they use in their daily work, including

daily standups, planning, and retrospectives.

Create Shared Services to Increase Developer

Productivity

One way to enable market-oriented outcomes is for

Operations to create a set of centralized platforms and

tooling services that any Dev team can use to become more

productive, such as getting production-like environments,

deployment pipelines, automated testing tools, production

telemetry dashboards, and so forth.* By doing this, we enable

Dev teams to spend more time building functionality for their

customer, as opposed to obtaining all the infrastructure

required to deliver and support that feature in production.

All the platforms and services we provide should (ideally)

be automated and available on demand without requiring a

developer to open up a ticket and wait for someone to

manually perform work. is ensures that Operations doesn’t

become a bottleneck for their customers (e.g., “We received

your work request, and it will take six weeks to manually

con�gure those test environments”).†

By doing this, we enable the product teams to get what

they need, when they need it, as well as reduce the need for

communications and coordination. As Damon Edwards

observed, “Without these self-service Operations platforms,

the cloud is just Expensive Hosting 2.0.”6

In almost all cases, we will not mandate that internal

teams use these platforms and services—these platform

teams will have to win over and satisfy their internal

customers, sometimes even competing with external

vendors. By creating this effective internal marketplace of

capabilities, we help ensure that the platforms and services

we create are the easiest and most appealing choices available

(the path of least resistance).

For instance, we may create a platform that provides a

shared version control repository with pre-blessed security

libraries, a deployment pipeline that automatically runs code

quality and security scanning tools, which deploys our

applications into known, good environments that already have

production monitoring tools installed on them. Ideally, we

will make life so much easier for Dev teams that they will

overwhelmingly decide that using our platform is the easiest,

safest, and most secure means to get their applications into

production.

We build into these platforms the cumulative and

collective experience of everyone in the organization,

including QA, Operations, and Infosec, which helps to create

an ever-safer system of work. is increases developer

productivity and makes it easy for product teams to leverage

common processes, such as performing automated testing

and satisfying security and compliance requirements.

Creating and maintaining these platforms and tools is real

product development—the customers of our platform aren’t

our external customers but our internal Dev teams. Like

creating any great product, creating great platforms that

everyone loves doesn’t happen by accident. An internal

platform team with poor customer focus will likely create

tools that everyone will hate and quickly abandon for other

alternatives, whether for another internal platform team or

an external vendor.

Dianne Marsh, Director of Engineering Tools at Net�ix,

states that her team’s charter is to “support our engineering

teams’ innovation and velocity. We don’t build, bake, or

deploy anything for these teams, nor do we manage their

con�gurations. Instead, we build tools to enable self-service.

It’s okay for people to be dependent on our tools, but it’s

important that they don’t become dependent on us.”7

Often, these platform teams provide other services to

help their customers learn their technology, migrate off of

other technologies, and even provide coaching and consulting

to help elevate the state of the practice inside the

organization. ese shared services also facilitate

standardization, enabling engineers to quickly become

productive, even if they switch between teams. For instance,

if every product team chooses a different toolchain, engineers

may have to learn an entirely new set of technologies to do

their work, putting the team goals ahead of the global goals.

In organizations where teams can only use approved

tools, we can start by removing this requirement for a few

teams, such as the transformation team, so that we can

experiment and discover what capabilities make those teams

more productive.

Internal shared services teams should continually look for

internal toolchains that are widely being adopted in the

organization, deciding which ones make sense to be

supported centrally and made available to everyone. In

general, taking something that’s already working somewhere

and expanding its usage is far more likely to succeed than

building these capabilities from scratch.‡

Embed Ops Engineers into Our Service Teams

Another way we can enable more user-oriented outcomes is

by enabling product teams to become more self-sufficient by

embedding Operations engineers within them, thus reducing

their reliance on centralized Operations. ese product teams

may also be completely responsible for service delivery and

service support.

By embedding Operations engineers into the Dev teams,

their priorities are driven almost entirely by the goals of the

product teams they are embedded in—as opposed to Ops

focusing inwardly on solving their own problems. As a result,

Ops engineers become more closely connected to their

internal and external customers. Furthermore, the product

teams often have the budget to fund the hiring of these Ops

engineers, although interviewing and hiring decisions will

likely still be done from the centralized Operations group to

ensure consistency and quality of staff.

Jason Cox said,

In many parts of Disney, we have embedded Ops

(system engineers) inside the product teams in our

business units, along with inside Development, Test,

and even Information Security. It has totally changed

the dynamics of how we work. As Operations

Engineers, we create the tools and capabilities that

transform the way people work, and even the way they

think. In traditional Ops, we merely drove the train that

someone else built. But in modern Operations

Engineering, we not only help build the train, but also

the bridges that the trains roll on.8

For new large Development projects, we may initially

embed Ops engineers into those teams. eir work may

include helping decide what to build and how to build it,

in�uencing the product architecture, helping in�uence

internal and external technology choices, helping create new

capabilities in our internal platforms, and maybe even

generating new operational capabilities.

After the product is released to production, embedded

Ops engineers may help with the production responsibilities

of the Dev team. ey will take part in all of the Dev team

rituals, such as planning meetings, daily standups, and

demonstrations where the team shows off new features and

decides which ones to ship. As the need for Ops knowledge

and capabilities decreases, Ops engineers may transition to

different projects or engagements, following the general

pattern that the composition within product teams changes

throughout its life cycle.

is paradigm has another important advantage: pairing

Dev and Ops engineers together is an extremely efficient way

to cross-train operations knowledge and expertise into a

service team. It can also have the powerful bene�t of

transforming operations knowledge into automated code that

can be far more reliable and widely reused.

Assign an Ops Liaison to Each Service Team

For a variety of reasons, such as cost and scarcity, we may be

unable to embed Ops engineers into every product team.

However, we can get many of the same bene�ts by assigning a

designated liaison for each product team.

At Etsy, this model is called “designated Ops.”9 eir

centralized Operations group continues to manage all the

environments—not just production environments but also

pre-production environments—to help ensure they remain

consistent. e designated Ops engineer is responsible for

understanding:

• what the new product functionality is and why we’re

building it

• how it works as it pertains to operability, scalability,

and observability (diagramming is strongly

encouraged)

• how to monitor and collect metrics to ensure the

progress, success, or failure of the functionality

• any departures from previous architectures and

patterns, and the justi�cations for them

• any extra needs for infrastructure and how usage will

affect infrastructure capacity

• feature launch plans

Furthermore, just like in the embedded Ops model, this

liaison attends the team standups, integrating their needs

into the Operations road map and performing any needed

tasks. ese liaisons escalate any resource contention or

prioritization issue. By doing this, we identify any resource or

time con�icts that should be evaluated and prioritized in the

context of wider organizational goals.

Assigning Ops liaisons allows us to support more product

teams than the embedded Ops model. Our goal is to ensure

that Ops is not a constraint for the product teams. If we �nd

that Ops liaisons are stretched too thin, preventing the

product teams from achieving their goals, then we will likely

need to either reduce the number of teams each liaison

supports or temporarily embed an Ops engineer into speci�c

teams.

Integrate Ops into Dev Rituals

When Ops engineers are embedded or assigned as liaisons

into our product teams, we can integrate them into our Dev

team rituals. In this section, our goal is to help Ops engineers

and other non-developers better understand the existing

Development culture and proactively integrate them into all

aspects of planning and daily work. As a result, Operations is

better able to plan and radiate any needed knowledge into the

product teams, in�uencing work long before it gets into

production. e following sections describe some of the

standard rituals used by Development teams using agile

methods and how we would integrate Ops engineers into

them. By no means are agile practices a prerequisite for this

step—as Ops engineers, our goal is to discover what rituals

the product teams follow, integrate into them, and add value

to them.§

As Ernest Mueller observed, “I believe DevOps works a lot

better if Operations teams adopt the same agile rituals that

Dev teams have used—we’ve had fantastic successes solving

many problems associated with Ops pain points, as well as

integrating better with Dev teams.”10

Invite Ops to Our Dev Standups

One of the Dev rituals popularized by Scrum is the daily

standup (although physically standing up has become

distinctly optional in remote teams), a quick meeting where

everyone on the team gets together and presents to each

other three things: what was done yesterday, what is going to

be done today, and what is preventing you from getting your

work done.¶

e purpose of this ceremony is to radiate information

throughout the team and to understand the work that is

being done and is going to be done. By having team members

present this information to each other, we learn about any

tasks that are experiencing roadblocks and discover ways to

help each other move our work toward completion.

Furthermore, by having managers present, we can quickly

resolve prioritization and resource con�icts.

A common problem is that this information is

compartmentalized within the Development team. By having

Ops engineers attend Dev standups, Operations can gain an

awareness of the Development team’s activities, enabling

better planning and preparation—for instance, if we discover

that the product team is planning a big feature rollout in two

weeks, we can ensure that the right people and resources are

available to support the rollout.

Alternatively, we may highlight areas where closer

interaction or more preparation is needed (e.g., creating more

monitoring checks or automation scripts). By doing this, we

create the conditions where Operations can help solve our

current team problems (e.g., improving performance by

tuning the database instead of optimizing code) or future

problems before they turn into a crisis (e.g., creating more

integration test environments to enable performance

testing).

Invite Ops to Our Dev Retrospectives

Another widespread agile ritual is the retrospective. At the

end of each development interval, the team discusses what

was successful, what could be improved, and how to

incorporate the successes and improvements in future

iterations or projects. e team comes up with ideas to make

things better and reviews experiments from the previous

iteration. is is one of the primary mechanisms where

organizational learning and the development of

countermeasures occurs, with resulting work implemented

immediately or added to the team’s backlog.

Having Ops engineers attend our project team

retrospectives means they can also bene�t from any new

learnings. Furthermore, when there is a deployment or

release in that interval, Operations should present the

outcomes and any resulting learnings, creating feedback into

the product team. By doing this, we can improve how future

work is planned and performed, improving our outcomes.

Examples of feedback that Operations can bring to a

retrospective include:

• “Two weeks ago, we found a monitoring blindspot and

agreed on how to �x it. It worked. We had an incident

last Tuesday, and we were able to quickly detect and

correct it before any customers were impacted.”

• “Last week’s deployment was one of the most difficult

and lengthy we’ve had in over a year. Here are some

ideas on how it can be improved.”

• “e promotion campaign we did last week was far

more difficult than we thought it would be, and we

should probably not make an offer like that again.

Here are some ideas on other offers we can make to

achieve our goals.”

• “During the last deployment, the biggest problem we

had was that our �rewall rules are now thousands of

lines long, making it extremely difficult and risky to

change. We need to re-architect how we prevent

unauthorized network traffic.”

Feedback from Operations helps our product teams better

see and understand the downstream impact of decisions they

make. When there are negative outcomes, we can make the

changes necessary to prevent them in the future. Operations

feedback will also likely identify more problems and defects

that should be �xed—it may even uncover larger

architectural issues that need to be addressed.

e additional work identi�ed during project team

retrospectives falls into the broad category of improvement

work, such as �xing defects, refactoring, and automating

manual work. Product managers and project managers may

want to defer or deprioritize improvement work in favor of

customer features.

However, we must remind everyone that improvement of

daily work is more important than daily work itself, and that

all teams must have dedicated capacity for this (e.g., reserving

20% of all capacity for improvement work, scheduling one

day per week or one week per month, etc.). Without doing

this, the productivity of the team will almost certainly grind

to a halt under the weight of its own technical and process

debt.

Make Relevant Ops Work Visible on Shared Kanban Boards

Often, Development teams will make their work visible on a

project board or kanban board. It’s far less common, however,

for work boards to show the relevant Operations work that

must be performed in order for the application to run

successfully in production, where customer value is actually

created. As a result, we are not aware of necessary Operations

work until it becomes an urgent crisis, jeopardizing deadlines

or creating a production outage.

Because Operations is part of the product value stream,

we should put the Operations work that is relevant to

product delivery on the shared kanban board. is enables us

to more clearly see all the work required to move our code

into production, as well as keep track of all Operations work

required to support the product. Furthermore, it enables us

to see where Ops work is blocked and where work needs

escalation, highlighting areas where we may need

improvement.

Kanban boards are an ideal tool to create visibility, and

visibility is a key component in properly recognizing and

integrating Ops work into all the relevant value streams.

When we do this well, we achieve user-oriented outcomes,

regardless of how we’ve drawn our organization charts.

CASE STUDY: NEW TO

SECOND EDITION

Be�er Ways of Working at Nationwide Building Society

(2020)

Nationwide Building Society is the world’s largest

building society, with sixteen million members. In 2020,

Patrick Eltridge, Chief Operating Officer, and Janet

Chapman, Mission Leader, discussed their continued

journey to be�er ways of working at the DevOps

Enterprise Summit London-Virtual.

As a larger, older organization, Nationwide faces a

number of challenges. As Patrick Eltridge puts it, they

are part of a “hyper fluid and hyper competitive

environment.”12

Like many organizations, they started their

transformation in the IT department mainly around

change activities and using Agile practices in IT delivery,

seeing measurable but limited benefits.

“We deliver well and reliably, but slowly. We need to

get from start to finish more quickly and to surprise and

delight our members not only with the quality of our

products and services, but the speed at which they are

delivered,” Janet Chapman said.13

In 2020, with the help of Sooner Safer Happier author

Jonathan Smart and his team from Deloi�e, Nationwide

was in the middle of an organizational pivot from a

functional organization to one fully aligned to member

needs underpinned by stronger Agile and DevOps

practices. One key objective was to bring run and

change activities together into long-lived and

multiskilled teams. They called it their Member Mission

Operating Model.

Typical ways of working in most large organizations

are the result of years of evolution. Specialist functions

are gathered into departments and the work passes

between them with queues at every step.

“Currently, when we process a mortgage application

it gets broken into parts among all the functional teams.

We all do our bits and then reassemble the outcome,

test it to see what we got wrong, and then see if it fits

the needs of the member and fix it if it doesn’t,” Eltridge

explains. “And when we want to improve performance or

reduce cost, we seek to improve the efficiency or reduce

the capacity of the teams of individual specialists. What

that way of working doesn’t do is optimize the flow of

work to our members from begininng to end, right

across and through those teams.”14

To optimize flow, Nationwide made it easy for

members to tell them what they wanted. Then they

brought together all the people and tools necessary into

a single team to make that “want.” Everyone on the

team can see all the work, and they are able to organize

themselves in a way that smooths the path of the work

and optimizes the delivery of the work in a safe,

controlled, and sustainable manner. If a bo�leneck does

appear, they add people or change the process. What

they don’t do is add a queuing mechanism as a first

response. By moving from functional teams in silos to

long-lived, multi-skilled teams, Nationwide has seen

throughput improve dramatically, as well as

improvements in risk and quality and lower costs.

Figure 8.1: Functional Teams in Silos vs. Long-Lived,

Multiskilled Teams

Source: Chapman, Janet, and Patrick Eltridge. “On A Mission: Nationwide

Building Society,” presentation at DevOps Enterprise Summit-Virtual

London 2020. https://videolibrary.doesvirtual.com/?video=432109857.

They had a unique opportunity to place these new

ways of working to the test with the COVID-19

pandemic. As the UK went into lockdown, Nationwide’s

call centers were quickly swamped due to staff

absences. They needed to enable contact center staff to

work from home and enable branch center staff to take

calls to relieve pressure.

This was an initiative that Nationwide had been

discussing for years. But it would have taken nine

https://videolibrary.doesvirtual.com/?video=432109857

months and cost more than £10 million, so it never got

done.15

With an urgent need to reduce call center volumes,

Nationwide gathered everyone necessary around the

same “virtual” table and worked through, in real time,

how to enable an agent to work from home. It took the

team only four days to complete.

Next, they looked to see if they could direct calls to

the branch network, but they couldn’t without the

recording necessary by regulation. So instead, they only

directed calls to branch networks that didn’t need the

regulatory recording, which helped a bit. A small

improvement on a longer path. This, again, took about

four days. But over the weekend, they were able to solve

the recording problem as well. Another four days.

“Aerwards, I asked the team how many corners

we’d cut? How many policies we’d breached? How many

security holes we’d now need to plug? They looked at

me and said, ‘Well, none. We had all the specialists we

needed to do it properly right there. We stuck to the

policies, it’s secure, it’s fine,’” explains Eltridge.16

“When everyone you need is aligned on the most

important task at the same time, you get real pace and

real collaboration on solving problems. That, in essence,

is what a mission is to us,” says Eltridge.17

Nationwide is now aligning people from their old,

functional teams into these long-lived, multiskilled

mission teams, as well as their underlying value streams.

They are evolving governance and financial

management to support local decision-making and

continuous funding of consistent teams. They are

integrating run and change activities into these long-

lived teams to enable continuous improvement of the

work. And they’re applying systems thinking to identify

and remove failure demand from these flows.

“I think of Agile as our means and DevOps as our

target. This is very much a work in progress, and we’re

consciously allowing the issues and opportunity to

merge as we work to implement this. We’re not

following a templated approach,” explains Eltridge. “It is

most important to people to go on this journey of

learning and unlearning, oen with coaches, but not

having the answers handed to them by a central team of

experts.”18

Beyond simply bringing Dev and Ops together,

Nationwide brought together teams with all the

skills necessary to bring value to market—

moving from multiple functional teams to single,

multiskilled teams. This illustrates the power of

breaking down silos in order to move faster.

Conclusion

roughout this chapter, we explored ways to integrate

Operations into the daily work of Development, and we

looked at how to make Dev work more visible to Operations.

To accomplish this, we explored three broad strategies,

including creating self-service capabilities to enable

developers in service teams to be productive, embedding Ops

engineers into the service teams, and assigning Ops liaisons

to the service teams when embedding Ops engineers is not

possible. Lastly, we described how Ops engineers can

integrate with the Dev team through inclusion in their daily

work, including daily standups, planning, and retrospectives.

* e terms platform, shared service, and toolchain will be used interchangeably in

this book.

† Ernest Mueller observed, “At Bazaarvoice, the agreement was that these platform

teams that make tools accept requirements but not work from other teams.”5

‡ Aer all, designing a system upfront for reuse is a common and expensive failure

mode of many enterprise architectures.

§ However, if we discover that the entire Development organization merely sits at

their desks all day without ever talking to each other, we may have to find a

different way to engage them, such as buying them lunch, starting a book club,

taking turns doing “lunch and learn” presentations, or having conversations to

discover what everyone’s biggest problems are, so that we can figure out how we

can make their lives better.

¶ Scrum is an agile development methodology, described as “a flexible, holistic

product development strategy where a development team works as a unit to reach

a common goal.”11 It was first fully described by Ken Schwaber and Mike Beedle

in the book Agile Soware Development with Scrum. In this book, we use the term

“agile development” or “iterative development” to encompass the various

techniques used by special methodologies such as Agile and Scrum.

I
PART II CONCLUSION

n Part II: Where to Start, we explored a variety of ways to

think about DevOps transformations, including how to

choose where to start, relevant aspects of architecture and

organizational design, and how to organize our teams. We

also explored how to integrate Operations into all aspects of

Development planning and daily work.

In Part III: e First Way: e Technical Practices of Flow,

we will now start to explore how to implement the speci�c

technical practices to realize the principles of �ow, which

enable the fast �ow of work from Development to Operations

without causing chaos and disruption downstream.

Additional Resources

For more information on team organization or overall

organizational structures, check out Team Topologies:

Organizing Business and Technology Teams for Fast Flow from

Matthew Skelton and Manuel Pais (itrevolution.com/team-

topologies/).

e Individual Contributors: From Holdouts to Holdups paper is

an excellent resource for working with individuals in

organizations who are resistant to change

(ITRevolution.com/Resources).

Expanding Pockets of Greatness: Spreading DevOps Horizontally

in Your Organization provides clear strategies to help you build

momentum and go from a few islands of DevOps goodness to

a tipping point where the entire organization embraces

common DevOps methods (ITRevolution.com/Resources).

In Paula rasher’s 2020 DevOps Enterprise Summit

presentation, “Interactive Virtual Value Stream Mapping:

Visualizing Flow in a Virtual World,” she shares her

experience running value stream mapping workshops for

http://itrevolution.com/team-topologies/
http://itrevolution.com/Resources
http://itrevolution.com/Resources

different organizations and teams, and walks you through the

steps of setting up a virtual workshop and running one for

your organization (videolibrary.doesvirtual.com/?

video=466912411).

http://videolibrary.doesvirtual.com/?video=466912411

I
PART II I : INTRODUCTION

n Part III, our goal is to create the technical practices and

architecture required to enable and sustain the fast �ow of

work from Development into Operations without causing

chaos and disruption to the production environment or our

customers. is means we need to reduce the risk associated

with deploying and releasing changes into production. We

will do this by implementing a set of technical practices

known as continuous delivery.

Continuous delivery includes creating the foundations of

our automated deployment pipeline, ensuring that we have

automated tests that constantly validate that we are in a

deployable state, having developers integrate their code into

trunk daily, and architecting our environments and code to

enable low-risk releases. Primary focuses within these

chapters include:

• creating the foundation of our deployment pipeline

• enabling fast and reliable automated testing

• enabling and practicing continuous integration and

testing

• automating, enabling, and architecting for low-risk

releases

Implementing these practices reduces the lead time to get

production-like environments, enables continuous testing

that gives everyone fast feedback on their work, enables small

teams to safely and independently develop, test, and deploy

their code into production, and makes production

deployments and releases a routine part of daily work.

Furthermore, integrating the objectives of QA and

Operations into everyone’s daily work reduces �re�ghting,

hardship, and toil while making people more productive and

increasing joy in the work we do. We not only improve

outcomes, but our organization is also better able to respond

to change and achieve its mission to win in the marketplace.

I

9
CREATE THE FOUNDATIONS OF OUR
DEPLOYMENT PIPELINE

n order to create fast and reliable �ow from Dev to Ops,

we must ensure that we always use production-like

environments at every stage of the value stream.

Furthermore, these environments must be created in an

automated manner, ideally on demand from scripts and

con�guration information stored in version control and

entirely self-serviced, without any manual work required

from Operations. Our goal is to ensure that we can re-create

the entire production environment based on what’s in version

control.

The Enterprise Data Warehouse Story (2009)

All too often, the only time we discover how our applications

perform in anything resembling a production-like

environment is during production deployment—far too late

to correct problems without the customer being adversely

impacted. An illustrative example of the spectrum of

problems that can be caused by inconsistently built

applications and environments is the Enterprise Data

Warehouse program led by Em Campbell-Pretty at a large

Australian telecommunications company in 2009. Campbell-

Pretty became the general manager and business sponsor for

this $200 million program, inheriting responsibility for all

the strategic objectives that relied upon this platform.

In her presentation at the 2014 DevOps Enterprise

Summit, Campbell-Pretty explained,

At the time, there were ten streams of work in progress,

all using waterfall processes, and all ten streams were

significantly behind schedule. Only one of the ten

streams had successfully reached user acceptance

testing [UAT] on schedule, and it took another six

months for that stream to complete UAT, with the

resulting capability falling well short of business

expectations. is under performance was the main

catalyst for the department’s Agile transformation.1

However, after using Agile for nearly a year, they

experienced only small improvements, still falling short of

their needed business outcomes.

Campbell-Pretty held a program-wide retrospective and

asked, “After re�ecting on all our experiences over the last

release, what are things we could do that would double our

productivity?”2

roughout the project, there was grumbling about the

“lack of business engagement.” However, during the

retrospective, “improve availability of environments” was at

the top of the list.3 In hindsight, it was obvious—

Development teams needed provisioned environments in

order to begin work and were often waiting up to eight weeks.

ey created a new integration and build team that was

responsible for “building quality into our processes, instead

of trying to inspect quality after the fact.”4 It was initially

composed of database administrators (DBAs) and automation

specialists tasked with automating their environment

creation process. e team quickly made a surprising

discovery: only 50% of the source code in their development

and test environments matched what was running in

production.5

Campbell-Pretty observed, “Suddenly, we understood why

we encountered so many defects each time we deployed our

code into new environments. In each environment, we kept

�xing forward, but the changes we made were not being put

back into version control.”6

e team carefully reverse-engineered all the changes that

had been made to the different environments and put them

all into version control. ey also automated their

environment creation process so they could repeatedly and

correctly spin up environments.

Campbell-Pretty described the results, noting that “the

time it took to get a correct environment went from eight

weeks to one day. is was one of the key adjustments that

allowed us to hit our objectives concerning our lead time, the

cost to deliver, and the number of escaped defects that made

it into production.”7

Campbell-Pretty’s story shows the variety of problems

that can be traced back to inconsistently constructed

environments and changes not being systematically put back

into version control.

roughout the remainder of this chapter, we will discuss

how to build the mechanisms that will enable us to create

environments on demand, expand the use of version control

to everyone in the value stream, make infrastructure easier to

rebuild than to repair, and ensure that developers run their

code in production-like environments along every stage of

the software development life cycle.

Enable On-Demand Creation of Dev, Test, and

Production Environments

As seen in the enterprise data warehouse example above, one

of the major contributing causes of chaotic, disruptive, and

sometimes even catastrophic software releases is that the

�rst time we ever get to see how our application behaves in a

production-like environment with realistic load and

production data sets is during the release.* In many cases,

development teams may have requested test environments in

the early stages of the project.

However, when there are long lead times required for

Operations to deliver test environments, teams may not

receive them soon enough to perform adequate testing.

Worse, test environments are often miscon�gured or are so

different from our production environments that we still end

up with large production problems despite having performed

pre-deployment testing.

In this step, we want developers to run production-like

environments on their own workstations, created on demand

and self-serviced. By doing this, developers can run and test

their code in production-like environments as part of their

daily work, providing early and constant feedback on the

quality of their work.

Instead of merely documenting the speci�cations of the

production environment in a document or on a wiki page, we

create a common build mechanism that creates all of our

environments, such as for development, test, and production.

By doing this, anyone can get production-like environments

in minutes, without opening up a ticket, let alone having to

wait weeks.†

To do this requires de�ning and automating the creation

of our known, good environments, which are stable, secure,

and in a risk-reduced state, embodying the collective

knowledge of the organization. All our requirements are

embedded, not in documents or as knowledge in someone’s

head, but codi�ed in our automated environment build

process.

Instead of Operations manually building and con�guring

the environment, we can use automation for any or all of the

following:

• copying a virtualized environment (e.g., a VMware

image, running a Vagrant script, booting an Amazon

Machine Image �le in EC2)

• building an automated environment creation process

that starts from “bare metal” (e.g., PXE install from a

baseline image)

• using “infrastructure as code” con�guration

management tools (e.g., Puppet, Chef, Ansible, Salt,

CFEngine, etc.)

• using automated operating system con�guration tools

(e.g., Solaris Jumpstart, Red Hat Kickstart, Debian

preseed)

• assembling an environment from a set of virtual

images or containers (e.g., Docker, Kubernetes)

• spinning up a new environment in a public cloud (e.g.,

Amazon Web Services, Google App Engine, Microsoft

Azure), private cloud (for example, using a stack based

on Kubernetes), or other PaaS (platform as a service,

such as OpenStack or Cloud Foundry, etc.)

Because we’ve carefully de�ned all aspects of the

environment ahead of time, we are not only able to create

new environments quickly but also ensure that these

environments will be stable, reliable, consistent, and secure.

is bene�ts everyone.

Operations bene�ts from this capability to create new

environments quickly, because automation of the

environment creation process enforces consistency and

reduces tedious, error-prone manual work. Furthermore,

Development bene�ts by being able to reproduce all the

necessary parts of the production environment to build, run,

and test their code on their workstations. By doing this, we

enable developers to �nd and �x many problems, even at the

earliest stages of the project, as opposed to during

integration testing or, worse, in production.

By providing developers an environment they fully

control, we enable them to quickly reproduce, diagnose, and

�x defects, safely isolated from production services and other

shared resources. ey can also experiment with changes to

the environments, as well as to the infrastructure code that

creates it (e.g., con�guration management scripts), further

creating shared knowledge between Development and

Operations.‡

Create Our Single Repository of Truth for the Entire

System

In the previous step, we enabled the on-demand creation of

the development, test, and production environments. Now

we must ensure that all parts of our software system can be

con�gured and managed using a source of truth that is

maintained in version control.

For decades, comprehensive use of version control has

increasingly become a mandatory practice of individual

developers and development teams.§ A version control

system records changes to �les or sets of �les stored within

the system.9 is can be source code, assets, or other

documents that may be part of a software development

project. We make changes in groups called commits or

revisions. Each revision, along with metadata such as who

made the change and when, is stored within the system in

one way or another, allowing us to commit, compare, merge,

and restore past revisions. It also minimizes risks by

establishing a way to revert objects in production to previous

versions.¶

When developers put all their application source �les and

con�gurations in version control, it becomes the single

repository of truth that contains the precise intended state of

the system. However, because delivering value to the

customer requires both our code and the environments they

run in, we need our environments in version control as well.

In other words, version control is for everyone in our value

stream, including QA, Operations, Infosec, as well as

developers.

By putting all production artifacts into version control,

our version control repository enables us to repeatedly and

reliably reproduce all components of our working software

system—this includes our applications and production

environment, as well as all of our pre-production

environments.

To ensure that we can restore production service

repeatedly and predictably (and, ideally, quickly) even when

catastrophic events occur, we must check in the following

assets to our shared version control repository:

• all application code and dependencies (e.g., libraries,

static content, etc.)

• any script used to create database schemas,

application reference data, etc.

• all the environment creation tools and artifacts

described in the previous step (e.g., VMware or AMI

images, Puppet, Chef, or Ansible scripts.)

• any �le used to create containers (e.g., Docker, Rocket,

or Kubernetes de�nitions or composition �les)

• all supporting automated tests and any manual test

scripts

• any script that supports code packaging, deployment,

database migration, and environment provisioning

• all project artifacts (e.g., requirements

documentation, deployment procedures, release

notes, etc.)

• all cloud con�guration �les (e.g., AWS Cloudformation

templates, Microsoft Azure Stack DSC �les,

OpenStack HEAT)

• any other script or con�guration information required

to create infrastructure that supports multiple

services (e.g., enterprise service buses, database

management systems, DNS zone �les, con�guration

rules for �rewalls, and other networking devices)**

We may have multiple repositories for different types of

objects and services, where they are labeled and tagged

alongside our source code. For instance, we may store large

virtual machine images, ISO �les, compiled binaries, and so

forth in artifact repositories (e.g., Nexus, Artifactory).

Alternatively, we may put them in blob stores (e.g., Amazon

S3 buckets) or put Docker images into Docker registries, and

so forth. We will also create and store a cryptographic hash of

these objects at build time and validate this hash at deploy

time to ensure they haven’t been tampered with.

It is not sufficient to merely be able to re-create any

previous state of the production environment; we must also

be able to re-create the entire pre-production and build

processes as well. Consequently, we need to put into version

control everything relied upon by our build processes,

including our tools (e.g., compilers, testing tools) and the

environments they depend upon.††

Research highlights the importance of version control.

e 2014–2019 State of DevOps Reports led by co-author Dr.

Nicole Forsgren show that the use of version control for all

production artifacts was a higher predictor for software

delivery performance, which in turn predicted organizational

performance.

ese �ndings underscore the critical role version control

plays in the software development process. We now know

when all application and environment changes are recorded

in version control; it enables us to not only quickly see all

changes that might have contributed to a problem but also

provides the means to roll back to a previous known, running

state, allowing us to more quickly recover from failures.

But why does using version control for our environments

predict software delivery and contribute to organizational

performance better than using version control for our code?

Because in almost all cases, there are orders of magnitude

more con�gurable settings in our environment than in our

code. Consequently, it is the environment that needs to be in

version control the most.‡‡

Version control also provides a means of communication

for everyone working in the value stream—having

Development, QA, Infosec, and Operations able to see each

other’s changes helps reduce surprises, creates visibility into

each other’s work, and helps build and reinforce trust. (See

Appendix 7.) Of course, this means that all teams must use

the same version control system.

Make Infrastructure Easier to Rebuild Than to Repair

When we can quickly rebuild and re-create our applications

and environments on demand, we can also quickly rebuild

them instead of repairing them when things go wrong.

Although this is something that almost all large-scale web

operations do (i.e., operations with more than one thousand

servers), we should also adopt this practice even if we have

only one server in production.

Bill Baker, a distinguished engineer at Microsoft, said that

we used to treat servers like pets: “You name them and when

they get sick, you nurse them back to health. [Now] servers

are [treated] like cattle. You number them and when they get

sick, you shoot them.”11

By having repeatable environment creation systems, we

are able to easily increase capacity by adding more servers

into rotation (i.e., horizontal scaling). We also avoid the

disaster that inevitably results when we must restore service

after a catastrophic failure of irreproducible infrastructure,

created through years of undocumented and manual

production changes.

To ensure consistency of our environments, whenever we

make production changes (con�guration changes, patching,

upgrading, etc.), those changes need to be replicated

everywhere in our production and pre-production

environments, as well as in any newly created environments.

Instead of manually logging into servers and making

changes, we must make changes in a way that ensures all

changes are replicated everywhere automatically and that all

our changes are put into version control.

Depending on the life cycle of the con�guration in

question, we can rely on our automated con�guration

systems to ensure consistency (e.g., Puppet, Chef, Ansible,

Salt, Bosh, etc.), use a service mesh or con�guration

management service to propagate runtime con�guration

(Istio, AWS Systems Manager Parameter Store etc.), or we can

create new virtual machines or containers from our

automated build mechanism and deploy them into

production, destroying the old ones or taking them out of

rotation.§§

e latter pattern is what has become known as

immutable infrastructure, where manual changes to the

production environment are no longer allowed—the only way

production changes can be made is to put the changes into

version control and re-create the code and environments

from scratch.13 By doing this, no variance is able to creep into

production.

To prevent uncontrolled con�guration variances, we may

disable remote logins to production servers¶¶ or routinely kill

and replace production instances,*** ensuring that manually

applied production changes are removed. is action

motivates everyone to put their changes in the correct way

through version control. By applying such measures, we are

systematically reducing the ways our infrastructure can drift

from our known, good states (e.g., con�guration drift, fragile

artifacts, works of art, snow�akes, and so forth).

Also, we must keep our pre-production environments up

to date. Speci�cally, we need developers run on our most

current environment. Developers will often want to keep

running on older environments because they fear

environment updates may break existing functionality.

However, we want to update them frequently so we can �nd

problems at the earliest part of the life cycle,††† and research

from GitHub in the 2020 State of Octoverse report shows that

keeping your software current is the best way to secure your

codebase.15

CASE STUDY: NEW TO

SECOND EDITION

How a Hotel Company Ran $30B of Revenue in

Containers (2020)

While at one of the largest hotel companies, Dwayne

Holmes, then Senior Director of DevSecOps and

Enterprise Platforms, and his team containerized all of

the company’s revenue generating systems, which

collectively supports over $30 billion in annual

revenue.16

Originally, Dwayne came from the financial sector.

He was struggling to find more things to automate to

increase productivity. At a local meetup on Ruby of Rails,

he stumbled onto containers. For Dwayne, containers

were a clear solution for accelerating business value and

increasing productivity.

Containers satisfy three key things: they abstract

infrastructure (the dial-tone principal—you pick up the

phone and it works without needing to know how it

works), specialization (Operations could create

containers that developers could use over and over and

over again), and automation (containers can be built

over and over again and everything will just work).17

With his love of containers now fully embedded,

Dwayne took a chance by leaving his comfortable

position to become a contractor for one of the largest

hotel companies who was ready to go all in on

containers.18

With a small, cross-functional team made up of

three developers and three infrastructure professionals.

Their goal was to talk about evolution versus revolution

to totally change the way the enterprise worked.19

There were lots of learnings along the way, as

Dwayne outlines in his 2020 DevOps Enterprise Summit

presentation, but ultimately the project was

successful.20

For Dwayne and the hotel company, containers are

the way. They’re cloud portable. They’re scalable. Health

checks are built in. They could test for latency versus

CPU, and certs are no longer in the application or

managed by developers. Additionally, they are now able

to focus on circuit breaking, they have APM built-in,

operate zero trust, and images are very small due to

good container hygiene and sidecars being used to

enhance everything.21

During his time at the hotel company, Dwayne and

his team supported over three thousand developers

across multiple service providers. In 2016, microservices

and containers were running in production. In 2017 $1

billion was processed in containers, 90% of new

applications were in containers, and they had

Kubernetes running in production. In 2018, they were

one of the top five largest production Kubernetes

clusters by revenue. And by 2020, they performed

thousands of builds and deployments per day and were

running Kubernetes in five cloud providers.22

Containers have become a fast-growing method

of making infrastructure easier to rebuild and

reuse than to repair, ultimately accelerating the

delivery of business value and developer

productivity.

Modify Our Definition of Development “Done” to

Include Running in Production-Like Environments

Now that our environments can be created on demand and

everything is checked into version control, our goal is to

ensure that these environments are being used in the daily

work of Development. We need to verify that our application

runs as expected in a production-like environment long

before the end of the project or before our �rst production

deployment.

Most modern software development methodologies

prescribe short and iterative development intervals, as

opposed to the big-bang approach (i.e., the waterfall model).

In general, the longer the interval between deployment, the

worse the outcomes. For example, in the Scrum methodology,

a sprint is a time-boxed development interval (maximum one

month but typically less) within which we are required to be

done, widely de�ned as when we have “working and

potentially shippable code.”

Our goal is to ensure that Development and QA are

routinely integrating the code with production-like

environments at increasingly frequent intervals throughout

the project. We do this by expanding the de�nition of “done”

beyond just correct code functionality: at the end of each

development interval, or more frequently, we have

integrated, tested, working, and potentially shippable code,

demonstrated in a production-like environment.

In other words, we will only accept development work as

done when it can be successfully built, deployed, and

con�rmed that it runs as expected in a production-like

environment, instead of merely when a developer believes it

to be done. Ideally, it runs under a production-like load with a

production-like dataset, long before the end of a sprint. is

prevents situations where a feature is called done merely

because a developer can run it successfully on their laptop but

nowhere else.

By having developers write, test, and run their own code

in a production-like environment, the majority of the work to

successfully integrate our code and environments happens

during our daily work, instead of at the end of the release. By

the end of our �rst interval, our application can be

demonstrated to run correctly in a production-like

environment, with the code and environment having been

integrated together many times over, ideally with all the steps

automated (no manual tinkering required).

Better yet, by the end of the project, we will have

successfully deployed and run our code in production-like

environments hundreds or even thousands of times, giving

us con�dence that most of our production deployment

problems have been found and �xed.

Ideally, we use the same tools, such as monitoring,

logging, and deployment, in our pre-production

environments as we do in production. By doing this, we have

familiarity and experience that will help us smoothly deploy

and run, as well as diagnose and �x, our service when it is in

production.

By enabling Development and Operations to gain a shared

mastery of how the code and environment interact, and

practicing deployments early and often, we signi�cantly

reduce the deployment risks that are associated with

production code releases. is also allows us to eliminate an

entire class of operational and security defects and

architectural problems that are usually caught too late in the

project to �x.

Conclusion

e fast �ow of work from Development to Operations

requires that anyone can get production-like environments

on demand. By allowing developers to use production-like

environments even at the earliest stages of a software

project, we signi�cantly reduce the risk of production

problems later. is is one of many practices that

demonstrate how Operations can make developers far more

productive. We enforce the practice of developers running

their code in production-like environments by incorporating

it into the de�nition of “done.”

Furthermore, by putting all production artifacts into

version control, we have a “single source of truth” that allows

us to re-create the entire production environment in a quick,

repeatable, and documented way, using the same

development practices for Operations work as we do for

Development work. And by making production infrastructure

easier to rebuild than to repair, we make resolving problems

easier and faster, as well as making it easier to expand

capacity. Having these practices in place sets the stage for

enabling comprehensive test automation, which is explored

in the next chapter.

* In this context, environment is defined as everything in the application stack

except for the application, including the databases, operating systems,

networking, virtualization, and all associated configurations.

† Most developers want to test their code, and they have oen gone to extreme

lengths to obtain test environments to do so. Developers have been known to

reuse old test environments from previous projects (oen years old) or ask

someone who has a reputation of being able to find one—they just won’t ask

where it came from because, invariably, someone somewhere is now missing a

server.

‡ Ideally, we should be finding errors before integration testing, when it is too late

in the testing cycle to create fast feedback for developers. If we are unable to do

so, we likely have an architectural issue that needs to be addressed. Designing

our systems for testability, to include the ability to discover most defects using a

nonintegrated virtual environment on a development workstation, is a key part

of creating an architecture that supports fast flow and feedback.

§ e first version control system was likely UPDATE on the CDC6600 (1969).

Later came SCCS (1972), CMS on VMS (1978), RCS (1982), and so forth.8

¶ One may observe that version control fulfills some of the ITIL constructs of the

Definitive Media Library (DML) and Configuration Management Database

(CMDB), inventorying everything required to re-create the production

environment.

** In future steps, we will also check into version control all the supporting

infrastructure we build, such as the automated test suites and our continuous

integration and deployment pipeline infrastructure.

†† Anyone who has done a code migration for an ERP system (e.g., SAP, Oracle

Financials, etc.) may recognize the following situation: When a code migration

fails, it is rarely due to a coding error. Instead, it’s far more likely that the

migration failed due to some difference in the environments, such as between

Development and QA or QA and Production.

‡‡ At Netflix, the average age of Netflix AWS instance is twenty-four days, with

60% being less than one week old.10

§§ Or allow it only in emergencies, ensuring that a copy of the console log is

automatically emailed to the operations team.12

¶¶ e entire application stack and environment can be bundled into containers,

which can enable unprecedented simplicity and speed across the entire

deployment pipeline.

*** Kelly Shortridge has written more about this in her book Security Chaos

Engineering.

††† e term integration has many slightly different usages in Development and

Operations. In Development, integration typically refers to code integration,

which is the integration of multiple code branches into trunk in version control.

In continuous delivery and DevOps, integration testing refers to the testing of

the application in a production-like environment or integrated test

environment.14

A

10
ENABLE FAST AND RELIABLE AUTOMATED
TESTING

t this point, Development and QA are using production-

like environments in their daily work, and we are

successfully integrating and running our code into a

production-like environment for every feature that is

accepted, with all changes checked into version control.

However, we are likely to get undesired outcomes if we �nd

and �x errors in a separate test phase, executed by a separate

QA department only after all development has been

completed. And, if testing is only performed a few times a

year, developers learn about their mistakes months after they

introduced the change that caused the error. By then, the link

between cause and effect has likely faded, solving the

problem requires �re�ghting and archaeology, and, worst of

all, our ability to learn from the mistake and integrate it into

our future work is signi�cantly diminished.

CONTINUOUS

LEARNING

Does better observability mean less testing?

As distributed systems have become

commonplace, many organizations have

rightly invested in better observability for

their production systems. is has led some

people to infer that better observability means

less need to focus on validating software prior

to deployment. is is a misconception:

incidents in production are costly and hard to

debug, even with excellent instrumentation

and tooling. Distributed systems are

sufficiently complex that, if anything, it is even

more important to test individual services for

correctness prior to deployment.

Automated testing addresses another signi�cant and

unsettling problem. Gary Gruver observes that “without

automated testing, the more code we write, the more time

and money is required to test our code—in most cases, this is

a totally unscalable business model for any technology

organization.”1

The Story of Google’s Web Server (2005)

Although Google now undoubtedly exempli�es a culture that

values automated testing at scale, this wasn’t always the case.

In 2005, when Mike Bland joined the organization, deploying

to Google.com was often extremely problematic, especially

for the Google Web Server (GWS) team.

As Bland explains,

http://google.com/

e GWS team had gotten into a position in the mid

2000s where it was extremely difficult to make changes

to the web server, a C++ application that handled all

requests to Google’s home page and many other Google

web pages. As important and prominent as Google.com

was, being on the GWS team was not a glamorous

assignment—it was often the dumping ground for all

the different teams who were creating various search

functionality, all of whom were developing code

independently of each other. ey had problems such as

builds and tests taking too long, code being put into

production without being tested, and teams checking in

large, infrequent changes that conflicted with those

from other teams.2

e consequences of this were large—search results could

have errors or become unacceptably slow, affecting thousands

of search queries on Google.com. e potential result was not

only loss of revenue but customer trust.

Bland describes how it affected developers deploying

changes: “Fear became the mind-killer. Fear stopped new

team members from changing things because they didn’t

understand the system. But fear also stopped experienced

people from changing things because they understood it all

too well.”3* Bland was part of the group that was determined

to solve this problem.

GWS team lead Bharat Mediratta believed automated

testing would help. As Bland describes,

ey created a hard line: no changes would be accepted

into GWS without accompanying automated tests. ey

set up a continuous build and religiously kept it passing.

ey set up test coverage monitoring and ensured that

their level of test coverage went up over time. ey

http://google.com/
http://google.com/

wrote up policy and testing guides and insisted that

contributors both inside and outside the team follow

them.5

e results were startling. As Bland notes,

GWS quickly became one of the most productive teams

in the company, integrating large numbers of changes

from different teams every week while maintaining a

rapid release schedule. New team members were able to

make productive contributions to this complex system

quickly, thanks to good test coverage and code health.

Ultimately, their radical policy enabled the Google.com

homepage to quickly expand its capabilities and thrive

in an amazingly fast-moving and competitive

technology landscape.6

But GWS was still a relatively small team in a large and

growing company. e team wanted to expand these practices

across the entire organization. us, the testing grouplet was

born, an informal group of engineers who wanted to elevate

automated testing practices across the entire organization.

Over the next �ve years, they helped replicate this culture of

automated testing across all of Google.7†

As Rachel Potvin and Josh Levenberg describe, Google’s

systems have evolved to automatically test thousands of

commits from thousands of developers every day:

Google has an automated testing infrastructure that

initiates a rebuild of all affected dependencies on almost

every change committed to the repository. If a change

creates widespread build breakage, a system is in place

to automatically undo the change. To reduce the

incidence of bad code being committed in the first place,

the highly customizable Google “presubmit”

http://google.com/

infrastructure provides automated testing and analysis

of changes before they are added to the codebase. A set

of global presubmit analyses are run for all changes, and

code owners can create custom analyses that run only

on directories within the codebase they specify.8

Eran Messeri, an engineer in the Google Developer

Infrastructure group, notes, “Large failures happen

occasionally. You’ll get a ton of instant messages and

engineers knocking on your door. [When the deployment

pipeline is broken,] we need to �x it right away because

developers can no longer commit code. Consequently, we

want to make it very easy to roll back.”9

What enables this system to work at Google is

engineering professionalism and a high-trust culture that

assumes everyone wants to do a good job, as well as the

ability to detect and correct issues quickly. Messeri explains,

ere are no hard policies at Google, such as, “If you

break production for more than ten projects, you have

an SLA to fix the issue within ten minutes.” Instead,

there is mutual respect between teams and an implicit

agreement that everyone does whatever it takes to keep

the deployment pipeline running. We all know that one

day, I’ll break your project by accident; the next day, you

may break mine.10

What the teams at Google achieved has made the

company one of the most productive technology

organizations in the world. By 2016, automated testing and

continuous integration at Google enabled over four thousand

small teams to work together and stay productive, all

simultaneously developing, integrating, testing, and

deploying their code into production. Most of Google’s code is

in a single shared repository, made up of billions of �les, all

being continuously built and integrated, and in 2014

approximately 15 million lines of code were changed in

approximately 250,000 �les in the Google repository on a

weekly basis.11 Some other impressive statistics on their code

infrastructure (as of 2016) include:12

• typically 40,000 code commits per day (16,000 from

engineers and 24,000 from automated systems)

• 50,000 builds per day (on weekdays, this may exceed

90,000)

• 120,000 automated test suites

• 75 million test cases run daily

• over 99% of �les stored in Google’s version control

system are visible to all full-time Google engineers

• codebase includes approximately one billion �les and

has a history of approximately 35 million commits

• the repository includes approximately two billion lines

of code in nine million unique source �les and is 86 TB

of data

While Google-scale test automation may not be the goal

for many companies, the bene�ts of test automation are

possible for everyone. In the remainder of this chapter, we

will go through the continuous integration practices required

to achieve similar outcomes.

Continuously Build, Test, and Integrate Our Code and

Environments

Our goal is to build quality into our product, even at the

earliest stages, by having developers build automated tests as

part of their daily work. is creates a fast feedback loop that

helps developers �nd problems early and �x them quickly

when there are the fewest constraints (e.g., time, resources).

In this step, we create automated test suites that increase

the frequency of integration and testing of our code and our

environments from periodic to continuous. We do this by

building our deployment pipeline, which will perform

integration of our code and environments and trigger a series

of tests every time a new change is checked into version

control.‡ (See Figure 10.1.)

Figure 10.1: e Deployment Pipeline

Source: Humble and Farley, Continuous Delivery, 3.

e deployment pipeline, �rst de�ned by Jez Humble and

David Farley in their book Continuous Delivery: Reliable

Software Releases rough Build, Test, and Deployment

Automation, ensures that all code checked into version control

is automatically built and tested in a production-like

environment.14 By doing this, we �nd any build, test, or

integration errors as soon as a change is introduced, enabling

us to �x them immediately. Done correctly, this allows us to

always be assured that we are in a deployable and shippable

state.

To achieve this, we must create automated build and test

processes that run in dedicated environments. is is critical

for the following reasons:

• Our build and test process can run all the time,

independent of the work habits of individual

engineers.

• A segregated build and test process ensures that we

understand all the dependencies required to build,

package, run, and test our code (i.e., removing the “it

worked on the developer’s laptop, but it broke in

production” problem).

• We can package our application to enable the

repeatable installation of code and con�gurations into

an environment (e.g., on Linux RPM, yum, npm; on

Windows, OneGet; alternatively framework-speci�c

packaging systems can be used, such as EAR and WAR

�les for Java, gems for Ruby, etc.).

• Instead of putting our code in packages, we may

choose to package our applications into deployable

containers (e.g., Docker, Rkt, LXD, AMIs).

• Environments can be made more production-like in a

way that is consistent and repeatable (e.g., compilers

are removed from the environment, debugging �ags

are turned off, etc.).

Our deployment pipeline validates after every change that

our code successfully integrates into a production-like

environment. It becomes the platform through which testers

request and certify builds during acceptance testing and

usability testing, and it will run automated performance and

security validations.

Furthermore, it will be used to create self-service builds to

UAT (user acceptance testing), integration testing, and

security testing environments. In future steps, as we evolve

the deployment pipeline, it will also be used to manage all

activities required to take our changes from version control to

deployment.

A variety of tools have been designed to provide

deployment pipeline functionality, many of them open source

(e.g., Jenkins, Go.cd, Concourse, Bamboo, Microsoft Team

Foundation Server, TeamCity, Gitlab CI, as well as cloud-

based solutions such as CircleCi and TravisCI).§

We begin the deployment pipeline by running the commit

stage, which builds and packages the software, runs

automated unit tests, and performs additional validation

such as static code analysis, duplication and test coverage

analysis, and checking style.¶ If successful, this triggers the

acceptance stage, which automatically deploys the packages

created in the commit stage into a production-like

environment and runs the automated acceptance tests.

Once changes are accepted into version control, we want

to package our code only once so that the same packages are

used to deploy code throughout our entire deployment

pipeline. By doing this, code will be deployed into our

integrated test and staging environments in the same way

that it is deployed into production. is reduces variances

that can avoid downstream errors that are difficult to

diagnose (e.g., using different compilers, compiler �ags,

library versions, or con�gurations).**

e goal of the deployment pipeline is to provide

everyone in the value stream, especially developers, the

fastest possible feedback that a change has taken us out of a

deployable state. is could be a change to our code, to any of

our environments, to our automated tests, or even to the

deployment pipeline infrastructure (e.g., a Jenkins

con�guration setting).

As a result, our deployment pipeline infrastructure

becomes as foundational for our development processes as

our version control infrastructure. Our deployment pipeline

also stores the history of each code build, including

information about which tests were performed on which

build, which builds have been deployed to which

environment, and what the test results were. In combination

with the information in our version control history, we can

quickly determine what caused our deployment pipeline to

break and, likely, how to �x the error. is information also

helps us ful�ll evidence requirements for audit and

compliance purposes, with evidence being automatically

generated as part of daily work.

Now that we have a working deployment pipeline

infrastructure, we must create our continuous integration

practices, which require three capabilities:

• a comprehensive and reliable set of automated tests

that validate we are in a deployable state

• a culture that “stops the entire production line” when

our validation tests fail

• developers working in small batches on trunk rather

than long-lived feature branches

In the next section, we describe why fast and reliable

automated testing is needed and how to build it.

Build a Fast and Reliable Automated Validation Test

Suite

In the previous step, we started to create the automated

testing infrastructure that validates that we have a green build

(i.e., whatever is in version control is in a buildable and

deployable state). To underscore why we need to perform this

integration and testing step continuously, consider what

happens when we only perform this operation periodically,

such as during a nightly build process.

Suppose we have a team of ten developers, with everyone

checking their code into version control daily, and a developer

introduces a change that breaks our nightly build and test job.

In this scenario, when we discover the next day that we no

longer have a green build, it will take minutes, or more likely

hours, for our development team to �gure out which change

caused the problem, who introduced it, and how to �x it.

Worse, suppose the problem wasn’t caused by a code

change, but was due to a test environment issue (e.g., an

incorrect con�guration setting somewhere). e development

team may believe that they �xed the problem because all the

unit tests pass, only to discover that the tests will still fail

later that night.

Further complicating the issue, ten more changes will

have been checked into version control by the team that day.

Each of these changes has the potential to introduce more

errors that could break our automated tests, further

increasing the difficulty of successfully diagnosing and �xing

the problem.

In short, slow and periodic feedback kills, especially for

larger development teams. e problem becomes even more

daunting when we have tens, hundreds, or even thousands of

other developers checking their changes into version control

each day. e result is that our builds and automated tests are

frequently broken, and developers even stop checking their

changes into version control (“Why bother, since the builds

and tests are always broken?”). Instead, they wait to integrate

their code at the end of the project, resulting in all the

undesired outcomes of large batch size, big-bang integrations,

and production deployments.††

To prevent this scenario, we need fast automated tests

that run within our build and test environments whenever a

new change is introduced into version control. In this way, we

can �nd and �x any problems immediately, as the Google Web

Server example demonstrated. By doing this, we ensure our

batches remain small, and, at any given point in time, we

remain in a deployable state.

In general, automated tests fall into one of the following

categories, from fastest to slowest:

• Unit tests: ese typically test a single method, class,

or function in isolation, providing assurance to the

developer that their code operates as designed. For

many reasons, including the need to keep our tests

fast and stateless, unit tests often “stub out”

databases and other external dependencies (e.g.,

functions are modi�ed to return static, prede�ned

values, instead of calling the real database).‡‡

• Acceptance tests: ese typically test the application

as a whole to provide assurance that a higher level of

functionality operates as designed (e.g., the business

acceptance criteria for a user story, the correctness of

an API), and that regression errors have not been

introduced (i.e., we broke functionality that was

previously operating correctly). Humble and Farley

de�ne the difference between unit and acceptance

testing as, “e aim of a unit test is to show that a

single part of the application does what the

programmer intends it to… . e objective of

acceptance tests is to prove that our application does

what the customer meant it to, not that it works the

way its programmers think it should.”15 After a build

passes our unit tests, our deployment pipeline runs it

against our acceptance tests. Any build that passes our

acceptance tests is then typically made available for

manual testing (e.g., exploratory testing, UI testing,

etc.), as well as for integration testing.

• Integration tests: Integration tests are where we

ensure that our application correctly interacts with

other production applications and services, as

opposed to calling stubbed out interfaces. As Humble

and Farley observe, “much of the work in the SIT

[system integration testing] environment involves

deploying new versions of each of the applications

until they all cooperate. In this situation the smoke

test is usually a fully �edged set of acceptance tests

that run against the whole application.”16 Integration

tests are performed on builds that have passed our

unit and acceptance tests. Because integration tests

are often brittle, we want to minimize the number of

integration tests and �nd as many of our defects as

possible during unit and acceptance testing. e

ability to use virtual or simulated versions of remote

services when running acceptance tests becomes an

essential architectural requirement.

When facing deadline pressures, developers may stop

creating unit tests as part of their daily work, regardless of

how we’ve de�ned “done.” To detect this, we may choose to

measure and make visible our test coverage (as a function of

number of classes, lines of code, permutations, etc.), maybe

even failing our validation test suite when it drops below a

certain level (e.g., when less than 80% of our classes have unit

tests).§§

Martin Fowler observes that, in general,

a ten-minute build [and test process] is perfectly within

reason… . [We first] do the compilation and run tests

that are more localized unit tests with the database

completely stubbed out. Such tests can run very fast,

keeping within the ten minute guideline. However any

bugs that involve larger scale interactions, particularly

those involving the real database, won’t be found. e

second stage build runs a different suite of tests

[acceptance tests] that do hit the real database and

involve more end-to-end behavior. is suite may take a

couple of hours to run.17

Catch Errors as Early in Our Automated Testing as

Possible

A speci�c design goal of our automated test suite is to �nd

errors as early in the testing phase as possible. is is why we

run faster-running automated tests (e.g., unit tests) before

slower-running automated tests (e.g., acceptance and

integration tests), which are both run before any manual

testing.

Another corollary of this principle is that any errors

should be found with the fastest category of testing possible.

If most of our errors are found in our acceptance and

integration tests, the feedback we provide to developers is

orders of magnitude slower than with unit tests—and

integration testing requires using scarce and complex

integration test environments, which can only be used by one

team at a time, further delaying feedback.

Furthermore, not only are errors detected during

integration testing difficult and time-consuming for

developers to reproduce, even validating that it has been �xed

is difficult (e.g., a developer creates a �x but then needs to

wait four hours to learn whether the integration tests now

pass).

erefore, whenever we �nd an error with an acceptance

or integration test, we should create a unit test that could

�nd the error faster, earlier, and cheaper. Martin Fowler

described the notion of the “ideal testing pyramid,” where we

are able to catch most of our errors using our unit tests.18

(See Figure 10.2.) In contrast, in many testing programs the

inverse is true, where most of the investment is in manual

and integration testing.

Figure 10.2: e Ideal and Non-Ideal Automated Testing

Pyramids

Source: Martin Fowler, “TestPyramid,” MartinFowler.com.

If we �nd that unit or acceptance tests are too difficult

and expensive to write and maintain, it’s likely that we have

an architecture that is too tightly coupled, where strong

separation between our module boundaries no longer exists

(or maybe never existed). In this case, we will need to create a

more loosely coupled system so modules can be

independently tested without integration environments.

Acceptance test suites for even the most complex applications

that run in minutes are possible.

Ensure Tests Run Quickly (In Parallel, If Necessary)

Because we want our tests to run quickly, we need to design

our tests to run in parallel, potentially across many different

http://martinfowler.com/

servers. We may also want to run different categories of tests

in parallel. For example, when a build passes our acceptance

tests, we may run our performance testing in parallel with

our security testing, as shown in Figure 10.3. We may or may

not allow manual exploratory testing until the build has

passed all our automated tests—which enables faster

feedback but may also allow manual testing on builds that

will eventually fail.

Figure 10.3: Running Automated and Manual Tests in

Parallel

Source: Humble and Farley, Continuous Delivery, Kindle edition, location 3868.

We make any build that passes all our automated tests

available to use for exploratory testing, as well as for other

forms of manual or resource-intensive testing (such as

performance testing). We want to do all such testing as

frequently as is possible and practical, either continually or

on a schedule.

Any tester (which includes all our developers) should use

the latest build that has passed all the automated tests, as

opposed to waiting for developers to �ag a speci�c build as

ready to test. By doing this, we ensure that testing happens as

early in the process as possible.

Write Our Automated Tests before We Write the Code

(“Test-Driven Development”)

One of the most effective ways to ensure we have reliable

automated testing is to write those tests as part of our daily

work, using techniques such as test-driven development (TDD)

and acceptance test-driven development (ATDD). is is when

we begin every change to the system by �rst writing an

automated test that validates the expected behavior fails, and

then we write the code to make the tests pass.

is technique was developed by Kent Beck in the late

1990s as part of Extreme Programming, and has the

following three steps:19

• Ensure the tests fail. “Write a test for the next bit of

functionality you want to add.” Check in.

• Ensure the tests pass. “Write the functional code until

the test passes.” Check in.

• “Refactor both new and old code to make it well

structured.” Ensure the tests pass. Check in again.

ese automated test suites are checked into version

control alongside our code, which provides a living, up-to-

date speci�cation of the system. Developers wishing to

understand how to use the system can look at this test suite

to �nd working examples of how to use the system’s API.¶¶

Automate as Many of Our Manual Tests as Possible

Our goal is to �nd as many code errors through our

automated test suites, reducing our reliance on manual

testing. In her 2013 presentation at Flowcon titled “On the

Care and Feeding of Feedback Cycles,” Elisabeth Hendrickson

observed, “Although testing can be automated, creating

quality cannot. To have humans executing tests that should

be automated is a waste of human potential.”21

By doing this, we enable all our testers (which, of course,

includes developers) to work on high-value activities that

cannot be automated, such as exploratory testing or

improving the test process itself.

However, merely automating all our manual tests may

create undesired outcomes—we do not want automated tests

that are unreliable or generate false positives (i.e., tests that

should have passed because the code is functionally correct

but failed due to problems such as slow performance, causing

timeouts, uncontrolled starting state, or unintended state

due to using database stubs or shared test environments).22

Unreliable tests that generate false positives create

signi�cant problems: they waste valuable time (e.g., forcing

developers to re-run the test to determine whether there is

actually a problem), increase the overall effort of running and

interpreting our test results, and often result in stressed

developers ignoring test results entirely or turning off the

automated tests in favor of focusing on creating code.

e result is always the same: we detect the problems

later, the problems are more difficult to �x, and our

customers have worse outcomes, which in turn creates stress

across the value stream.

To mitigate this, a small number of reliable, automated

tests are almost always preferable over a large number of

manual or unreliable automated tests. erefore, we focus on

automating only the tests that genuinely validate the

business goals we are trying to achieve. If abandoning a test

results in production defects, we should add it back to our

manual test suite, with the ideal of eventually automating it.

As Gary Gruver, formerly VP of Quality Engineering,

Release Engineering, and Operations for Macys.com,

described, “For a large retailer e-commerce site, we went from

running 1,300 manual tests that we ran every ten days to

running only ten automated tests upon every code commit—

it’s far better to run a few tests that we trust than to run tests

that aren’t reliable. Over time, we grew this test suite to

having hundreds of thousands of automated tests.”23

In other words, we start with a small number of reliable

automated tests and add to them over time, creating an ever-

increasing level of assurance that we will quickly detect any

changes to the system that take us out of a deployable state.

http://macys.com/

CONTINUOUS

LEARNING

Some may think that writing automated tests

isn’t possible when writing features in a two-

week sprint. But Angie Jones, Java champion

and test automation expert, rightly points out

that without automation, teams that only ship

features without test automation are shipping

risk and building up technical debt.24

She outlines three strategies for teams to

ship both features and test automation in their

sprints:

• Collaborate: By collaborating with the

business, testers, and developers, you

ensure you automate the right things and

have others contributing in parallel.

• Automate strategically: Using a hybrid

approach can help teams think about test

coverage, using APIs and smart design to

get coverage across their scenarios.

• Build incrementally: Start by building

what you need. As you continue to build

additional features, adding more tests

using a TDD (test-driven development)

framework will help you think like both a

tester and a developer, and will help you

write more testable code.

Integrate Performance Testing into Our Test Suite

All too often, we discover that our application performs

poorly during integration testing or after it has been

deployed to production. Performance problems, such as when

things slow down over time, are often difficult to detect,

going unnoticed until it is too late (e.g., database tables

without an index). And many problems are difficult to solve,

especially when they are caused by architectural decisions we

made or unforeseen limitations of our networking, database,

storage, or other systems.

Our goal is to write and run automated performance tests

that validate our performance across the entire application

stack (code, database, storage, network, virtualization, etc.)

as part of the deployment pipeline so we detect problems

early, when the �xes are cheapest and fastest.

By understanding how our application and environments

behave under a production-like load, we can do a far better

job at capacity planning, as well as detecting conditions such

as:

• when our database query times grow non-linearly

(e.g., we forget to create database indexes, and page

load goes from one hundred minutes to thirty

seconds)

• when a code change causes the number of database

calls, storage use, or network traffic to increase ten-

fold

When we have acceptance tests that are able to be run in

parallel, we can use them as the basis of our performance

tests. For instance, suppose we run an e-commerce site and

have identi�ed “search” and “checkout” as two high-value

operations that must perform well under load. To test this,

we may run thousands of parallel search acceptance tests

simultaneously with thousands of parallel checkout tests.

Due to the large amount of compute and I/O that is

required to run performance tests, creating a performance

testing environment can easily be more complex than

creating the production environment for the application

itself. Because of this, we may build our performance testing

environment at the start of any project and ensure that we

dedicate whatever resources are required to build it early and

correctly. To �nd performance problems early, we should log

performance results and evaluate each performance run

against previous results. For instance, we might fail the

performance tests if performance deviates more than 2%

from the previous run.

Integrate Non-Functional Requirements Testing into Our

Test Suite

In addition to testing that our code functions as designed and

performs under production-like loads, we also want to

validate every other attribute of the system we care about.

ese are often called non-functional requirements, which

include availability, scalability, capacity, security, and so forth.

Many of these requirements are achieved through the

correct con�guration of our environments, so we must also

build automated tests to validate that our environments have

been built and con�gured properly. For example, we want to

enforce the consistency and correctness of the following,

which many non-functional requirements rely upon (e.g.,

security, performance, availability):

• supporting applications, databases, libraries, etc.

• language interpreters, compilers, etc.

• operating systems (e.g., audit logging enabled, etc.)

• all dependencies

When we use infrastructure as code con�guration

management tools (e.g., Terraform, Puppet, Chef, Ansible,

Salt, Bosh), we can use the same testing frameworks that we

use to test our code to also test that our environments are

con�gured and operating correctly (e.g., encoding

environment tests into cucumber or gherkin tests). We

should also run any security hardening checks as part of our

automated tests to ensure that everything is con�gured

securely and correctly (e.g., server-spec).

At any point in time, our automated tests can validate

that we have a green build and that we are in a deployable

state. Now, we must create an Andon cord so that when

someone breaks the deployment pipeline, we take all

necessary steps to get back into a green build state.

Pull Our Andon Cord When the Deployment Pipeline

Breaks

When we have a green build in our deployment pipeline, we

have a high degree of con�dence that our code and

environment will operate as designed when we deploy our

changes into production.

In order to keep our deployment pipeline in a green state,

we will create a virtual Andon cord, similar to the physical

one in the Toyota Production System. Whenever someone

introduces a change that causes our build or automated tests

to fail, no new work is allowed to enter the system until the

problem is �xed. And if someone needs help to resolve the

problem, they can bring in whatever help they need.

When our deployment pipeline is broken, at a minimum,

we notify the entire team of the failure, so anyone can either

�x the problem or roll-back the commit. We may even

con�gure the version control system to prevent further code

commits until the �rst stage (i.e., builds and unit tests) of the

deployment pipeline is back in a green state. If the problem

was due to an automated test generating a false positive

error, the offending test should either be rewritten or

removed.*** Every member of the team should be empowered

to roll back the commit to get back into a green state.

Randy Shoup, former engineering director for Google App

Engine, wrote about the importance of bringing the

deployment back into a green state.

We prioritize the team goals over individual goals—

whenever we help someone move their work forward,

we help the entire team. is applies whether we’re

helping someone fix the build or an automated test, or

even performing a code review for them. And of course,

we know that they’ll do the same for us, when we need

help. is system worked without a lot of formality or

policy—everyone knew that our job was not just “write

code,” but it was to “run a service.” is is why we

prioritized all quality issues, especially those related to

reliability and scaling, at the highest level, treating them

as Priority 0 “show-stopper” problems. From a systems

perspective, these practices keep us from slipping

backwards.25

When later stages of the deployment pipeline fail, such as

acceptance tests or performance tests, instead of stopping all

new work, we will have developers and testers on call who are

responsible for �xing these problems immediately. ey

should also create new tests that run at an earlier stage in the

deployment pipeline to catch any future regressions. For

example, if we discover a defect in our acceptance tests, we

should write a unit test to catch the problem. Similarly, if we

discover a defect in exploratory testing, we should write a

unit or acceptance test.

To increase the visibility of automated test failures, we

should create highly visible indicators so that the entire team

can see when our build or automated tests are failing. Many

teams have created highly visible build lights that get

mounted on a wall, indicating the current build status, or

other fun ways of telling the team the build is broken,

including lava lamps, playing a voice sample or song, klaxons,

traffic lights, and so forth.

In many ways, this step is more challenging than creating

our builds and test servers—those were purely technical

activities, whereas this step requires changing human

behavior and incentives. However, continuous integration

and continuous delivery require these changes, as we explore

in the next section.

Why We Need to Pull the Andon Cord

e consequence of not pulling the Andon cord and

immediately �xing any deployment pipeline issues results in

the all too familiar problem where it becomes ever more

difficult to bring our applications and environment back into

a deployable state. Consider the following situation:

• Someone checks in code that breaks the build or our

automated tests, but no one �xes it.

• Someone else checks in another change onto the

broken build, which also doesn’t pass our automated

tests—but no one sees the failing test results that

would have enabled us to see the new defect, let alone

to actually �x it.

• Our existing tests don’t run reliably, so we are very

unlikely to build new tests. (Why bother? We can’t

even get the current tests to run.)

When this happens, our deployments to any environment

become as unreliable as when we had no automated tests or

were using a waterfall method, where the majority of our

problems are being discovered in production. e inevitable

outcome of this vicious cycle is that we end up where we

started, with an unpredictable “stabilization phase” that

takes weeks or months where our whole team is plunged into

crisis, trying to get all our tests to pass, taking shortcuts

because of deadline pressures, and adding to our technical

debt.†††

CONTINUOUS

LEARNING

Data backs up the importance of automated

testing. Research from DORA’s 2019 State of

DevOps Report shows that teams that use

automated testing achieve superior continuous

integration. Smart investments in automated

testing improve our continuous integration.

e report calls out that “automated tests can

be a signi�cant force-multiplier when used

across several teams in an organization” and

can contribute to elite performance.27

e essential components of automated

testing include tests that are:

• Reliable: A failure signals a real defect,

and when tests pass, developers are

con�dent the code will run successfully in

production.

• Consistent: Each code commit should

trigger a set of tests, providing feedback

to developers.

• Fast and reproducible: Tests should

complete in ten minutes or less so

developers can quickly reproduce and �x

failures in personal environments.

• Inclusive: Testing shouldn’t just be for

testers, and the best outcomes are seen

when developers practice test-driven

development.

e importance of exploratory and manual

testing is also supported by research. DORA’s

2018 State of DevOps Report found that testing

throughout the software delivery life cycle

contributes to continuous delivery outcomes

and elite performance. In addition to

automated testing, this includes:28

• continuously reviewing and improving

test suites to better �nd defects and keep

complexity/cost under control

• allowing testers to work alongside

developers throughout the software

development and delivery process

• performing manual test activities such as

exploratory testing, usability testing, and

acceptance testing throughout the

delivery process

Conclusion

In this chapter, we have created a comprehensive set of

automated tests to con�rm that we have a green build that is

still in a passing and deployable state. We have organized our

test suites and testing activities into a deployment pipeline.

We have also created the cultural norm of doing whatever it

takes to get back into a green build state if someone

introduces a change that breaks any of our automated tests.

By doing this, we set the stage for implementing

continuous integration, which allows many small teams to

independently and safely develop, test, and deploy code into

production, delivering value to customers.

* Bland described that at Google, one of the consequences of having so many

talented developers was that it created “imposter syndrome,” a term coined by

psychologists to informally describe people who are unable to internalize their

accomplishments. Wikipedia states that “despite external evidence of their

competence, those exhibiting the syndrome remain convinced that they are

frauds and do not deserve the success they have achieved. Proof of success is

dismissed as luck, timing, or as a result of deceiving others into thinking they

are more intelligent and competent than they believe themselves to be.”4

† ey created training programs, pushed the famous Testing on the Toilet

newsletter (which they posted in the bathrooms), created the Test Certified

roadmap and certification program, and led multiple “fix-it” days (i.e.,

improvement blitzes), which helped teams improve their automated testing

processes so they could replicate the amazing outcomes that the GWS team was

able to achieve.

‡ In Development, continuous integration oen refers to the continuous

integration of multiple code branches into trunk and ensuring that it passes

unit tests. However, in the context of continuous delivery and DevOps,

continuous integration also mandates running on production-like

environments and passing acceptance and integration tests. Jez Humble and

David Farley disambiguate these by calling the latter CI+. In this book,

continuous integration will always refer to CI+ practices.13

§ If we create containers in our deployment pipeline and have an architecture

such as microservices, we can enable each developer to build immutable

artifacts where developers assemble and run all the service components in an

environment identical to production on their workstation. is enables

developers to build and run more tests on their workstation instead of on

testing servers, giving us even faster feedback on their work.

¶ We may even require that these tools are run before changes are accepted into

version control (e.g., get pre-commit hooks). We may also run these tools

within the developer integrated development environment (IDE; where the

developer edits, compiles, and runs code), which creates an even faster feedback

loop.

** We can also use containers, such as Docker, as the packaging mechanism.

Containers enable the capability to write once, run anywhere. ese containers

are created as part of our build process and can be quickly deployed and run in

any environment. Because the same container is run in every environment, we

help enforce the consistency of all our build artifacts.

†† It is exactly this problem that led to the development of continuous integration

practices.

‡‡ ere is a broad category of architectural and testing techniques used to handle

the problems of tests requiring input from external integration points, including

“stubs,” “mocks,” “service virtualization,” and so forth. is becomes even more

important for acceptance and integration testing, which place far more reliance

on external states.

§§ We should do this only when our teams already value automated testing—this

type of metric is easily gamed by developers and managers.

¶¶ Nachi Nagappan, E. Michael Maximilien, and Laurie Williams (from Microso

Research, IBM Almaden Labs, and North Carolina State University,

respectively) conducted a study that showed teams using TDD produced code

60%–90% better in terms of defect density than non-TDD teams, while taking

only 15%–35% longer.20

*** If the process for rolling back the code is not well known, a potential

countermeasure is to schedule a pair programmed rollback so that it can be

better documented.

††† is is sometimes called the water-Scrum-fall anti-pattern, which refers to when

an organization claims to be using Agile-like practices, but, in reality, all testing

and defect fixing are performed at the end of the project.26

I

11
ENABLE AND PRACTICE CONTINUOUS
INTEGRATION

n the previous chapter, we created automated testing

practices to ensure that developers get fast feedback on

the quality of their work. is becomes even more important

as we increase the number of developers and the number of

branches they work on in version control.

e ability to “branch” in version control systems was

created primarily to enable developers to work on different

parts of the software system in parallel without the risk of

individual developers checking in changes that could

destabilize or introduce errors into trunk (sometimes also

called master or mainline).*

However, the longer developers are allowed to work in

their branches in isolation, the more difficult it becomes to

integrate and merge everyone’s changes back into trunk. In

fact, integrating those changes becomes exponentially more

difficult as we increase the number of branches and the

number of changes in each code branch.

Integration problems result in a signi�cant amount of

rework to get back into a deployable state, including

con�icting changes that must be manually merged or merges

that break our automated or manual tests, usually requiring

multiple developers to successfully resolve. And because

integration has traditionally been done at the end of the

project, when it takes far longer than planned, we are often

forced to cut corners to make the release date.

is causes another downward spiral: when merging code

is painful, we tend to do it less often, making future merges

even worse. Continuous integration was designed to solve

this problem by making merging into trunk a part of

everyone’s daily work.

HP’s LaserJet Firmware (2014)

e surprising breadth of problems that continuous

integration solves, as well as the solutions themselves, are

exempli�ed in Gary Gruver’s experience as the director of

engineering for HP’s LaserJet Firmware division, which

builds the �rmware that runs all their scanners, printers, and

multifunction devices.1

e team consisted of four hundred developers

distributed across the US, Brazil, and India. Despite the size

of their team, they were moving far too slowly. For years, they

were unable to deliver new features as quickly as the business

needed.

Gruver described the problem thus, “Marketing would

come to us with a million ideas to dazzle our customer, and

we’d just tell them, ‘Out of your list, pick the two things you’d

like to get in the next six to twelve months.’”2

ey were only completing two �rmware releases per year,

with the majority of their time spent porting code to support

new products. Gruver estimated that only 5% of their time

was spent creating new features—the rest of the time was

spent on non-productive work associated with their technical

debt, such as managing multiple code branches and manual

testing, as shown below:3

• 20% on detailed planning (their poor throughput and

high lead times were misattributed to faulty

estimation, and so, hoping to get a better answer, they

were asked to estimate the work in greater detail)

• 25% spent porting code, all maintained on separate

code branches

• 10% spent integrating their code between developer

branches

• 15% spent completing manual testing

Gruver and his team created a goal of increasing the time

spent on innovation and new functionality by a factor of ten.

e team hoped this goal could be achieved through:4

• continuous integration and trunk-based development

• signi�cant investment in test automation

• creation of a hardware simulator so tests could be run

on a virtual platform

• the reproduction of test failures on developer

workstations

• a new architecture to support running all printers off

a common build and release

Before this, each product line would require a new code

branch, with each model having a unique �rmware build with

capabilities de�ned at compile time. † e new architecture

would have all developers working in a common code base,

with a single �rmware release supporting all LaserJet models

built off of trunk, with printer capabilities being established

at runtime in an XML con�guration �le.

Four years later, they had one codebase supporting all

twenty-four HP LaserJet product lines being developed on

trunk. Gruver admits trunk-based development requires a big

mindset shift.6 Engineers thought it would never work, but

once they started they couldn’t imagine ever going back. Over

the years, several engineers left HP, and they would call to tell

Gruver about how backward development was in their new

companies, pointing out how difficult it is to be effective and

release good code when there is no feedback that continuous

integration gives them.7

However, trunk-based development required them to

build more effective automated testing. Gruver observed,

“Without automated testing, continuous integration is the

fastest way to get a big pile of junk that never compiles or

runs correctly.”8 In the beginning, a full manual testing cycle

required six weeks.

In order to have all �rmware builds automatically tested,

they invested heavily in their printer simulators and created a

testing farm in six weeks—within a few years, two thousand

printer simulators ran on six racks of servers that would load

the �rmware builds from their deployment pipeline. eir

continuous integration (CI) system ran their entire set of

automated unit, acceptance, and integration tests on builds

from trunk, just as described in the previous chapter.

Furthermore, they created a culture that halted all work

anytime a developer broke the deployment pipeline, ensuring

that developers quickly brought the system back into a green

state.9

Automated testing created fast feedback that enabled

developers to quickly con�rm that their committed code

actually worked. Unit tests would run on their workstations

in minutes, and three levels of automated testing would run

on every commit as well as every two and four hours. e

�nal full regression testing would run every twenty-four

hours. During this process, they:10

• reduced the build to one build per day, eventually

doing ten to �fteen builds per day

• went from around twenty commits per day performed

by a “build boss” to over one hundred commits per day

performed by individual developers

• enabled developers to change or add between seventy-

�ve thousand and one-hundred thousand lines of code

each day

• reduced regression test times from six weeks to one

day

is level of productivity could never have been

supported prior to adopting continuous integration, when

merely creating a green build required days of heroics. e

resulting business bene�ts were astonishing:11

• Time spent on driving innovation and writing new

features increased from 5% of developer time to 40%.

• Overall development costs were reduced by

approximately 40%.

• Programs under development were increased by about

140%.

• Development costs per program were decreased by

78%.

What Gruver’s experience shows is that after

comprehensive use of version control, continuous integration

is one of the most critical practices that enable the fast �ow

of work in our value stream, enabling many development

teams to independently develop, test, and deliver value.

Nevertheless, continuous integration remains a controversial

practice.

e remainder of this chapter describes the practices

required to implement continuous integration, as well as how

to overcome common objections.

Small Batch Development and What Happens When We

Commit Code to Trunk Infrequently

As we’ve described, whenever changes are introduced into

version control that cause our deployment pipeline to fail, we

quickly swarm the problem to �x it, bringing our deployment

pipeline back into a green state.

However, signi�cant problems result when developers

work in long-lived private branches (also known as “feature

branches”), only merging back into trunk sporadically,

resulting in a large batch-size of changes. As described in the

HP LaserJet example, what results is signi�cant chaos and

rework in order to get their code into a releasable state.

Jeff Atwood, founder of the Stack Over�ow site and

author of the Coding Horror blog, observes that while there

are many branching strategies, they can all be put on the

following spectrum:12

• Optimize for individual productivity: Every single

person on the project works in their own private

branch. Everyone works independently, and nobody

can disrupt anyone else’s work; however, merging

becomes a nightmare. Collaboration becomes almost

comically difficult—every person’s work has to be

painstakingly merged with everyone else’s work to see

even the smallest part of the complete system.

• Optimize for team productivity: Everyone works in

the same common area. ere are no branches, just a

long, unbroken straight line of development. Commits

are simple, but each commit can break the entire

project and bring all progress to a screeching halt.

Atwood’s observation is absolutely correct—stated more

precisely, the required effort to successfully merge branches

back together increases exponentially as the number of

branches increases. e problem lies not only in the rework

this “merge hell” creates, but also in the delayed feedback we

receive from our deployment pipeline. For instance, instead

of performance testing against a fully integrated system

happening continuously, it will likely happen only at the end

of our process.

Furthermore, as we increase the rate of code production

and add more developers, we increase the probability that any

given change will impact someone else and increase the

number of developers who will be impacted when someone

breaks the deployment pipeline.

Here is one last troubling side effect of large batch size

merges: when merging is difficult, we become less able and

motivated to improve and refactor our code, because

refactorings are more likely to cause rework for everyone else.

When this happens, we are more reluctant to modify code

that has dependencies throughout the codebase, which is

(tragically) where we may have the highest payoffs.

is is how Ward Cunningham, developer of the �rst wiki,

originally described technical debt: “when we do not

aggressively refactor our codebase, it becomes more difficult

to make changes and to maintain over time, slowing down

the rate at which we can add new features.”13

Solving this problem was one of the primary reasons

behind the creation of continuous integration and trunk-

based development practices, to optimize for team

productivity over individual productivity. We’ll go into a little

more detail about adopting trunk-based development

practices in the next section of this book.

Adopt Trunk-Based Development Practices

Our countermeasure to large batch size merges is to institute

continuous integration and trunk-based development

practices, where all developers check their code into trunk at

least once per day. Checking in code this frequently reduces

our batch size to the work performed by our entire developer

team in a single day. e more frequently developers check

their code into trunk, the smaller the batch size and the

closer we are to the theoretical ideal of single-piece �ow.

Frequent code commits to trunk mean we can run all

automated tests on our software system as a whole and

receive alerts when a change breaks some other part of the

application or interferes with the work of another developer.

And because we can detect merge problems when they are

small, we can correct them faster.

We may even con�gure our deployment pipeline to reject

any commits (e.g., code or environment changes) that take us

out of a deployable state. is method is called gated commits,

where the deployment pipeline �rst con�rms that the

submitted change will successfully merge, build as expected,

and pass all the automated tests before actually being merged

into trunk. If not, the developer will be noti�ed, allowing

corrections to be made without impacting anyone else in the

value stream.

e discipline of daily code commits also forces us to

break our work down into smaller chunks while still keeping

trunk in a working, releasable state. Version control becomes

an integral mechanism of how the team communicates with

each other—everyone has a better shared understanding of

the system, is aware of the state of the deployment pipeline,

and can help each other when it breaks. As a result, we

achieve higher quality and faster deployment lead times.

Having these practices in place, we can now again modify

our de�nition of “done” (modi�cation is in bold text): “At the

end of each development interval, we must have integrated,

tested, working, and potentially shippable code,

demonstrated in a production-like environment, created

from trunk using a one-click process, and validated with

automated tests.”

Adhering to this revised de�nition of done helps us

further ensure the ongoing testability and deployability of

the code we’re producing. By keeping our code in a deployable

state, we are able to eliminate the common practice of having

a separate test and stabilization phase at the end of the

project.

CASE

STUDY

Continuous Integration at Bazaarvoice (2012)

Ernest Mueller, who helped engineer the DevOps

transformation at National Instruments, later helped

transform the development and release processes at

Bazaarvoice in 2012.14 Bazaarvoice supplies customer-

generated content (e.g., reviews, ratings) for thousands

of retailers, such as Best Buy, Nike, and Walmart.

At that time, Bazaarvoice had $120 million in

revenue and was preparing for an IPO.‡ The business was

primarily driven by the Bazaarvoice Conversations

application, a monolithic Java application comprising

nearly five million lines of code dating back to 2006,

spanning fieen thousand files. The service ran on 1,200

servers across four data centers and multiple cloud

service providers.15

Partially as a result of switching to an Agile

development process and two-week development

intervals, there was a tremendous desire to increase

release frequency from their current ten-week

production release schedule. They had also started to

decouple parts of their monolithic application, breaking

it down into microservices.

Their first a�empt at a two-week release schedule

was in January of 2012. Mueller observed, “It didn’t go

well. It caused massive chaos, with forty-four

production incidents filed by our customers. The major

reaction from management was basically ‘Let’s not ever

do that again.’”16

Mueller took over the release processes shortly

aerward, with the goal of doing biweekly releases

without causing customer downtime. The business

objectives for releasing more frequently included

enabling faster A/B testing (described in upcoming

chapters) and increasing the flow of features into

production. Mueller identified three core problems:17

• Lack of test automation made any level of

testing during the two-week intervals

inadequate to prevent large-scale failures.

• The version control branching strategy allowed

developers to check in new code right up to

the production release.

• The teams running microservices were also

performing independent releases, which were

oen causing issues during the monolith

release.

Mueller concluded that the monolithic

Conversations application deployment process needed

to be stabilized, which required continuous integration.

In the six weeks that followed, developers stopped

doing feature work to focus instead on writing

automated testing suites, including unit tests in JUnit,

regression tests in Selenium, and ge�ing a deployment

pipeline running in TeamCity. “By running these tests all

the time, we felt like we could make changes with some

level of safety. And most importantly, we could

immediately find when someone broke something, as

opposed to discovering it only aer it’s in production.”18

They also changed to a trunk/branch release model,

where every two weeks they created a new dedicated

release branch, with no new commits allowed to that

branch unless there was an emergency—all changes

would be worked through a sign-off process, either per-

ticket or per-team through their internal wiki. That

branch would go through a QA process, which would

then be promoted into production. The improvements

to predictability and quality of the releases were

startling:19

• January 2012 release: forty-four customer

incidents (continuous integration effort

begins)

• March 6, 2012 release: five days late, five

customer incidents

• March 22, 2012 release: on time, one customer

incident

• April 5, 2012 release: on time, zero customer

incidents

Mueller further described how successful this effort

was:

We had such success with releases every two

weeks, we went to weekly releases, which

required almost no changes from the

engineering teams. Because releases became

so routine, it was as simple as doubling the

number of releases on the calendar and

releasing when the calendar told us to.

Seriously, it was almost a non-event. The

majority of changes required were in our

customer service and marketing teams, who

had to change their processes, such as

changing the schedule of their weekly

customer emails to make sure customers

knew that feature changes were coming.

Aer that, we started working toward our

next goals, which eventually led to speeding

up our testing times from three plus hours to

less than an hour, reducing the number of

environments from four to three (Dev, Test,

Production, eliminating Staging), and moving

to a full continuous delivery model where we

enable fast, one-click deployments.20

By systematically identifying and addressing

three core problems, this case study illustrates

the power of practices like feature freezes (in this

case to work on automated testing) and using

trunk-based development to enable small batch

sizes and accelerate release cycles.

CONTINUOUS

LEARNING

Continuous integration makes it easy for

teams to get fast feedback, and it contributes

to continuous delivery and elite performance.

Research shows this capability is important,

with the 2014–2019 State of DevOps Reports

backing up the stories shared in this chapter

with data.

Trunk-based development is likely the

most controversial practice discussed in this

book. However, data from DORA’s 2016 and

2017 State of DevOps Reports is clear: trunk-

based development predicts higher

throughput, better stability, and better

availability if they follow these practices:21

• have three or fewer active branches in the

application’s code repository

• merge branches to trunk at least daily

• don’t have code freezes or integration

phases

e bene�ts of continuous integration and

trunk-based development extend beyond our

ability to deliver software. DORA’s research

shows that it contributes to higher job

satisfaction and lower rates of burnout.22

Conclusion

In this chapter, we discussed the automation capabilities and

behavioral practices that will allow us to ship our “done” code

quickly and often. We have created the cultural norm of

developing on trunk and checking in code at least once a day.

ese practices and norms allow us to scale, accepting code

from several or hundreds of developers. We will be able to

ship code at any time, without painful code freezes or

integration phases.

While convincing developers may be difficult at �rst, once

they see the extraordinary bene�ts, they will likely become

lifetime converts, as the HP LaserJet and Bazaarvoice

examples illustrate. Continuous integration practices set the

stage for the next step, which is automating the deployment

process and enabling low-risk releases.

* Branching in version control has been used in many ways, but is typically used to

divide work between team members by release, promotion, task, component,

technology platforms, and so forth.

† Compile flags (#define and #ifdef) were used to enable/disable code execution for

presence of copiers, paper size supported, and so on.5

‡e production release was delayed due to their (successful) IPO.

C

12
AUTOMATE AND ENABLE LOW-RISK
RELEASES

huck Rossi was the director of release engineering at

Facebook for a decade. One of his responsibilities was

overseeing the daily code push. In 2012, Rossi described their

process as follows:

Starting around 1 PM, I switch over to “operations

mode” and work with my team to get ready to launch

the changes that are going out to Facebook.com that

day. is is the more stressful part of the job and really

relies heavily on my team’s judgment and past

experience. We work to make sure that everyone who

has changes going out is accounted for and is actively

testing and supporting their changes.1

Just prior to the production push, all developers with

changes going out must be present and check in on their IRC

chat channel—any developers not present have their changes

automatically removed from the deployment package.2 Rossi

continued, “If everything looks good and our test dashboards

and canary tests* are green, we push the big red button and

the entire Facebook.com server �eet gets the new code

delivered. Within twenty minutes, thousands and thousands

of machines are up on new code with no visible impact to the

people using the site.”3†

Later that year, Rossi doubled their software release

frequency to twice daily.4 He explained that the second code

push gave engineers not on the US West Coast the ability to

http://facebook.com/
http://facebook.com/

“move and ship as quickly as any other engineer in the

company,” and also gave everyone a second opportunity each

day to ship code and launch features.5

Figure 12.1: Number of Developers Deploying per Week at

Facebook

Source: Chuck Rossi, “Ship early and ship twice as often.”

Kent Beck, the creator of the Extreme Programming (XP)

methodology, one of the leading proponents of Test-Driven

Development and a technical coach at Facebook, further

comments on their code release strategy in an article posted

on his Facebook page:

Chuck Rossi made the observation that there seem to

be a fixed number of changes Facebook can handle in

one deployment. If we want more changes, we need

more deployments. is has led to a steady increase in

deployment pace over the past five years, from weekly

to daily to thrice daily deployments of our PHP code

and from six to four to two week cycles for deploying

our mobile apps. is improvement has been driven

primarily by the release engineering team.6

By using continuous integration and making code

deployment a low-risk process, Facebook has enabled code

deployment to be a part of everyone’s daily work and sustain

developer productivity. is requires that code deployment be

automated, repeatable, and predictable. In the practices

described in the book so far, even though our code and

environments have been tested together, most likely we are

not deploying to production very often because deployments

are manual, time consuming, painful, tedious, and error

prone, and they often involve an inconvenient and unreliable

handoff between Development and Operations.

And because it is painful, we tend to do it less and less

frequently, resulting in another self-reinforcing downward

spiral. By deferring production deployments, we accumulate

ever-larger differences between the code to be deployed and

what’s running in production, increasing the deployment

batch size. As deployment batch size grows, so does the risk

of unexpected outcomes associated with the change, as well

as the difficulty �xing them.

In this chapter, we reduce the friction associated with

production deployments, ensuring that they can be

performed frequently and easily, either by Operations or

Development. We do this by extending our deployment

pipeline.

Instead of merely continually integrating our code in a

production-like environment, we will enable the promotion

into production of any build that passes our automated test

and validation process, either on demand (i.e., at the push of

a button) or automatically (i.e., any build that passes all the

tests is automatically deployed).

Because of the number of practices presented, extensive

footnotes are provided with numerous examples and

additional information without interrupting the presentation

of concepts in the chapter.

Automate Our Deployment Process

Achieving outcomes like those at Facebook requires that we

have an automated mechanism that deploys our code into

production. Especially if we have a deployment process that

has existed for years, we need to fully document the steps in

the deployment process, such as in a value stream mapping

exercise, which we can assemble in a workshop or document

incrementally (e.g., in a wiki).

Once we have the process documented, our goal is to

simplify and automate as many of the manual steps as

possible, such as:

• packaging code in ways suitable for deployment

• creating precon�gured virtual machine images or

containers

• automating the deployment and con�guration of

middleware

• copying packages or �les onto production servers

• restarting servers, applications, or services

• generating con�guration �les from templates

• running automated smoke tests to make sure the

system is working and correctly con�gured

• running testing procedures

• scripting and automating database migrations

Where possible, we will re-architect to remove steps,

particularly those that take a long time to complete. We also

want to not only reduce our lead times but also the number of

handoffs as much as possible in order to reduce errors and

loss of knowledge.

Having developers focus on automating and optimizing

the deployment process can lead to signi�cant improvements

in deployment �ow, such as ensuring that small application

con�guration changes no longer need new deployments or

new environments. However, this requires that Development

works closely with Operations to ensure that all the tools and

processes we co-create can be used downstream, as opposed

to alienating Operations or reinventing the wheel.

Many tools that provide continuous integration and

testing also support the ability to extend the deployment

pipeline so that validated builds can be promoted into

production, typically after the production acceptance tests are

performed (e.g., CircleCI, the Jenkins Build Pipeline plugin,

Go.cd, Microsoft Visual Studio Team Services, and Pivotal

Concourse).

e requirements for our deployment pipeline include:

• Deploying the same way to every environment: By

using the same deployment mechanism for every

environment (e.g., development, test, and

production), our production deployments are likely to

be far more successful, since we know that they has

been successfully performed many times already

earlier in the pipeline.

• Smoke testing our deployments: During the

deployment process, we should test that we can

connect to any supporting systems (e.g., databases,

message buses, external services) and run a single test

transaction through the system to ensure that our

system is performing as designed. If any of these tests

fail, we should fail the deployment.

• Ensure we maintain consistent environments: In

previous steps, we created a single-step environment

build process so that the development, test, and

production environments had a common build

mechanism. We must continually ensure that these

environments remain synchronized.

Of course, when any problems occur during deployment,

we pull the Andon cord and swarm the problem until the

problem is resolved, just as we do when our deployment

pipeline fails in any of the earlier steps.

CASE

STUDY

Daily Deployments at CSG International (2013)

CSG International is North America’s largest SaaS-based

customer care and billing provider, with over sixty-five

million subscribers and a tech stack that covers

everything from Java to mainframe.7 Sco� Prugh, Chief

Architect and VP of Development, led an effort to

improve the predictability and reliability of their

soware releases. To achieve this, they doubled their

release frequency from two per year to four per year

(halving their deployment interval from twenty-eight

weeks to fourteen weeks).8

Although the Development teams were using

continuous integration to deploy their code into test

environments daily, the production releases were being

performed by the Operations team. Prugh observed,

It was as if we had a “practice team” that

practiced daily (or even more frequently) in

low-risk test environments, perfecting their

processes and tools. But our production

“game team” got very few a�empts to

practice, only twice per year. Worse, they

were practicing in the high-risk production

environments, which were oen very

different than the pre-production

environments with different constraints—the

development environments were missing

many production assets such as security,

firewalls, load balancers, and a SAN [storage

area network].9

To solve this problem, they created a Shared

Operations Team (SOT) that was responsible for

managing all the environments (development, test,

production) performing daily deployments into those

development and test environments, as well as doing

production deployments and releases every fourteen

weeks. Because the SOT was doing deployments every

day, any problems they encountered that were le

unfixed would simply occur again the next day. This

created tremendous motivation to automate tedious or

error-prone manual steps and to fix any issues that

could potentially happen again. Because the

deployments were performed nearly one hundred times

before the production release, most problems were

found and fixed long before then.10

Doing this revealed problems that were previously

only experienced by the Ops team, which were then

problems for the entire value stream to solve. The daily

deployments enabled daily feedback on which practices

worked and which didn’t.11

They also focused on making all their environments

look as similar as possible, including the restricted

security access rights and load balancers. Prugh writes,

“We made non-production environments as similar to

production as possible, and we sought to emulate

production constraints in as many ways as possible.

Early exposure to production-class environments altered

the designs of the architecture to make them friendlier

in these constrained or different environments.

Everyone gets smarter from this approach.”12

Prugh also observes:

We have experienced many cases where

changes to database schemas are either 1)

handed off to a DBA team for them to “go and

figure it out” or 2) automated tests that run

on unrealistically small data sets (i.e., “100’s

of MB vs. 100’s of GBs”), which led to

production failures. In our old way of

working, this would become a late-night

blame game between teams trying to unwind

the mess.

We created a development and

deployment process that removed the need

for handoffs to DBAs by cross-training

developers, automating schema changes, and

executing them daily. We created realistic

load testing against sanitized customer data,

ideally running migrations every day. By

doing this, we run our service hundreds of

times with realistic scenarios before seeing

actual production traffic.13‡

Their results were astonishing. By doing daily

deployments and doubling the frequency of production

releases, the number of production incidents went

down by 91%, MTTR went down by 80%, and the

deployment lead time required for the service to run in

production in a “fully hands-off state” went from

fourteen days to one day.15

Prugh reported that deployments became so routine

that the Ops team was playing video games by the end

of the first day. In addition to deployments going more

smoothly for Dev and Ops, 50% of the time the

customer received the value in half the time.16

Figure 12.2: Daily Deployments at CSG International

Daily deployments and increasing release frequency resulted in a decrease

in the number of production incidents and MTTR.

Source: “DOES15 - Scott Prugh & Erica Morrison—Conway & Taylor Meet

the Strangler (v2.0),” YouTube video, 29:39, posted by DevOps Enterprise

Summit, November 5, 2015, https://www.youtube.com/watch?

v=tKdIHCL0DUg.

This case study underscores how more frequent

deployments are good for Development, QA,

Operations, and the customer. Frequent

deployments allowed problems to be identified

earlier, motivated teams to fix errors sooner and

led to the delivery of cleaner code faster.

https://www.youtube.com/watch?v=tKdIHCL0DUg

Enable Automated Self-Service Deployments

Consider the following quote from Tim Tischler, Director of

Operations Automation at Nike, Inc., who describes the

common experience of a generation of developers: “As a

developer, there has never been a more satisfying point in my

career than when I wrote the code, when I pushed the button

to deploy it, when I could see the production metrics con�rm

that it actually worked in production, and when I could �x it

myself if it didn’t.”17

Developers’ ability to self-deploy code into production, to

quickly see happy customers when their feature works, and to

quickly �x any issues without having to open up a ticket with

Operations has diminished over the last decade—in part as a

result of a need for control and oversight, perhaps driven by

security and compliance requirements.

e resulting common practice is for Operations to

perform code deployments because this is a common

implementation of separation of duties, a widely accepted

practice to reduce the risk of production outages and fraud,

which requires that no one person has end-to-end control

over a process, such as software delivery. However, DORA’s

research shows that we can substantially improve software

delivery performance through implementing separation of

duties through code review. In this implementation, we

require another developer to review and approve every code

change.18

is implementation is substantially more effective when

supplemented with an automated test suite that must pass

before changes can be submitted. All deployments are then

self-serviced through an automated system that meets the

requirements described in the next section.

When there are shared goals that span Development and

Operations and there is transparency, responsibility, and

accountability for deployment outcomes, it doesn’t matter

who performs the deployment. In fact, we may even have

other roles, such as testers or project managers, able to

deploy to certain environments so they can get their own

work done quickly, such as setting up demonstrations of

speci�c features in test or UAT environments.

To better enable fast �ow, we want a code promotion

process that can be performed by either Development or

Operations, ideally without any manual steps or handoffs.

is affects the following steps:

• Build: Our deployment pipeline must create packages

from version control that can be deployed to any

environment, including production.

• Test: Anyone should be able to run any or all of our

automated test suite on their workstation or on our

test systems.

• Deploy: Anybody should be able to deploy these

packages to any environment where they have access,

executed by running scripts that are also checked into

version control.

Integrate Code Deployment into the Deployment Pipeline

Once the code deployment process is automated, we can

make it part of the deployment pipeline. Consequently, our

deployment automation must provide the following

capabilities:

• ensure that packages created during the continuous

integration process are suitable for deployment into

production

• show the readiness of production environments at a

glance

• provide a push-button, self-service method for any

suitable version of the packaged code to be deployed

into production

• record automatically, for auditing and compliance

purposes, which commands were run on which

machines when, who authorized it, and what the

output was; record also the hash of all binaries

deployed and the source control version from which

all con�guration information and scripts were taken

• run a smoke test to ensure the system is operating

correctly and the con�guration settings, including

items such as database connection strings, are correct

• provide fast feedback for the deployer so they can

quickly determine whether their deployment was

successful (e.g., did the deployment succeed, is the

application performing as expected in production,

etc.)

Our goal is to ensure that deployments are fast—we don’t

want to have to wait hours to determine whether our code

deployment succeeded or failed and then need hours to

deploy any needed code �xes. Now that we have technologies

such as containers, it is possible to complete even the most

complex deployments in seconds or minutes.

In DORA’s 2019 State of DevOps Report, data showed that

elite performers deploy on demand, with deployment lead

times measured in minutes or hours, while the lowest

performers had deployment lead times measured in months.

Over the years, many deployment statistics improved, with

Puppet Labs’ 2014 State of DevOps Report showing high

performers typically deploying code in one hour to one day

and the lowest performers having lead times of six months or

more, as was presented in the �rst edition of this book.19

By building this capability, we now have a “deploy code”

button that allows us to safely and quickly promote changes

to our code and our environments into production through

our deployment pipeline.

Figure 12.3: Elite and High Performers Achieve Faster

Deployment Lead Times and MTTR (2019)§

Source: Forsgren, et. al., Accelerate: State of DevOps Report, 2019.

CASE

STUDY

Etsy—Self-Service Developer Deployment: An Example

of Continuous Deployment (2014)

Unlike at Facebook, where deployments are managed by

release engineers, at Etsy deployments are performed by

anyone who wants to perform a deployment, such as

Development, Operations, or Infosec. The deployment

process at Etsy became so safe and routine that new

engineers could perform a production deployment on

their first day at work. Etsy board members and even

dogs have deployed to production!20

As Noah Sussman, a test architect at Etsy, wrote, “By

the time 8am rolls around on a normal business day, 15

or so people and dogs are starting to queue up, all of

them expecting to collectively deploy up to 25

changesets before the day is done.”21

Engineers who want to deploy their code first go to

a chat room, where engineers add themselves to the

deploy queue, see the deployment activity in progress,

see who else is in the queue, broadcast their activities,

and get help from other engineers when they need it.

When it’s an engineer’s turn to deploy, they are notified

in the chat room.22

The goal at Etsy has been to make it easy and safe to

deploy into production with the fewest number of steps

and the least amount of ceremony. Likely before the

developer even checks in code, they will run on their

workstation all 4,500 unit tests, which takes less than

one minute. All calls to external systems, such as

databases, have been stubbed out.23

Aer they check their changes into trunk in version

control, over seven thousand automated trunk tests are

instantly run on their continuous integration (CI)

servers. Sussman writes, “Through trial-and-error, we’ve

se�led on about 11 minutes as the longest that the

automated tests can run during a push. That leaves time

to re-run the tests once during a deployment [if

someone breaks something and needs to fix it], without

going too far past the 20 minute time limit.”24

If all the tests were run sequentially, Sussman states

that “the 7,000 trunk tests would take about half an

hour to execute. So we split these tests up into subsets,

and distribute those onto the 10 machines in our Jenkins

[CI] cluster… . Spli�ing up our test suite and running

many tests in parallel, gives us the desired 11 minute

runtime.”25

The next tests to run are the smoke tests, which are

system-level tests that run cURL to execute PHPUnit

test cases. Following these tests, the functional tests are

run, which execute end-to-end GUI-driven tests on a

live server—this server is either their QA environment or

staging environment (nicknamed “Princess”), which is

actually a production server that has been taken out of

rotation, ensuring that it exactly matches the

production environment.

Once it is an engineer’s turn to deploy, Erik Kastner

writes, “you go to Deployinator [an internally developed

tool, see Figure 12.4] and push the bu�on to get it on

QA. From there it visits Princess… . Then, when it’s ready

to go live, you hit the ‘Prod’ bu�on and soon your code

is live, and everyone in IRC [chat channel] knows who

pushed what code, complete with a link to the diff. For

anyone not on IRC, there’s the email that everyone gets

with the same information.”26

Figure 12.4: e Deployinator Console at Etsy

Source: Erik Kastner, “Quantum of Deployment,” CodeasCraft.com, May

20, 2010, https://codeascraft.com/2010/05/20/quantum-of-deployment/.

In 2009, the deployment process at Etsy was a cause

of stress and fear. By 2011, it had become a routine

operation, happening twenty-five to fiy times per day,

helping engineers get their code quickly into

production, delivering value to their customers.

Automating the majority of the deployment

process and including extensive automated

testing created an easy and efficient self-service

deployment pipeline, and teams experienced less

stress and gained more confidence.

Decouple Deployments from Releases

In the traditional launch of a software project, releases are

driven by our marketing launch date. On the prior evening,

we deploy our completed software (or as close to complete as

we could get) into production. e next morning, we

http://codeascraft.com/
https://codeascraft.com/2010/05/20/quantum-of-deployment/

announce our new capabilities to the world, start taking

orders, deliver the new functionality to customers, etc.

However, all too often things don’t go according to plan.

We may experience production loads that we never tested or

designed for, causing our service to fail spectacularly, both for

our customers and our organization. Worse, restoring service

may require a painful rollback process or an equally risky �x

forward operation, where we make changes directly in

production. is can all be a truly miserable experience for

workers. When everything is �nally working, everyone

breathes a sigh of relief, grateful that production

deployments and releases don’t happen more often.

Of course, we know that we need to be deploying more

frequently to achieve our desired outcome of smooth and fast

�ow, not less frequently. To enable this, we need to decouple

our production deployments from our feature releases. In

practice, the terms deployment and release are often used

interchangeably. However, they are two distinct actions that

serve two very different purposes:

• Deployment is the installation of a speci�ed version

of software to a given environment (e.g., deploying

code into an integration test environment or

deploying code into production). Speci�cally, a

deployment may or may not be associated with a

release of a feature to customers.

• Release is when we make a feature (or set of features)

available to all our customers or a segment of

customers (e.g., we enable the feature to be used by

5% of our customer base). Our code and

environments should be architected in such a way that

the release of functionality does not require changing

our application code.¶

In other words, when we con�ate deployment and release,

it makes it difficult to create accountability for successful

outcomes—decoupling these two activities allows us to

empower Development and Operations to be responsible for

the success of fast and frequent deployments, while enabling

product owners to be responsible for the successful business

outcomes of the release (i.e., “Was building and launching the

feature worth our time?”).

e practices described so far in this book ensure that we

are doing fast and frequent production deployments

throughout feature development, with the goal of reducing

the risk and impact of deployment errors. e remaining risk

is release risk, which is whether the features we put into

production achieve the desired customer and business

outcomes.

If we have extremely long deployment lead times, this

dictates how frequently we can release new features to the

marketplace. However, as we become able to deploy on

demand, how quickly we expose new functionality to

customers becomes a business and marketing decision, not a

technical decision. ere are two broad categories of release

patterns we can use (and which can be combined):

• Environment-based release patterns: is is where

we have two or more environments that we deploy

into, but only one environment is receiving live

customer traffic (e.g., by con�guring our load

balancers). New code is deployed into a non-live

environment, and the release is performed moving

traffic to this environment. ese are extremely

powerful patterns because they typically require little

or no change to our applications. ese patterns

include blue-green deployments, canary releases, and

cluster immune systems, all of which will be discussed

shortly.

• Application-based release patterns: is is where we

modify our application so that we can selectively

release and expose speci�c application functionality

by small con�guration changes. For instance, we can

implement feature �ags that progressively expose new

functionality in production to the development team,

all internal employees, 1% of our customers, or, when

we are con�dent that the release will operate as

designed, our entire customer base. As discussed

earlier, this enables a technique called dark launching,

where we stage all the functionality to be launched in

production and test it with production traffic before

our release. For instance, we may invisibly test our

new functionality with production traffic for weeks

before our launch in order to expose problems so that

they can be �xed before our actual launch.

Environment-Based Release Pa�erns

Decoupling deployments from our releases dramatically

changes how we work. We no longer have to perform

deployments in the middle of the night or on weekends to

lower the risk of negatively impacting customers. Instead, we

can do deployments during typical business hours, enabling

Ops to �nally have normal working hours, just like everyone

else.

is section focuses on environment-based release

patterns, which require no changes to application code. We do

this by having multiple environments to deploy into, but only

one of them receives live customer traffic. By doing this, we

can signi�cantly decrease the risk associated with production

releases and reduce the deployment lead time.

The Blue-Green Deployment Pa�ern

e simplest of the three patterns is blue-green deployment.

In this pattern, we have two production environments: blue

and green. At any time, only one of these is serving customer

traffic (see Figure 12.5).

Figure 12.5: Blue-Green Deployment Patterns

Source: Humble and North, Continuous Delivery, 261.

To release a new version of our service, we deploy to the

inactive environment, where we can perform our testing

without interrupting the user experience. When we are

con�dent that everything is functioning as designed, we

execute our release by directing traffic to the blue

environment. us, blue becomes live and green becomes

staging. Rollback is performed by sending customer traffic

back to the green environment.**

e blue-green deployment pattern is simple, and it is

extremely easy to retro�t onto existing systems. It also has

incredible bene�ts, such as enabling the team to perform

deployments during normal business hours and conduct

simple changeovers (e.g., changing a router setting, changing

a symlink) during off-peak times. is alone can dramatically

improve the work conditions for the team performing the

deployment.

Dealing with Database Changes

Having two versions of our application in production creates

problems when they depend upon a common database—

when the deployment requires database schema changes or

adding, modifying, or deleting tables or columns, the

database cannot support both versions of our application.

ere are two general approaches to solving this problem:

• Create two databases (i.e., a blue and green

database): Each version—blue (old) and green (new)

—of the application has its own database. During the

release, we put the blue database into read-only mode,

perform a backup of it, restore onto the green

database, and �nally switch traffic to the green

environment. e problem with this pattern is that if

we need to roll back to the blue version, we can

potentially lose transactions if we don’t manually

migrate them from the green version �rst.

• Decouple database changes from application

changes: Instead of supporting two databases, we

decouple the release of database changes from the

release of application changes by doing two things:

First, we make only additive changes to our database;

we never mutate existing database objects. Second, we

make no assumptions in our application about which

database version will be in production. is is very

different from how we’ve been traditionally trained to

think about databases, where we avoid duplicating

data. e process of decoupling database changes

from application changes was used by IMVU (among

others) around 2009, enabling them to do �fty

deployments per day, some of which required

database changes.27††

CASE

STUDY

Dixons Retail—Blue-Green Deployment for Point-Of-

Sale System (2008)

Dan Terhorst-North, technology and organizational

change consultant, and Dave Farley, co-author of

Continuous Delivery, were working on a project for

Dixons Retail, a large British retailer, involving thousands

of point-of-sale (POS) systems that resided in hundreds

of retail stores and operated under a number of different

customer brands. Although blue-green deployments are

mostly associated with online web services, North and

Farley used this pa�ern to significantly reduce the risk

and changeover times for POS upgrades.29

Traditionally, upgrading POS systems is a big-bang,

waterfall project: the POS clients and the centralized

server are upgraded at the same time, which requires

extensive downtime (oen an entire weekend), as well

as significant network bandwidth to push out the new

client soware to all the retail stores. When things don’t

go entirely according to plan, it can be incredibly

disruptive to store operations.

For this upgrade, there was not enough network

bandwidth to upgrade all the POS systems

simultaneously, which made the traditional strategy

impossible. To solve this problem, they used the blue-

green strategy and created two production versions of

the centralized server soware, enabling them to

simultaneously support the old and new versions of the

POS clients.

Aer they did this, weeks before the planned POS

upgrade, they started sending out new versions of client

POS soware installers to the retail stores over the slow

network links, deploying the new soware onto the POS

systems in an inactive state. Meanwhile, the old version

kept running as normal.

When all the POS clients had everything staged for

the upgrade (the upgraded client and server had tested

together successfully, and new client soware had been

deployed to all clients), the store managers were

empowered to decide when to release the new version.

Depending on their business needs, some managers

wanted to use the new features immediately and

released right away, while others wanted to wait. In

either case, whether releasing features immediately or

waiting, it was significantly be�er for the managers than

having the centralized IT department choose for them

when the release would occur.

This case study demonstrates how DevOps

pa�erns can be universally applied to different

technologies, oen in very surprising ways but

with the same fantastic outcomes.

The Canary and Cluster Immune System Release Pa�erns

e blue-green release pattern is easy to implement and can

dramatically increase the safety of software releases. ere

are variants of this pattern that can further improve safety

and deployment lead times using automation, but with the

potential trade-off of additional complexity.

e canary release pattern automates the release process of

promoting to successively larger and more critical

environments as we con�rm that the code is operating as

designed. e term canary release comes from the tradition of

coal miners bringing caged canaries into mines to provide

early detection of toxic levels of carbon monoxide. If there

was too much gas in the cave, it would kill the canaries before

it killed the miners, alerting them to evacuate.

In this pattern, when we perform a release, we monitor

how the software in each environment is performing. When

something appears to be going wrong, we roll back;

otherwise, we deploy to the next environment.‡‡ Figure 12.6

shows the groups of environments Facebook created to

support this release pattern:

Figure 12.6: e Canary Release Pattern

Source: Humble and Farley, Continuous Delivery, 263.

• A1 group: production servers that only serve internal

employees.

• A2 group: production servers that only serve a small

percentage of customers and are deployed when

certain acceptance criteria have been met (either

automated or manual).

• A3 group: the rest of the production servers, which

are deployed after the software running in the A2

cluster meets certain acceptance criteria.

e cluster immune system expands upon the canary

release pattern by linking our production monitoring system

with our release process and by automating the rollback of

code when the user-facing performance of the production

system deviates outside of a prede�ned expected range, such

as when the conversion rates for new users drops below our

historical norms of 15%–20%.

ere are two signi�cant bene�ts to this type of

safeguard. First, we protect against defects that are hard to

�nd through automated tests, such as a web page change that

renders some critical page element invisible (e.g., CSS

change). Second, we reduce the time required to detect and

respond to the degraded performance created by our

change.§§

Application-Based Pa�erns to Enable Safer Releases

In the previous section, we created environment-based

patterns that allowed us to decouple our deployments from

our releases by using multiple environments and by switching

between which environment was live, which can be entirely

implemented at the infrastructure level.

In this section, we describe application-based release

patterns that we can implement in our code, allowing even

greater �exibility in how we safely release new features to our

customer, often on a per-feature basis. Because application-

based release patterns are implemented in the application,

these require involvement from Development.

Implement Feature Toggles

e primary way we enable application-based release patterns

is by implementing feature toggles (also called feature �ags),

which provide us with the mechanism to selectively enable

and disable features without requiring a production code

deployment. Feature toggles can also control which features

are visible and available to speci�c user segments (e.g.,

internal employees, segments of customers).

Feature toggles are usually implemented by wrapping

application logic or UI elements with a conditional statement,

where the feature is enabled or disabled based on a

con�guration setting stored somewhere. is can be as simple

as an application con�guration �le (e.g., con�guration �les in

JSON, XML), or it might be through a directory service or

even a web service speci�cally designed to manage feature

toggling.¶¶

Feature toggles also enable us to do the following:

• Roll back easily: Features that create problems or

interruptions in production can be quickly and safely

disabled by merely changing the feature toggle

setting. is is especially valuable when deployments

are infrequent—switching off one particular

stakeholder’s features is usually much easier than

rolling back an entire release.

• Gracefully degrade performance: When our service

experiences extremely high loads that would normally

require us to increase capacity or, worse, risk having

our service fail in production, we can use feature

toggles to reduce the quality of service. In other

words, we can increase the number of users we serve

by reducing the level of functionality delivered (e.g.,

reduce the number of customers who can access a

certain feature, disable CPU-intensive features such as

recommendations, etc.).

• Increase our resilience through a service-oriented

architecture: If we have a feature that relies on

another service that isn’t complete yet, we can still

deploy our feature into production but hide it behind

a feature toggle. When that service �nally becomes

available, we can toggle the feature on. Similarly,

when a service we rely upon fails, we can turn off the

feature to prevent calls to the downstream service

while keeping the rest of the application running.

• Perform A/B testing: Modern feature toggle

frameworks, such as LaunchDarkly, Split, and

Optimizely, also enable product teams to run

experiments to test new features and see their impact

on business metrics. In this way, we can demonstrate

a causal relationship between new features and the

outcomes we care about. is is an incredibly powerful

tool that enables a scienti�c, hypothesis-driven

approach to product development (a technique

described later in this book).

To ensure that we �nd errors in features wrapped in

feature toggles, our automated acceptance tests should run

with all feature toggles on. (We should also test that our

feature toggling functionality works correctly too!)

Perform Dark Launches

Feature toggles allow us to deploy features into production

without making them accessible to users, enabling a

technique known as dark launching. is is where we deploy

all the functionality into production and then perform

testing of new functionality while it is still invisible to

customers. For large or risky changes, we often do this for

weeks before the production launch, enabling us to safely test

with the anticipated production-like loads.

For instance, suppose we dark launch a new feature that

poses signi�cant release risk, such as new search features,

account creation processes, or new database queries. After all

the code is in production, keeping the new feature disabled,

we may modify user session code to make calls to new

functions—instead of displaying the results to the user, we

simply log or discard the results.

For example, we may have 1% of our online users make

invisible calls to a new feature scheduled to be launched to

see how our new feature behaves under load. After we �nd

and �x any problems, we progressively increase the simulated

load by increasing the frequency and number of users

exercising the new functionality. By doing this, we are able to

safely simulate production-like loads, giving us con�dence

that our service will perform as it needs to.

Furthermore, when we launch a feature, we can

progressively roll out the feature to small segments of

customers, halting the release if any problems are found. at

way, we minimize the number of customers who are given a

feature only to have it taken away because we �nd a defect or

are unable to maintain the required performance.

In 2009, when John Allspaw was VP of Operations at

Flickr, he wrote to the Yahoo! executive management team

about their dark launch process, saying it:

increases everyone’s confidence almost to the point of

apathy, as far as fear of load-related issues are

concerned. I have no idea how many code deploys there

were made to production on any given day in the past 5

years … because for the most part I don’t care, because

those changes made in production have such a low

chance of causing issues. When they have caused issues,

everyone on the Flickr staff can find on a webpage when

the change was made, who made the change, and exactly

(line-by-line) what the change was.32***

Later, when we have built adequate production telemetry

in our application and environments, we can also enable

faster feedback cycles to validate our business assumptions

and outcomes immediately after we deploy the feature into

production.

By doing this, we no longer wait until a big-bang release

to test whether customers want to use the functionality we

build. Instead, by the time we announce and release our big

feature, we have already tested our business hypotheses and

run countless experiments to continually re�ne our product

with real customers, which helps us validate that the features

will achieve the desired customer outcomes.

CASE

STUDY

Dark Launch of Facebook Chat (2008)

For nearly a decade, Facebook has been one of the most

widely visited Internet sites, as measured by pages

viewed and unique site users. In 2008, it had over

seventy million daily active users, which created a

challenge for the team that was developing the new

Facebook Chat functionality.34†††

Eugene Letuchy, an engineer on the Chat team,

wrote about how the number of concurrent users

presented a huge soware engineering challenge, “The

most resource-intensive operation performed in a chat

system is not sending messages. It is rather keeping

each online user aware of the online-idle-offline states

of their friends, so that conversations can begin.”36

Implementing this computationally intensive feature

was one of the largest technical undertakings ever at

Facebook and took almost a year to complete.‡‡‡ Part of

the complexity of the project was due to the wide

variety of technologies needed to achieve the desired

performance, including C++, JavaScript, and PHP, as well

as their first use of Erlang in their back-end

infrastructure.37

Throughout the course of the year-long endeavor,

the Chat team checked their code into version control,

where it would be deployed into production at least

once per day. At first, the Chat functionality was visible

only to the Chat team. Later, it was made visible to all

internal employees, but it was completely hidden from

external Facebook users through Gatekeeper, the

Facebook feature toggling service.

As part of their dark launch process, every Facebook

user session, which runs JavaScript in the user browser,

had a test harness loaded into it—the chat UI elements

were hidden, but the browser client would send

invisible test chat messages to the back-end chat

service that was already in production, enabling them to

simulate production-like loads throughout the entire

project, allowing them to find and fix performance

problems long before the customer release.

The Chat release and launch required only two

steps: modifying the Gatekeeper configuration se�ing

to make the Chat feature visible to some portion of

external users, and having Facebook users load new

JavaScript code that rendered the Chat UI and disabled

the invisible test harness. If something went wrong, the

two steps would be reversed.

When the launch day of Facebook Chat arrived, it

was surprisingly successful and uneventful, seeming to

scale effortlessly from zero to seventy million users

overnight. During the release, they incrementally

enabled the chat functionality to ever-larger segments

of the customer population—first to all internal

Facebook employees, then to 1% of the customer

population, then to 5%, and so forth. As Letuchy wrote,

“The secret for going from zero to seventy million users

overnight is to avoid doing it all in one fell swoop.”38

In this case study, every Facebook user was part

of a massive load testing program, which

enabled the team to gain confidence that their

systems could handle realistic production-like

loads.

Survey of Continuous Delivery and Continuous

Deployment in Practice

In Continuous Delivery, Jez Humble and David Farley de�ne

the term continuous delivery. e term continuous deployment

was �rst mentioned by Tim Fitz in his blog post “Continuous

Deployment at IMVU: Doing the impossible �fty times a day.”

However, in 2015, during the development of the �rst edition

of e DevOps Handbook, Jez Humble commented,

In the last five years, there has been confusion around

the terms continuous delivery versus continuous

deployment—and, indeed, my own thinking and

definitions have changed since we wrote the book.

Every organization should create their variations, based

on what they need. e key thing we should care about

is not the form, but the outcomes: deployments should

be low-risk, push-button events we can perform on

demand.39

His updated de�nitions of continuous delivery and

continuous deployment are as follows:

When all developers are working in small batches on

trunk, or everyone is working off trunk in short-lived

feature branches that get merged to trunk regularly, and

when trunk is always kept in a releasable state, and

when we can release on demand at the push of a button

during normal business hours, we are doing continuous

delivery. Developers get fast feedback when they

introduce any regression errors, which include defects,

performance issues, security issues, usability issues, etc.

When these issues are found, they are fixed

immediately so that trunk is always deployable.

In addition to the above, when we are deploying

good builds into production on a regular basis through

self-service (being deployed by Dev or by Ops)—which

typically means that we are deploying to production at

least once per day per developer, or perhaps even

automatically deploying every change a developer

commits—this is when we are engaging in continuous

deployment.40

De�ned this way, continuous delivery is the prerequisite

for continuous deployment just as continuous integration is a

prerequisite for continuous delivery. Continuous deployment

is likely applicable in the context of web services that are

delivered online. However, continuous delivery is applicable

in almost every context where we desire deployments and

releases that have high quality, fast lead times, and highly

predictable, low-risk outcomes, including for embedded

systems, COTS products, and mobile apps.

At Amazon and Google, most teams practice continuous

delivery, although some perform continuous deployment—

thus, there is considerable variation between teams in how

frequently they deploy code and how deployments are

performed. Teams are empowered to choose how to deploy

based on the risks they are managing.

Similarly, most of the case studies presented in this book

are also continuous delivery, such as the embedded software

running on HP LaserJet printers, the CSG bill printing

operations running on twenty technology platforms

including a COBOL mainframe application, Facebook, and

Etsy. ese same patterns can be used for software that runs

on mobile phones, ground control stations that control

satellites, and so forth.

CONTINUOUS

LEARNING

DORA’s 2018 and 2019 State of DevOps

Reports show that continuous delivery is a key

predictor of elite performance. e research

found this included both technical and cultural

components:41

• Teams can deploy on demand to

production or to end users throughout

the software delivery life cycle.

• Fast feedback on the quality and

deployability of the system is available to

everyone on the team.

• Team members prioritize keeping the

system in a deployable state.

CASE STUDY: NEW TO

SECOND EDITION

Creating a Win-Win for Dev & Ops at CSG (2016)

Aer successfully improving releases between 2012 and

2015, CSG further evolved their organizational structure

to improve their day-to-day operational stance. At the

DevOps Enterprise Summit in 2016, Sco� Prugh, Chief

Architect and VP Soware Engineering at the time,

spoke about a dramatic organizational transformation

that combined disparate development and operations

teams into cross-functional build/run teams.

Prugh described the start of this journey:

We had made dramatic improvements in our

release processes and release quality but

continued to have escalations and conflicts

with our operations team members. The

development teams felt confident about their

code quality and continued to push releases

faster and more frequently.

On the other hand, our ops teams

complained about production outages and

the rapid changes breaking the environment.

To ba�le these opposing forces, our change

and program management teams ramped up

their processes to improve coordination and

to a�empt to control the chaos. Sadly, this

did li�le to improve production quality, our

operational teams’ experience, or the

relationship between the development and

operations teams.42

Figure 12.7: How Structure In�uences Behavior and

Quality

Image courtesy of Scott Prugh.

To understand more of what was going on, the team

dug into the incident data, which revealed some

surprising and alarming trends:43

• Release impact and incidents had improved

almost 90% (from 201 incidents to 24).

• Release incidents represented 2% of the

occurring incidents (98% were in production).

• And, 92% of these production incidents were

quick restorations that were fixed by

operations.

Prugh further observed, “We had basically improved

our development stance significantly but had done li�le

to improve the production operations environment. We

got the exact result we had optimized for: great code

quality and poor operations quality.”44

In order to find a solution, Prugh asked the following

questions:

• Were different organizational goals working

against system goals?

• Did development’s lack of operations

understanding result in hard-to-run soware?

• Did a lack of shared mission create a lack of

empathy across teams?

• Did our handoffs contribute to elongated lead

time?

• Did a lack of engineering skills in operations

prevent improvements and encourage duct-

tape engineering?

Figure 12.8: From Siloed Approach to Cross-

Functional Teams

Image courtesy of Scott Prugh.

At the same time Prugh was making these

discoveries, the customer escalations of production

issues had repeatedly been raised to the executive

leadership. CSG’s customers were irate, and the

executives asked what could be done to improve CSG’s

operational stance.

Aer several passes at the problem, Prugh suggested

creating “Service Delivery Teams” that build and run the

soware. Basically, he suggested bringing together Dev

and Ops onto one team.45

At first, the proposal was viewed as polarizing. But

aer representing previous successes with shared

operations teams, Prugh further argued that bringing

Dev and Ops together would create a win-win for both

teams by:

• improving understanding so the team could

improve the entire delivery chain (development

to operations)

• improving flow and knowledge efficiency and

creating unified accountability for design,

build, test, and operations

• making operations an engineering problem§§§

• bring other benefits, like improving

communication, reducing meetings, creating

shared planning, improving collaboration,

creating shared work visibility, and a shared

leadership vision

Figure 12.9: Conventional vs. Cross-Functional

Structure

Image courtesy of Scott Prugh.

The next steps involved re-creating a new team

structure of combined development and operations

teams and leaders. Managers and leaders of the new

teams were selected from the current pool, and team

members were re-recruited onto the new cross-

functional teams. Aer the changes, development

managers and leaders got real experience in running the

soware they had created.46

It was a shocking experience. The leaders realized

that creating build/run teams was only the first step in a

very long journey. Erica Morrison, VP Soware

Engineering, recalls:

As I got more involved with the Network Load

Balancer team, I quickly started to feel like I

was in The Phoenix Project. While I had seen

many parallels to the book in previous work

experiences, it was nothing like this. There

was invisible work/work in multiple systems:

one system for stories, another for incidents,

another for CRQs, another for new requests.

And TONS of email. And some stuff wasn’t in

any system. My brain was exploding, trying to

track it all.

The cognitive load from managing all the

work was huge. It was also impossible to

follow up with teams and stakeholders.

Basically whoever screamed the loudest went

to the top of the queue. Almost every item

was a priority #1 due to the lack of a

coordinated system to track and prioritize

work.

We also realized that a ton of technical

debt had accumulated, which prevented

many critical vendor upgrades, leaving us on

outdated hardware, soware, and OS. There

was also a lack of standards. When we did

have them, they were not universally applied

or rolled out to production.

Critical people bo�lenecks were also

prolific, creating an unsustainable work

environment.

Finally, all changes went through a

traditional CAB [change advisory board]

process, which created a massive bo�leneck

to get things approved. Additionally, there

was li�le automation supporting the change

process, making every change manual, not

traceable, and very high risk.”47

To address these issues, the CSG team took a multi-

pronged approach. First, they created a bias for action

and culture change by applying the learnings from John

Shook’s Model of Change: “Change Behavior to Change

Culture.” The leadership team understood that in order

to change the culture they had to change behavior,

which would then affect values and a�itudes and result

in eventual culture change.

Next, the team brought in developers to supplement

the operational engineers and demonstrate what would

be possible with great automation and engineering

applied to key operational problems. Automation was

added to traffic reporting and device reporting. Jenkins

was used to orchestrate and automate basic jobs that

were being done by hand. Telemetry and monitoring to

CSG’s common platform (StatHub) were added. And

finally, deployments were automated to remove errors

and support rollback.

The team then invested in ge�ing all the config in

code and version control. This included CI practices as

well as lower environments that could test and practice

deployments to devices that would not impact

production. The new processes and tools allowed easy

peer review since all code went through a pipeline on

the way to production.

Finally, the team invested in bringing all work into a

single backlog. This included automation to pull tickets

from many systems into one common system that the

team could collaborate in and thus prioritize the work.

Erica Morrison recalls her final learnings:

We worked really hard in this journey to bring

some of the best practices we know from

Development to the Ops world. There have

been many things in this journey that went

well, but there were a lot of misses and a lot

of surprises. Probably our biggest surprise is

how hard Ops really is. It’s one thing to read

about it but quite another to experience it

first-hand.

Also, change management is scary and

not visible to developers. As a development

team, we had no details about the change

process and changes going in. We now deal

with change on a daily basis. Change can be

overwhelming and consume much of what a

team does each day.

We also reaffirmed that change is one of

the key intersection points of opposing goals

between Dev and Ops. Developers want their

changes to make it to production as soon as

possible. But when Ops is responsible for

pu�ing that change in and dealing with the

fallout, it creates a natural reaction to want to

go slower. We now understand that ge�ing

Dev and Ops working together to both design

and implement the change creates a win-win

that improves both speed and stability.48

This updated case study from CSG shows the

importance of the development and operations

teams working together to design and implement

changes, creating low-risk, low-drama releases.

Conclusion

As the Facebook, Etsy, and CSG examples have shown,

releases and deployments do not have to be high-risk, high-

drama affairs that require tens or hundreds of engineers to

work around the clock to complete. Instead, they can be made

entirely routine and a part of everyone’s daily work. By doing

this, we can reduce our deployment lead times from months

to minutes, allowing our organizations to quickly deliver

value to our customers without causing chaos and disruption.

Furthermore, by having Dev and Ops work together, we can

�nally make Operations work humane.

* A canary release test is when soware is deployed to a small group of

production servers to make sure nothing terrible happens to them with live

customer traffic.

† e Facebook front-end codebase is primarily written in PHP. In 2010, to

increase site performance, the PHP code was converted into C++ by their

internally developed HipHop compiler, which was then compiled into a 1.5 GB

executable. is file was then copied onto production servers using BitTorrent,

enabling the copy operation to be completed in fieen minutes.

‡ In their experiments, they found that SOT teams were successful regardless of

whether they were managed by Development or Operations, as long as the

teams were staffed with the right people and were dedicated to SOT success.14

§ We have replaced this figure with an updated metric for the second edition.

is new figure more accurately portrays experiences over the last five years.

¶ Operation Desert Shield may serve as an effective metaphor. Starting on August

7, 1990, thousands of men and materials were safely deployed over four months

into the production theater, culminating in a single, multidisciplinary, highly

coordinated release.

** Other ways that we can implement the blue-green pattern include setting up

multiple Apache/NGINX web servers to listen on different physical or virtual

interfaces; employing multiple virtual roots on Windows IIS servers bound to

different ports; using different directories for every version of the system, with a

symbolic link determining which one is live (e.g., as Capistrano does for Ruby

on Rails); running multiple versions of services or middleware concurrently,

with each listening on different ports; using two different data centers and

switching traffic between the data centers, instead of using them merely as hot-

or warm-spares for disaster recovery purposes (incidentally, by routinely using

both environments, we are continually ensuring that our disaster recovery

process works as designed); or using different availability zones in the cloud.

†† is pattern is also commonly referred to as the expand/contract pattern, which

Timothy Fitz described when he said, “We do not change (mutate) database

objects, such as columns or tables. Instead, we first expand, by adding new

objects, then, later, contract by removing the old ones.”28 Furthermore,

increasingly, there are technologies that enable virtualization, versioning,

labeling, and rolling back databases, such as Redgate, Delphix, DBMaestro, and

Datical, as well as open source tools, such as DBDeploy, that make database

changes dramatically safer and faster.

‡‡ Note that canary releases require having multiple versions of our soware

running in production simultaneously. However, because each additional

version we have in production creates additional complexity to manage, we

should keep the number of versions to a minimum. is may require the use of

the expand/contract database pattern described earlier.

§§ e cluster immune system was first documented by Eric Ries while working at

IMVU. is functionality is also supported by Etsy in their Feature API library,

as well as by Netflix.30

¶¶ One sophisticated example of such a service is Facebook’s Gatekeeper, an

internally developed service that dynamically selects which features are visible

to specific users based on demographic information such as location, browser

type, and user profile data (age, gender, etc.). For instance, a particular feature

could be configured so that it is only accessible by internal employees, 10% of

their user base, or only users between the ages of twenty-five and thirty-five.

Other examples include the Etsy Feature API and the Netflix Archaius library.31

*** Similarly, as Chuck Rossi, Director of Release Engineering at Facebook,

described, “All the code supporting every feature we’re planning to launch over

the next six months has already been deployed onto our production servers. All

we need to do is turn it on.”33

††† By 2015, Facebook had over one billion active users, growing 17% over the

previous year.35

‡‡‡ is problem has a worst-case computational characteristic of O(n3). In other

words, the compute time increases exponentially as the function of the number

of online users, the size of their friend lists, and the frequency of online/offline

state change.

§§§ e team could now inject and cross-train engineering principles/skills into

operations, and they could evolve operations from being solely a process

activity to an engineering activity with true continuous improvement. is

would shi operations le and stop the duct-tape engineering activities.

A

13
ARCHITECT FOR LOW-RISK RELEASES

lmost every well-known DevOps exemplar has had near-

death experiences due to architectural problems, such as

in the stories presented about LinkedIn, Google, eBay,

Amazon, and Etsy. In each case, they were able to successfully

migrate to a more suitable architecture that addressed their

current problems and organizational needs.

is is the principle of evolutionary architecture—Jez

Humble observes that architecture of “any successful product

or organization will necessarily evolve over its life cycle.”1

Before his tenure at Google, Randy Shoup served as Chief

Engineer and Distinguished Architect at eBay from 2004 to

2011. He observes that “both eBay and Google are each on

their �fth entire rewrite of their architecture from top to

bottom.”2

He re�ects, “Looking back with 20/20 hindsight, some

technology [and architectural choices] look prescient and

others look shortsighted. Each decision most likely best

served the organizational goals at the time. If we had tried to

implement the 1995 equivalent of micro-services out of the

gate, we would have likely failed, collapsing under our own

weight and probably taking the entire company with us.”3*

e challenge is how to keep migrating from the

architecture we have to the architecture we need. In the case

of eBay, when they needed to re-architect, they would �rst do

a small pilot project to prove to themselves that they

understood the problem well enough to even undertake the

effort. For instance, when Shoup’s team was planning on

moving certain portions of the site to full-stack Java in 2006,

they looked for the area that would get them the biggest bang

for their buck by sorting the site pages by revenue produced.

ey chose the highest revenue areas, stopping when there

was not enough of a business return to justify the effort.5

What Shoup’s team did at eBay is a textbook example of

evolutionary design, using a technique called the strangler �g

application pattern—instead of “ripping out and replacing” old

services with architectures that no longer support our

organizational goals, we put the existing functionality behind

an API and avoid making further changes to it. All new

functionality is then implemented in the new services that

use the new desired architecture, making calls to the old

system when necessary.

e strangler �g application pattern is especially useful

for helping migrate portions of a monolithic application or

tightly coupled services to one that is more loosely coupled.

All too often, we �nd ourselves working within an

architecture that has become too tightly coupled and too

interconnected, often having been created years (or decades)

ago.

e consequences of overly tight architectures are easy to

spot: every time we attempt to commit code into trunk or

release code into production, we risk creating global failures

(e.g., we break everyone else’s tests and functionality or the

entire site goes down). To avoid this, every small change

requires enormous amounts of communication and

coordination over days or weeks, as well as approvals from

any group that could potentially be affected.

Deployments become problematic as well—the number of

changes that are batched together for each deployment

grows, further complicating the integration and test effort,

and increasing the already high likelihood of something going

wrong.

Even deploying small changes may require coordinating

with hundreds (or even thousands) of other developers, with

any one of them able to create a catastrophic failure,

potentially requiring weeks to �nd and �x the problem. (is

results in another symptom: “My developers spend only 15%

of their time coding—the rest of their time is spent in

meetings.”)

ese all contribute to an extremely unsafe system of

work, where small changes have seemingly unknowable and

catastrophic consequences. It also often contributes to a fear

of integrating and deploying our code, and the self-

reinforcing downward spiral of deploying less frequently.

From an enterprise architecture perspective, this

downward spiral is the consequence of the Second Law of

Architectural ermodynamics, especially in large, complex

organizations. Charles Betz, author of Architecture and

Patterns for IT: Service Management, Resource Planning, and

Governance: Making Shoes for the Cobbler’s Children, observes,

“[IT project owners] are not held accountable for their

contributions to overall system entropy.”6 In other words,

reducing our overall complexity and increasing the

productivity of all our development teams is rarely the goal of

an individual project.

In this chapter, we will describe steps we can take to

reverse the downward spiral, review the major architectural

archetypes, examine the attributes of architectures that

enable developer productivity, testability, deployability, and

safety, as well as evaluate strategies that allow us to safely

migrate from whatever current architecture we have to one

that better enables the achievement of our organizational

goals.

An Architecture that Enables Productivity, Testability,

and Safety

In contrast to a tightly coupled architecture that can impede

everyone’s productivity and ability to safely make changes, a

loosely coupled architecture with well-de�ned interfaces that

enforce how modules connect with each other promotes

productivity and safety. It enables small, productive teams

that are able to make small changes that can be safely and

independently deployed. And because each service also has a

well-de�ned API, it enables easier testing of services and the

creation of contracts and SLAs between teams.

Figure 13.1: Google Cloud Datastore

Source: Shoup, “From the Monolith to Micro-services.”

As Randy Shoup describes,

is type of architecture has served Google extremely

well—for a service like Gmail, there’s five or six other

layers of services underneath it, each very focused on a

very specific function. Each service is supported by a

small team, who builds it and runs their functionality,

with each group potentially making different

technology choices. Another example is the Google

Cloud Datastore service, which is one of the largest

NoSQL services in the world—and yet it is supported

by a team of only about eight people, largely because it

is based on layers upon layers of dependable services

built upon each other.7

is kind of service-oriented architecture allows small

teams to work on smaller and simpler units of development

that each team can deploy independently, quickly, and safely.

Shoup notes, “Organizations with these types of

architectures, such as Google and Amazon, show how it can

impact organizational structures, [creating] �exibility and

scalability. ese are both organizations with tens of

thousands of developers, where small teams can still be

incredibly productive.”8

Architectural Archetypes: Monoliths vs. Microservices

At some point in their history, most DevOps organizations

were hobbled by tightly coupled, monolithic architectures

that—while extremely successful at helping them achieve

product/market �t—put them at risk of organizational

failure once they had to operate at scale (e.g., eBay’s

monolithic C++ application in 2001, Amazon’s monolithic

Obidos application in 2001, Twitter’s monolithic Rails front

end in 2009, and LinkedIn’s monolithic Leo application in

2011). In each of these cases, the organization was able to re-

architect their systems and set the stage not only to survive

but also to thrive and win in the marketplace.

Monolithic architectures are not inherently bad—in fact,

they are often the best choice for an organization early in a

product life cycle. As Randy Shoup observes,

ere is no one perfect architecture for all products and

all scales. Any architecture meets a particular set of

goals or range of requirements and constraints, such as

time to market, ease of developing functionality,

scaling, etc. e functionality of any product or service

will almost certainly evolve over time—it should not be

surprising that our architectural needs will change as

well. What works at scale 1x rarely works at scale 10x or

100x.9

e major architectural archetypes are shown in Table

13.1. Each row indicates a different evolutionary need for an

organization, with each column giving the pros and cons of

each of the different archetypes. As the table shows, a

monolithic architecture that supports a startup (e.g., rapid

prototyping of new features and potential pivots or large

changes in strategies) is very different from an architecture

that needs hundreds of teams of developers, each of whom

must be able to independently deliver value to the customer.

By supporting evolutionary architectures, we can ensure that

our architecture always serves the current needs of the

organization.

Table 13.1: Architectural Archetypes

Pros Cons

Monolithic v1 (all functionality in

one application)

• Simple at first

• Low interprocess
latencies

• Single code base;
one deployment
unit

• Resource
efficient at small
scales

• Coordination
overhead increases
as team grows

• Poor enforcement
of modularity

• Poor scaling

• All-or-nothing
deploy (downtime,
failures)

• Long build times

Monolithic v2 (sets of monolithic

tiers: “front end presentation,”

“application server,” “database

layer”)

• Simple at first

• Join queries are
easy

• Single schema,
deployment

• Resource
efficient at small
scales

• Tendency for
increased coupling
over time

• Poor scaling and
redundancy (all-or-
nothing, vertical
only)

• Difficult to tune
properly

• All-or-nothing
schema
management

Microservice (modular,

independent, graph relationship

vs. tiers, isolated persistence)

• Each unit is
simple

• Independent
scaling and
performance

• Independent
testing and
deployment

• Can optimally
tune
performance

• Many cooperating
units

• Many small repos

• Requires more
sophisticated
tooling and
dependency
management

• Network latencies

(caching,
replication, etc.)

Source: Shoup, “From the Monolith to Micro-services.”

CASE

STUDY

Evolutionary Architecture at Amazon (2002)

One of the most studied architecture transformations

occurred at Amazon. In an interview with ACM Turing

Award-winner and Microso Technical Fellow Jim Gray,

Amazon CTO Werner Vogels explains that Amazon.com

started in 1996 as a “monolithic application, running on

a web server, talking to a database on the back end. This

application, dubbed Obidos, evolved to hold all the

business logic, all the display logic, and all the

functionality that Amazon eventually became famous

for: similarities, recommendations, Listmania, reviews,

etc.”10

As time went by, Obidos grew too tangled, with

complex sharing relationships meaning individual pieces

could not be scaled as needed. Vogels tells Gray that this

meant “many things that you would like to see

happening in a good soware environment couldn’t be

done anymore; there were many complex pieces of

soware combined into a single system. It couldn’t

evolve anymore.”11

Describing the thought process behind the new

desired architecture, he tells Gray, “We went through a

period of serious introspection and concluded that a

service-oriented architecture would give us the level of

isolation that would allow us to build many soware

components rapidly and independently.”12

http://amazon.com/

Vogels notes, “The big architectural change that

Amazon went through in the past five years [from 2001–

2005] was to move from a two-tier monolith to a fully

distributed, decentralized services platform serving

many different applications. A lot of innovation was

necessary to make this happen, as we were one of the

first to take this approach.”13 The lessons from Vogel’s

experience at Amazon that are important to our

understanding of architecture shis include the

following:

• Lesson 1: When applied rigorously, strict

service orientation is an excellent technique to

achieve isolation; you achieve a level of

ownership and control that was not seen

before.

• Lesson 2: Prohibiting direct database access by

clients makes performing scaling and reliability

improvements to your service state possible

without involving your clients.

• Lesson 3: Development and operational

process greatly benefits from switching to

service orientation. The services model has

been a key enabler in creating teams that can

innovate quickly with a strong customer focus.

Each service has a team associated with it, and

that team is completely responsible for the

service—from scoping out the functionality to

architecting, building, and operating it.

The extent to which applying these lessons

enhances developer productivity and reliability is

breathtaking. In 2011, Amazon was performing

approximately fieen thousands deployment per day.14

By 2015, they were performing nearly 136,000

deployments per day.15

This case study illustrates how evolving from a

monolithic structure to one of microservices

helped to decouple the architecture, allowing it

to be�er serve the needs of the organization.

Use the Strangler Fig Application Pa�ern to Safely

Evolve Our Enterprise Architecture

e term strangler �g application was coined by Martin Fowler

in 2004 after he was inspired by seeing massive strangler

vines during a trip to Australia, writing, “ey seed in the

upper branches of a �g tree and gradually work their way

down the tree until they root in the soil. Over many years

they grow into fantastic and beautiful shapes, meanwhile

strangling and killing the tree that was their host.”16

If we have determined that our current architecture is too

tightly coupled, we can start safely decoupling parts of the

functionality from our existing architecture. By doing this, we

enable teams supporting the decoupled functionality to

independently develop, test, and deploy their code into

production with autonomy and safety, and reduce

architectural entropy.

As described earlier, the strangler �g application pattern

involves placing existing functionality behind an API, where

it remains unchanged, and implementing new functionality

using our desired architecture, making calls to the old system

when necessary. When we implement the strangler �g

applications, we seek to access all services through versioned

APIs, also called versioned services or immutable services.17

Versioned APIs enable us to modify the service without

impacting the callers, which allows the system to be more

loosely coupled—if we need to modify the arguments, we

create a new API version and migrate teams who depend on

our service to the new version. After all, we are not achieving

our re-architecting goals if we allow our new strangler �g

application to get tightly coupled into other services (e.g.,

connecting directly to another service’s database).

If the services we call do not have cleanly de�ned APIs, we

should build them or at least hide the complexity of

communicating with such systems within a client library that

has a cleanly de�ned API.

By repeatedly decoupling functionality from our existing

tightly coupled system, we move our work into a safe and

vibrant ecosystem where developers can be far more

productive, resulting in the legacy application shrinking in

functionality. It might even disappear entirely as all the

needed functionality migrates to our new architecture.

By creating strangler �g applications, we avoid merely

reproducing existing functionality in some new architecture

or technology—often, our business processes are far more

complex than necessary due to the idiosyncrasies of the

existing systems, which we will end up replicating. (By

researching the user, we can often re-engineer the process so

that we can design a far simpler and more streamlined means

to achieving the business goal.)†

An observation from Martin Fowler underscores this risk.

Much of my career has involved rewrites of critical

systems. You would think such a thing is easy—just

make the new one do what the old one did. Yet they are

always much more complex than they seem, and

overflowing with risk. e big cut-over date looms, and

the pressure is on. While new features (there are always

new features) are liked, old stuff has to remain. Even old

bugs often need to be added to the rewritten system.19

As with any transformation, we seek to create quick wins

and deliver early incremental value before continuing to

iterate. Up-front analysis helps us identify the smallest

possible piece of work that will usefully achieve a business

outcome using the new architecture.

CASE

STUDY

Strangler Fig Pa�ern at Blackboard Learn (2011)

Blackboard Inc. is one of the pioneers of providing

technology for educational institutions, with annual

revenue of approximately $650 million in 2011. At that

time, the development team for their flagship Learn

product, packaged soware that was installed and run

on premises at their customer sites, was living with the

daily consequences of a legacy J2EE codebase that went

back to 1997.20 As David Ashman, their chief architect,

observed, “we still have fragments of Perl code still

embedded throughout our codebase.”21

In 2010, Ashman was focused on the complexity and

growing lead times associated with the old system,

observing that “our build, integration, and testing

processes kept ge�ing more and more complex and

error prone. And the larger the product got, the longer

our lead times and the worse the outcomes for our

customers. To even get feedback from our integration

process would require twenty-four to thirty-six hours.”22

How this started to impact developer productivity

was made visible to Ashman in graphs generated from

their source code repository going all the way back to

2005.

In Figure 13.2, the top graph represents the number

of lines of code in the monolithic Blackboard Learn code

repository; the bo�om graph represents the number of

code commits. The problem that became evident to

Ashman was that the number of code commits started

to decrease, objectively showing the increasing

difficulty of introducing code changes, while the

number of lines of code continued to increase. Ashman

noted, “To me, it said we needed to do something,

otherwise the problems would keep ge�ing worse, with

no end in sight.”23

Figure 13.2: Blackboard Learn Code Repository:

Before Building Blocks

Source: “DOES14—David Ashman—Blackboard Learn—Keep Your Head

in the Clouds,” YouTube video, 30:43, posted by DevOps Enterprise

Summit 2014, October 28, 2014, https://www.youtube.com/watch?

v=SSmixnMpsI4.

https://www.youtube.com/watch?v=SSmixnMpsI4

As a result, in 2012 Ashman focused on

implementing a code re-architecting project that used

the strangler fig pa�ern. The team accomplished this by

creating what they internally called Building Blocks,

which allowed developers to work in separate modules

that were decoupled from the monolithic codebase and

accessed through fixed APIs. This enabled them to work

with far more autonomy, without having to constantly

communicate and coordinate with other development

teams.

When Building Blocks were made available to

developers, the size of the monolith source code

repository began to decrease (as measured by number of

lines of code). Ashman explained that this was because

developers were moving their code into the Building

Block modules source code repository. “In fact,” Ashman

reported, “every developer given a choice would work in

the Building Block codebase, where they could work

with more autonomy and freedom and safety.”24

Figure 13.3 shows the connection between the

exponential growth in the number of lines of code and

the exponential growth of the number of code commits

for the Building Blocks code repositories. The new

Building Blocks codebase allowed developers to be

more productive, and they made the work safer because

mistakes resulted in small, local failures instead of major

catastrophes that impacted the global system.

Figure 13.3: Blackboard Learn Code Repository: After

Building Blocks

Source: “DOES14—David Ashman—Blackboard Learn—Keep Your Head

in the Clouds,” YouTube video, 30:43, posted by DevOps Enterprise

Summit 2014, October 28, 2014, https://www.youtube.com/watch?

v=SSmixnMpsI4.

Ashman concluded, “Having developers work in the

Building Blocks architecture made for impressive

improvements in code modularity, allowing them to

work with more independence and freedom. In

combination with the updates to our build process, they

also got faster, be�er feedback on their work, which

meant be�er quality.”25

Utilizing the Strangler Fig Application Pa�ern

and creating a modular codebase, teams at

Blackboard were able to work with more

autonomy and tackle individual problems safer

and faster.

https://www.youtube.com/watch?v=SSmixnMpsI4

CONTINUOUS

LEARNING

Data supports the importance of architecture

and its role in driving elite performance, with

the DORA and Puppet 2017 State of DevOps

Report �nding that architecture was the largest

contributor to continuous delivery.

e analysis found that teams who scored

highest on architectural capabilities could

complete their work independently of other

teams, and change their systems without

dependencies.26

ese �ndings were echoed in DORA’s

2018 and 2019 State of DevOps Reports,

showing the continued importance of having a

loosely coupled architecture in teams’ abilities

to deploy and release quickly and with low

friction.27

Conclusion

To a large extent, the architecture that our services operate

within dictates how we test and deploy our code. Because we

are often stuck with architectures that were optimized for a

different set of organizational goals, or for an era long passed,

we must be able to safely migrate from one architecture to

another. e case studies presented in this chapter, as well as

the Amazon case study previously presented, describe

techniques like the strangler �g pattern that can help us

migrate between architectures incrementally, enabling us to

adapt to the needs of the organization.

* eBay’s architecture went through the following phases: Perl and files (v1, 1995),

C++ and Oracle (v2, 1997), XSL and Java (v3, 2002), full-stack Java (v4, 2007),

Polyglot microservices (2013+).4

†e strangler fig application pattern involves incrementally replacing a whole

system, usually a legacy system, with a completely new one. Conversely, branching

by abstraction, a term coined by Paul Hammant, is a technique where we create an

abstraction layer between the areas that we are changing. is enables

evolutionary design of the application architecture while allowing everybody to

work off trunk/master and practice continuous integration.18

W
PART II I CONCLUSION

ithin the previous chapters of Part III, we have

implemented the architecture and technical practices

that enable the fast �ow of work from Dev to Ops, so that

value can be quickly and safely delivered to customers.

In Part IV: e Second Way: e Technical Practices of

Feedback, we will create the architecture and mechanisms to

enable the reciprocal fast �ow of feedback from right to left,

to �nd and �x problems faster, radiate feedback, and ensure

better outcomes from our work. is enables our

organization to further increase the rate at which it can

adapt.

Additional Resources

e Unicorn Project, the companion novel to e Phoenix

Project, illustrates �rst hand the experiences of a developer

looking to improve, among other things, the �ow of work

(itrevolution.com/the-unicorn-project/).

Accelerate: e Science of Lean Software and DevOps: Building

and Scaling High Performing Technology Organizations

succinctly brings all the research from four years of State of

DevOps Reports together and effectively shows what metrics

lead to better quality software (itrevolution.com/accelerate-

book)

Jez Humble and David Farley’s Continuous Delivery: Reliable

Software Releases rough Build, Test, and Deployment

Automation remains a must read for anyone in Development

or Operations.

Elisabeth Hendrickson’s Explore It!: Reduce Risk and Increase

Con�dence with Exploratory Testing is an excellent source to

help you �gure out how to build effective tests.

http://itrevolution.com/the-unicorn-project/
http://itrevolution.com/accelerate-book

And Martin Fowler’s blog explaining his Strangler Fig

Application Pattern is still an essential read.

(martinfowler.com/bliki/StranglerFigApplication.html).

https://martinfowler.com/bliki/StranglerFigApplication.html

I
PART IV: INTRODUCTION

n Part III, we described the architecture and technical

practices required to create fast �ow from Development

into Operations. Now in Part IV, we describe how to

implement the technical practices of the Second Way, which

are required to create fast and continuous feedback from

Operations to Development.

By doing this, we shorten and amplify feedback loops so

that we can see problems as they occur and radiate this

information to everyone in the value stream. is allows us to

quickly �nd and �x problems earlier in the software

development life cycle, ideally long before they cause a

catastrophic failure.

Furthermore, we will create a system of work where

knowledge acquired downstream in Operations is integrated

into the upstream work of Development and Product

Management. is allows us to quickly create improvements

and learnings, whether it’s from a production issue, a

deployment issue, early indicators of problems, or our

customer usage patterns.

Additionally, we will create a process that allows everyone

to get feedback on their work, makes information visible to

enable learning, and enables us to rapidly test product

hypotheses, helping us determine if the features we are

building are helping us achieve our organizational goals.

We will also demonstrate how to create telemetry from

our build, test, and deploy processes, as well as from user

behavior, production issues and outages, audit issues, and

security breaches. By amplifying signals as part of our daily

work, we make it possible to see and solve problems as they

occur, and we grow safe systems of work that allow us to

con�dently make changes and run product experiments,

knowing we can quickly detect and remediate failures. We will

do all of this by exploring the following:

• creating telemetry to enable seeing and solving

problems

• using our telemetry to better anticipate problems and

achieve goals

• integrating user research and feedback into the work

of product teams

• enabling feedback so Dev and Ops can safely perform

deployments

• enabling feedback to increase the quality of our work

through peer reviews and pair programming

e patterns in this chapter help reinforce the common

goals of Product Management, Development, QA,

Operations, and Infosec, and encourage them to share in the

responsibility of ensuring that services run smoothly in

production and collaborate on the improvement of the

system as a whole. Where possible, we want to link cause to

effect. e more assumptions we can invalidate, the faster we

can discover and �x problems, but also the more capable we

are at learning and innovating.

roughout the following chapters, we will implement

feedback loops, enabling everyone to work together toward

shared goals, to see problems as they occur, to enable quick

detection and recovery, and to ensure that features not only

operate as designed in production but also achieve

organizational goals and support organizational learning.

A

14
CREATE TELEMETRY TO ENABLE SEEING
AND SOLVING PROBLEMS

fact of life in Operations is that things go wrong—small

changes may result in many unexpected outcomes,

including outages and global failures that impact all our

customers. is is the reality of operating complex systems;

no single person can see the whole system and understand

how all the pieces �t together.

When production outages and other problems occur in

our daily work, we often don’t have the information we need

to solve the problem. For example, during an outage we may

not be able to determine whether the issue is due to a failure

in our application (e.g., defect in the code), in our

environment (e.g., a networking problem, server

con�guration problem), or something entirely external to us

(e.g., a massive denial of service attack).

In Operations, we may deal with this problem with the

following rule of thumb: When something goes wrong in

production, we just reboot the server. If that doesn’t work,

reboot the server next to it. If that doesn’t work, reboot all

the servers. If that doesn’t work, blame the developers;

they’re always causing outages.1

In contrast, the Microsoft Operations Framework (MOF)

study in 2001 found that organizations with the highest

service levels rebooted their servers twenty times less

frequently than average and had �ve times fewer “blue

screens of death.”2 In other words, they found that the best-

performing organizations were much better at diagnosing

and �xing service incidents, in what Kevin Behr, Gene Kim,

and George Spafford called a “culture of causality” in e

Visible Ops Handbook. High performers used a disciplined

approach to solving problems, using production telemetry to

understand possible contributing factors to focus their

problem solving, as opposed to lower performers who would

blindly reboot servers.3

To enable this disciplined problem-solving behavior, we

need to design our systems so that they are continually

creating telemetry, widely de�ned as “an automated

communications process by which measurements and other

data are collected at remote points and are subsequently

transmitted to receiving equipment for monitoring.”4 Our

goal is to create telemetry within our applications and

environments, both in our production and pre-production

environments as well as in our deployment pipeline.

DevOps Transformation at Etsy (2012)

Michael Rembetsy and Patrick McDonnell described how

production monitoring was a critical part of Etsy’s DevOps

transformation that started in 2009. is was because they

were standardizing and transitioning their entire technology

stack to the LAMP stack (Linux, Apache, MySQL, and PHP),

abandoning myriad different technologies being used in

production that were increasingly difficult to support.

At the 2012 Velocity Conference, McDonnell described

how much risk this created:

We were changing some of our most critical

infrastructure, which, ideally, customers would never

notice. However, they’d definitely notice if we screwed

something up. We needed more metrics to give us

confidence that we weren’t actually breaking things

while we were doing these big changes, both for our

engineering teams and for team members in the

nontechnical areas, such as marketing.5

McDonnell explained further,

We started collecting all our server information in a tool

called Ganglia, displaying all the information into

Graphite, an open-source tool we invested heavily into.

We started aggregating metrics together, everything

from business metrics to deployments. is is when we

modified Graphite with what we called “our unparalleled

and unmatched vertical line technology” that overlaid

onto every metric graph when deployments happened.

By doing this, we could more quickly see any

unintended deployment side effects. We even started

putting TV screens all around the office so that

everyone could see how our services were performing.6

By enabling developers to add telemetry to their features

as part of their daily work, Etsy created enough telemetry to

help make deployments safe. By 2011, Etsy was tracking over

two hundred thousand production metrics at every layer of

the application stack (e.g., application features, application

health, database, operating system, storage, networking,

security, etc.) with the top thirty most important business

metrics prominently displayed on their “deploy dashboard.”

By 2014, they were tracking over eight hundred thousand

metrics, showing their relentless goal of instrumenting

everything and making it easy for engineers to do so.7

As Ian Malpass, an engineer at Etsy, quipped,

If Engineering at Etsy has a religion, it’s the Church of

Graphs. If it moves, we track it. Sometimes we’ll draw a

graph of something that isn’t moving yet, just in case it

decides to make a run for it… . Tracking everything is

key to moving fast, but the only way to do it is to make

tracking anything easy… . We enable engineers to track

what they need to track, at the drop of a hat, without

requiring time-sucking configuration changes or

complicated processes.8

In the 2015 State of DevOps Report, high performers

resolved production incidents 168 times faster than their

peers, with the median performer having an MTTR measured

in minutes, while the low performer had an MTTR measured

in days.9 In DORA’s 2019 State of DevOps Report, elite

performers resolved production incidents 2,604 times faster

than their low-performing peers, with the median elite

performer having a MTTR measured in minutes, while the

median low performer had an MTTR measured in weeks.10

As was created at Etsy, our goal in this chapter is to

ensure that we always have enough telemetry so that we can

con�rm that our services are correctly operating in

production. And when problems do occur, our goal is to make

it possible to quickly determine what is going wrong and

make informed decisions on how best to �x it, ideally long

before customers are impacted. Furthermore, telemetry helps

us assemble our best understanding of reality and detect

when our understanding of reality is incorrect.

Create Our Centralized Telemetry Infrastructure

Operational monitoring and logging is by no means new—

multiple generations of Operations engineers have used and

customized monitoring frameworks (e.g., HP OpenView, IBM

Tivoli, and BMC Patrol/BladeLogic) to ensure the health of

production systems. Data was typically collected through

agents that ran on servers or through agent-less monitoring

(e.g., SNMP traps or polling-based monitors). ere was often

a graphical user interface (GUI) front end, and back-end

reporting was often augmented through tools such as Crystal

Reports.

Figure 14.1: Incident Resolution Time for Elite, High,

Medium, and Low Performers (2019)

Source: Forsgren et al., Accelerate: State of DevOps (2019).

Similarly, the practices of developing applications with

effective logging and managing the resulting telemetry are

not new—a variety of mature logging libraries exist for

almost all programming languages.

However, for decades we have ended up with silos of

information, where Development only creates logging events

that are interesting to developers, and Operations only

monitors whether the environments are up or down. As a

result, when inopportune events occur, no one can determine

why the entire system is not operating as designed or which

speci�c component is failing, impeding our ability to bring

our system back to a working state.

In order for us to see all problems as they occur, we must

design and develop our applications and environments so

that they generate sufficient telemetry, allowing us to

understand how our system is behaving as a whole. When all

levels of our application stack have monitoring and logging,

we enable other important capabilities, such as graphing and

visualizing our metrics, anomaly detection, proactive alerting

and escalation, etc.

In e Art of Monitoring, James Turnbull describes a

modern monitoring architecture, which has been developed

and used by Operations engineers at web-scale companies

(e.g., Google, Amazon, Facebook). e architecture often

consisted of open-source tools, such as Nagios and Zenoss,

that were customized and deployed at a scale that was

difficult to accomplish with licensed commercial software at

the time.11

is architecture has the following components:

• Data collection at the business logic, application,

and environments layer: In each of these layers, we

are creating telemetry in the form of events, logs, and

metrics. Logs may be stored in application-speci�c

�les on each server (e.g., /var/log/httpd-error.log),

but preferably we want all our logs sent to a common

service that enables easy centralization, rotation, and

deletion. is is provided by most operating systems,

such as syslog for Linux, the Event Log for Windows,

etc.

Furthermore, we gather metrics at all layers of the

application stack to better understand how our

system is behaving. At the operating system level, we

can collect metrics such as CPU, memory, disk, or

network usage over time using tools like collected,

Ganglia, etc. e Cloud Native Computing Foundation

has created an open standard for metrics and tracking

data called OpenTelemetry, which is understood by

many open-source and commercial tools. Other tools

that collect performance information include Apache

Skywalking, AppDynamics, and New Relic.

• An event router responsible for storing our events

and metrics: is capability potentially enables

visualization, trending, alerting, anomaly detection,

and so forth. By collecting, storing, and aggregating

all our telemetry, we better enable further analysis

and health checks. is is also where we store

con�gurations related to our services (and their

supporting applications and environments) and is

likely where we do threshold-based alerting and

health checks. Examples of tools in this space include

Prometheus, Honeycomb, DataDog, and Sensu.

Once we have centralized our logs, we can transform

them into metrics by counting them in the event router—for

example, a log event such as “child pid 14024 exit signal

Segmentation fault” can be counted and summarized as a

single segfault metric across our entire production

infrastructure.

By transforming logs into metrics, we can now perform

statistical operations on them, such as using anomaly

detection to �nd outliers and variances even earlier in the

problem cycle. For instance, we might con�gure our alerting

to notify us if we went from “ten segfaults last week” to

“thousands of segfaults in the last hour,” prompting us to

investigate further.

In addition to collecting telemetry from our production

services and environments, we must also collect telemetry

from our deployment pipeline when important events occur,

such as when our automated tests pass or fail and when we

perform deployments to any environment. We should also

collect telemetry on how long it takes us to execute our builds

and tests. By doing this, we can detect conditions that could

indicate problems, such as if the performance test or our

build takes twice as long as normal, allowing us to �nd and �x

errors before they go into production.

Furthermore, we should ensure that it is easy to enter and

retrieve information from our telemetry infrastructure.

Preferably, everything should be done through self-service

APIs, as opposed to requiring people to open up tickets and

wait to get reports.

Figure 14.2: Monitoring Framework

Source: Turnbull, e Art of Monitoring, Kindle edition, chap. 2.

Ideally, we will create telemetry that tells us exactly when

anything of interest happens, as well as where and how. Our

telemetry should also be suitable for manual and automated

analysis and should be able to be analyzed without having the

application that produced the logs on hand.* As Adrian

Cockcroft pointed out, “Monitoring is so important that our

monitoring systems need to be more available and scalable

than the systems being monitored.”12

Create Application Logging Telemetry That Helps

Production

Now that we have a centralized telemetry infrastructure, we

must ensure that the applications we build and operate are

creating sufficient telemetry. We do this by having Dev and

Ops engineers create production telemetry as part of their

daily work, both for new and existing services.

Scott Prugh, CTO at CSG, said,

Every time NASA launches a rocket, it has millions of

automated sensors reporting the status of every

component of this valuable asset. And yet, we often

don’t take the same care with software—we found that

creating application and infrastructure telemetry to be

one of the highest return investments we’ve made. In

2014, we created over one billion telemetry events per

day, with over one hundred thousand code locations

instrumented.13

In the applications we create and operate, every feature

should be instrumented. If it was important enough for an

engineer to implement, then it is important enough to

generate enough production telemetry to con�rm that it is

operating as designed and that the desired outcomes are

being achieved.†

Every member of our value stream will use telemetry in a

variety of ways. For example, developers may temporarily

create more telemetry in their application to better diagnose

problems on their workstation, while Ops engineers may use

telemetry to diagnose a production problem. In addition,

Infosec and auditors may review the telemetry to con�rm the

effectiveness of a required control, and a product manager

may use them to track business outcomes, feature usage, or

conversion rates.

To support these various usage models, we have different

logging levels, some of which may also trigger alerts, such as

the following:14

• DEBUG level: Information at this level is about

anything that happens in the program, most often

used during debugging. Often, debug logs are disabled

in production but temporarily enabled during

troubleshooting.

• INFO level: Information at this level consists of

actions that are user-driven or system speci�c (e.g.,

“beginning credit card transaction”).

• WARN level: Information at this level tells us of

conditions that could potentially become an error

(e.g., a database call taking longer than some

prede�ned time). ese will likely initiate an alert and

troubleshooting, while other logging messages may

help us better understand what led to this condition.

• ERROR level: Information at this level focuses on

error conditions (e.g., API call failures, internal error

conditions).

• FATAL level: Information at this level tells us when

we must terminate (e.g., a network daemon can’t bind

a network socket).

Choosing the right logging level is important. Dan North,

a former oughtWorks consultant who was involved in

several projects in which the core continuous delivery

concepts took shape, observes, “When deciding whether a

message should be ERROR or WARN, imagine being woken

up at 4 AM. Low printer toner is not an ERROR.”15

To help ensure that we have information relevant to the

reliable and secure operations of our service, we should

ensure that all potentially signi�cant application events

generate logging entries, including those provided on this list

assembled by Anton A. Chuvakin, a research VP at Gartner’s

GTP Security and Risk Management group:16

• authentication/authorization decisions (including

logoff)

• system and data access

• system and application changes (especially privileged

changes)

• data changes, such as adding, editing, or deleting data

• invalid input (possible malicious injection, threats,

etc.)

• resources (RAM, disk, CPU, bandwidth, or any other

resource that has hard or soft limits)

• health and availability

• startups and shutdowns

• faults and errors

• circuit breaker trips

• delays

• backup success/failure

To make it easier to interpret and give meaning to all

these log entries, we should (ideally) create logging

hierarchical categories, such as for non-functional attributes

(e.g., performance, security) and for attributes related to

features (e.g., search, ranking).

Use Telemetry to Guide Problem Solving

As described in the beginning of this chapter, high

performers use a disciplined approach to solving problems.

is is in contrast to the more common practice of using

rumor and hearsay, which can lead to the unfortunate metric

of mean time until declared innocent—how quickly can we

convince everyone else that we didn’t cause the outage.

When there is a culture of blame around outages and

problems, groups may avoid documenting changes and

displaying telemetry where everyone can see them to avoid

being blamed for outages.

Other negative outcomes due to lack of public telemetry

include a highly charged political atmosphere, the need to

de�ect accusations, and, worse, the inability to create

institutional knowledge around how the incidents occurred

and the learnings needed to prevent these errors from

happening again in the future.‡

In contrast, telemetry enables us to use the scienti�c

method to formulate hypotheses about what is causing a

particular problem and what is required to solve it. Examples

of questions we can answer during problem resolution

include:

• What evidence do we have from our monitoring that a

problem is actually occurring?

• What are the relevant events and changes in our

applications and environments that could have

contributed to the problem?

• What hypotheses can we formulate to con�rm the

link between the proposed causes and effects?

• How can we prove which of these hypotheses are

correct and successfully affect a �x?

e value of fact-based problem-solving lies not only in

signi�cantly faster MTTR (and better customer outcomes),

but also in its reinforcement of the perception of a win/win

relationship between Development and Operations.

Enable Creation of Production Metrics as Part of Daily

Work

To enable everyone to be able to �nd and �x problems in their

daily work, we need to enable everyone to create metrics in

their daily work that can be easily created, displayed, and

analyzed.

To do this, we must create the infrastructure and libraries

necessary to make it as easy as possible for anyone in

Development or Operations to create telemetry for any

functionality they build. In the ideal, it should be as easy as

writing one line of code to create a new metric that shows up

in a common dashboard where everyone in the value stream

can see it.

is was the philosophy that guided the development of

one of the most widely used metrics libraries, called StatsD,

which was created and open-sourced at Etsy.18 As John

Allspaw described, “We designed StatsD to prevent any

developer from saying, ‘It’s too much of a hassle to

instrument my code.’ Now they can do it with one line of

code. It was important to us that for a developer, adding

production telemetry didn’t feel as difficult as doing a

database schema change.”19

StatsD can generate timers and counters with one line of

code (in Ruby, Perl, Python, Java, and other languages) and is

often used in conjunction with Graphite or Grafana, which

render metric events into graphs and dashboards.

Figure 14.3 shows an example of how a single line of code

creates a user login event (in this case, one line of PHP code:

“StatsD::increment(“login.successes”)). e resulting graph

shows the number of successful and failed logins per minute,

and overlaid on the graph are vertical lines that represent a

production deployment.

Figure 14.3: One Line of Code to Generate Telemetry using

StatsD and Graphite at Etsy

Source: Ian Malpass, “Measure Anything, Measure Everything.”

When we generate graphs of our telemetry, we will also

overlay onto them when production changes occur, because

we know that the signi�cant majority of production issues

are caused by production changes, which include code

deployments. is is part of what allows us to have a high

rate of change while still preserving a safe system of work.

More recently, the emergence of the OpenTelemetry

standard has provided a way for data collectors to

communicate with metrics storage and processing systems.

ere are OpenTelemetry integrations with all major

languages, frameworks, and libraries, and most popular

metrics and observability tools accept OpenTelemetry data.§

By generating production telemetry as part of our daily

work, we create an ever-improving capability to not only see

problems as they occur but also to design our work so that

problems in design and operations can be revealed, allowing

an increasing number of metrics to be tracked, as we saw in

the Etsy case study.

Create Self-Service Access to Telemetry and

Information Radiators

In the previous steps, we enabled Development and

Operations to create and improve production telemetry as

part of their daily work. In this step, our goal is to radiate this

information to the rest of the organization, ensuring that

anyone who wants information about any of the services we

are running can get it without needing production system

access or privileged accounts, or having to open up a ticket

and wait for days for someone to con�gure the graph for

them.

By making telemetry fast, easy to get, and sufficiently

centralized, everyone in the value stream can share a

common view of reality. Typically, this means that production

metrics will be radiated on web pages generated by a

centralized server, such as Graphite or any of the other

technologies described in the previous section.

We want our production telemetry to be highly visible,

which means putting it in central areas where Development

and Operations work, thus allowing everyone who is

interested to see how our services are performing. At a

minimum, this includes everyone in our value stream, such as

Development, Operations, Product Management, and

Infosec. is is often referred to as an information radiator,

de�ned by the Agile Alliance as,

the generic term for any of a number of handwritten,

drawn, printed, or electronic displays which a team

places in a highly visible location, so that all team

members as well as passers-by can see the latest

information at a glance: count of automated tests,

velocity, incident reports, continuous integration status,

and so on. is idea originated as part of the Toyota

Production System.20

By putting information radiators in highly visible places,

we promote responsibility among team members, actively

demonstrating the following values:

• e team has nothing to hide from its visitors

(customers, stakeholders, etc.).

• e team has nothing to hide from itself: it

acknowledges and confronts problems.

Now that we possess the infrastructure to create and

radiate production telemetry to the entire organization, we

may also choose to broadcast this information to our internal

customers and even to our external customers. For example,

we might do this by creating publicly viewable service status

pages so that customers can learn how the services they

depend upon are performing.

Although there may be some resistance to providing this

amount of transparency, Ernest Mueller describes the value

of doing so:

One of the first actions I take when starting in an

organization is to use information radiators to

communicate issues and detail the changes we are

making—this is usually extremely well-received by our

business units, who were often left in the dark before.

And for Development and Operations groups who must

work together to deliver a service to others, we need

that constant communication, information, and

feedback.21

We may even extend this transparency further—instead

of trying to keep customer-impacting problems a secret, we

can broadcast this information to our external customers.

is demonstrates that we value transparency, thereby

helping to build and earn customers’ trust.¶ (See Appendix

10.)

CASE

STUDY

Creating Self-Service Metrics at LinkedIn (2011)

As described in Part III, LinkedIn was created in 2003 to

help users connect “to your network for be�er job

opportunities.” By November 2015, LinkedIn had over

350 million members generating tens of thousands of

requests per second, resulting in millions of queries per

second on the LinkedIn back-end systems.

Prachi Gupta, Director of Engineering at LinkedIn,

wrote in 2011 about the importance of production

telemetry:

At LinkedIn, we emphasize making sure the

site is up and our members have access to

complete site functionality at all times.

Fulfilling this commitment requires that we

detect and respond to failures and

bo�lenecks as they start happening. That’s

why we use these time-series graphs for site

monitoring to detect and react to incidents

within minutes… . This monitoring technique

has proven to be a great tool for engineers. It

lets us move fast and buys us time to detect,

triage, and fix problems.22

However, in 2010, even though there was an

incredibly large volume of telemetry being generated, it

was extremely difficult for engineers to get access to the

data, let alone analyze it. Thus began Eric Wong’s

summer intern project at LinkedIn, which turned into

the production telemetry initiative that created

InGraphs.

Wong wrote, “To get something as simple as CPU

usage of all the hosts running a particular service, you

would need to file a ticket and someone would spend 30

minutes pu�ing [a report] together.”23

At the time, LinkedIn was using Zenoss to collect

metrics, but as Wong explains, “Ge�ing data from

Zenoss required digging through a slow web interface,

so I wrote some python scripts to help streamline the

process. While there was still manual intervention in

se�ing up metric collection, I was able to cut down the

time spent navigating Zenoss’ interface.”24

Over the course of the summer, he continued to add

functionality to InGraphs so that engineers could see

exactly what they wanted to see, adding the ability to

make calculations across multiple datasets, view week-

over-week trending to compare historical performance,

and even define custom dashboards to pick exactly

which metrics would be displayed on a single page.

In writing about the outcomes of adding

functionality to InGraphs and the value of this capability,

Gupta notes, “The effectiveness of our monitoring

system was highlighted in an instant where our

InGraphs monitoring functionality tied to a major web-

mail provider started trending downwards and the

provider realized they had a problem in their system only

aer we reached out to them!”25

What started off as a summer internship project is

now one of the most visible parts of LinkedIn

operations. InGraphs has been so successful that the

real-time graphs are featured prominently in the

company’s engineering offices where visitors can’t fail to

see them.

Self-service metrics can empower problem-

solving and decision-making at the individual

and team level, and provide necessary

transparency to build and earn customers’ trust.

Find and Fill Any Telemetry Gaps

We have now created the infrastructure necessary to quickly

create production telemetry throughout our entire

application stack and radiate it throughout our organization.

In this section, we will identify any gaps in our telemetry

that impede our ability to quickly detect and resolve incidents

—this is especially relevant if Dev and Ops currently have

little (or no) telemetry. We will use this data later to better

anticipate problems, as well as to enable everyone to gather

the information they need to make better decisions to

achieve organizational goals.

Achieving this requires that we create enough telemetry

at all levels of the application stack for all our environments,

as well as for the deployment pipelines that support them.

We need metrics from the following levels:

• Business level: Examples include the number of sales

transactions, revenue of sales transactions, user sign-

ups, churn rate, A/B testing results, etc.

• Application level: Examples include transaction

times, user response times, application faults, etc.

• Infrastructure level (e.g., database, operating

system, networking, storage): Examples include web

server traffic, CPU load, disk usage, etc.

• Client software level (e.g., JavaScript on the client

browser, mobile application): Examples include

application errors and crashes, user-measured

transaction times, etc.

• Deployment pipeline level: Examples include build

pipeline status (e.g., red or green for our various

automated test suites), change deployment lead times,

deployment frequencies, test environment

promotions, and environment status.

By having telemetry coverage in all of these areas, we will

be able to see the health of everything that our service relies

upon, using data and facts instead of rumors, �nger-pointing,

blame, and so forth.

Further, we better enable detection of security-relevant

events by monitoring any application and infrastructure

faults (e.g., abnormal program terminations, application

errors and exceptions, and server and storage errors). Not

only does this telemetry better inform Development and

Operations when our services are crashing, but these errors

are often indicators that a security vulnerability is being

actively exploited.

By detecting and correcting problems earlier, we can �x

them while they are small and easy to �x with fewer

customers impacted. Furthermore, after every production

incident, we should identify any missing telemetry that could

have enabled faster detection and recovery; or, better yet, we

can identify these gaps during feature development in our

peer review process.

Application and Business Metrics

At the application level, our goal is to ensure that we are

generating telemetry not only around application health (e.g.,

memory usage, transaction counts, etc.) but also to measure

to what extent we are achieving our organizational goals (e.g.,

number of new users, user login events, user session lengths,

percent of users active, how often certain features are being

used, and so forth).

For example, if we have a service that is supporting e-

commerce, we want to ensure that we have telemetry around

all of the user events that lead up to a successful transaction

that generates revenue. We can then instrument all the user

actions that are required for our desired customer outcomes.

ese metrics will vary according to different domains as

well as organizational goals. For instance, for an e-commerce

site, we may want to maximize the time spent on the site,

increasing likelihood of a sale. However, for search engines,

we may want to reduce the time spent on the site, since long

sessions may indicate that users are having difficulty �nding

what they’re looking for.

In general, business metrics will be part of a customer

acquisition funnel, which is the theoretical steps a potential

customer will take to make a purchase. For instance, in an e-

commerce site, the measurable journey events include total

time on site, product link clicks, shopping cart adds, and

completed orders.

Ed Blankenship, Senior Product Manager for Microsoft

Visual Studio Team Services, describes it like this: “Often,

feature teams will de�ne their goals in an acquisition funnel,

with the goal of their feature being used in every customer’s

daily work. Sometimes they’re informally described as ‘tire

kickers,’ ‘active users,’ ‘engaged users,’ and ‘deeply engaged

users,’ with telemetry supporting each stage.”26

Our goal is to have every business metric be actionable—

these top metrics should help inform how to change our

product and be amenable to experimentation and A/B

testing. When metrics aren’t actionable, they are likely vanity

metrics that provide little useful information—these we want

to store, but likely not display, let alone alert on.

Ideally, anyone viewing our information radiators will be

able to make sense of the information we are showing in the

context of desired organizational outcomes, such as goals

around revenue, user attainment, conversion rates, etc. We

should de�ne and link each metric to a business outcome

metric at the earliest stages of feature de�nition and

development, and measure the outcomes after we deploy

them in production. Furthermore, doing this helps product

owners describe the business context of each feature for

everyone in the value stream.

Further business context can be created by being aware of

and visually displaying time periods relevant to high-level

business planning and operations, such as high transaction

periods associated with peak holiday selling seasons, end-of-

quarter �nancial close periods, or scheduled compliance

audits. is information may be used as a reminder to avoid

scheduling risky changes when availability is critical or avoid

certain activities when audits are in progress.

By radiating how customers interact with what we build

in the context of our goals (see Figure 14.4), we enable fast

feedback to feature teams so they can see whether the

capabilities we are building are actually being used and to

what extent they are achieving business goals. As a result, we

reinforce the cultural expectations that instrumenting and

analyzing customer usage is also a part of our daily work, so

we better understand how our work contributes to our

organizational goals.

Figure 14.4: User Excitement of New Features in User Forum

Posts after Deployments

Source: Mike Brittain, “Tracking Every Release,” CodeasCraft.com, December 8,

2010, https://codeascraft.com/2010/12/08/track-every-release/.

Infrastructure Metrics

Just as with application metrics, our goal for production and

non-production infrastructure is to ensure that we are

generating enough telemetry so that if a problem occurs in

any environment, we can quickly determine whether

infrastructure is a contributing cause of the problem.

Furthermore, we must be able to pinpoint exactly what in the

infrastructure is contributing to the problem (e.g., database,

operating system, storage, networking, etc.).

We want to make as much infrastructure telemetry visible

as possible, across all the technology stakeholders, ideally

organized by service or application. In other words, when

something goes wrong with something in our environment,

http://codeascraft.com/
https://codeascraft.com/2010/12/08/track-every-release/

we need to know exactly what applications and services could

be or are being affected.**

In decades past, creating links between a service and the

production infrastructure it depended on was often a manual

effort (such as ITIL CMDBs or creating con�guration

de�nitions inside alerting tools in tools such as Nagios).

However, increasingly these links are now registered

automatically within our services, which are then dynamically

discovered and used in production through tools such as

ZooKeeper, Etcd, Consul, Istio, etc.27

ese tools enable services to register themselves, storing

information that other services need to interact with it (e.g.,

IP address, port numbers, URIs). is solves the manual

nature of the ITIL CMDB and is absolutely necessary when

services are made up of hundreds (or thousands, or even

millions) of nodes, each with dynamically assigned IP

addresses.††

Regardless of how simple or complex our services are,

graphing our business metrics alongside our application and

infrastructure metrics allows us to detect when things go

wrong. For instance, we may see that new customer sign-ups

drop to 20% of daily norms, and then immediately also see

that all our database queries are taking �ve times longer than

normal, enabling us to focus our problem solving.

Furthermore, business metrics create context for our

infrastructure metrics, enabling Development and

Operations to better work together toward common goals. As

Jody Mulkey, CTO of Ticketmaster/LiveNation, observes,

“Instead of measuring Operations against the amount of

downtime, I �nd it’s much better to measure both Dev and

Ops against the real business consequences of downtime:

how much revenue should we have attained, but didn’t.”29‡‡

CONTINUOUS

LEARNING

DORA’s 2019 State of DevOps Report found

that infrastructure monitoring contributed to

continuous delivery. is is because the

visibility and fast feedback it provides to all

stakeholders is key to help everyone see the

outcomes of build, test, and deployment

outcomes.30

Note that in addition to monitoring our production

services, we also need telemetry for those services in our pre-

production environments (e.g., development, test, staging,

etc.). Doing this enables us to �nd and �x issues before they

go into production, such as detecting when we have ever-

increasing database insert times due to a missing table index.

Overlaying Other Relevant Information Onto Our Metrics

Even after we have created our deployment pipeline that

allows us to make small and frequent production changes,

changes still inherently create risk. Operational side effects

are not just outages but also signi�cant disruptions and

deviations from standard operations.

To make changes visible, we make work visible by

overlaying all production deployment activities on our

graphs. For instance, for a service that handles a large

number of inbound transactions, production changes can

result in a signi�cant settling period, where performance

degrades substantially as all cache lookups miss.

To better understand and preserve quality of service, we

want to understand how quickly performance returns to

normal and, if necessary, take steps to improve performance.

Similarly, we want to overlay other useful operational

activities, such as when the service is under maintenance or

being backed up, in places where we may want to display or

suppress alerts.

Conclusion

e improvements enabled by production telemetry from

Etsy and LinkedIn show us how critical it is to see problems

as they occur so we can search out the cause and quickly

remedy the situation. By having all elements of our service

emitting telemetry that can be analyzed whether it is in our

application, database, or environment, and making that

telemetry widely available, we can �nd and �x problems long

before they cause something catastrophic, ideally long before

a customer even notices that something is wrong. e result

is not only happier customers, but, by reducing the amount

of �re�ghting and crises when things go wrong, we have a

happier and more productive workplace with less stress and

lower levels of burnout.

* From here on, the term telemetry will be used interchangeably with metrics,

which includes all event logging and metrics created by our services at all levels

of our application stack and generated from all our production and pre-

production environments, as well as from our deployment pipeline.

† A variety of application logging libraries exist that make it easy for developers to

create useful telemetry, and we should choose one that allows us to send all our

application logs to the centralized logging infrastructure that we created in the

previous section. Popular examples include rrd4j and log4j for Java, and log4r

and ruby-cabin for Ruby.

‡ In 2004, Gene Kim, Kevin Behr, and George Spafford described this as a

symptom of lacking a “culture of causality,” noting that high-performing

organizations recognize that 80% of all outages are caused by change and 80% of

MTTR is spent trying to determine what changed.17

§ A whole other set of tools to aid in monitoring, aggregation, and collection

include Splunk, Zabbix, Sumo Logic, DataDog, as well as Nagios, Cacti, Sensu,

RRDTool, Netflix Atlas, Riemann, and others. Analysts oen call this broad

category of tools “application performance monitors.”

¶ Creating a simple dashboard should be part of creating any new product or

service—automated tests should confirm that both the service and dashboard are

working correctly, helping both our customers and our ability to safely deploy

code.

** Exactly as an ITIL configuration management database (CMDB) would

prescribe.

†† Consul may be of specific interest, as it creates an abstraction layer that easily

enables service mapping, monitoring, locks, and key-value configuration stores,

as well as host clustering and failure detection.28

‡‡is could be the cost of production downtime or the costs associated with a late

feature. In product development terms, the second metric is known as cost of

delay and is key to making effective prioritization decisions.

A

15
ANALYZE TELEMETRY TO BETTER
ANTICIPATE PROBLEMS AND ACHIEVE
GOALS

s we saw in the previous chapter, we need sufficient

production telemetry in our applications and

infrastructure to see and solve problems as they occur. In this

chapter, we will create tools that allow us to discover

variances and ever-weaker failure signals hidden in our

production telemetry so we can avert catastrophic failures.

Numerous statistical techniques will be presented, along with

case studies demonstrating their use.

Telemetry at Netflix (2012)

A great example of analyzing telemetry to proactively �nd

and �x problems before customers are impacted can be seen

at Net�ix. Net�ix had revenue of $6.2 billion from 75 million

subscribers in 2015, $5.7 billion in reveunue in March 2020,

and 209 million subscribers as of July 2021.1 One of their

goals is to provide the best experience to those watching

videos online around the world, which requires a robust,

scalable, and resilient delivery infrastructure.

Roy Rapoport describes one of the challenges of

managing the Net�ix cloud-based video delivery service:

“Given a herd of cattle that should all look and act the same,

which cattle look different from the rest? Or more concretely,

if we have a thousand-node stateless compute cluster, all

running the same software and subject to the same

approximate traffic load, our challenge is to �nd any nodes

that don’t look like the rest of the nodes.”2

One of the statistical techniques that the team used at

Net�ix in 2012 was outlier detection, de�ned by Victoria J.

Hodge and Jim Austin of the University of York as detecting

“abnormal running conditions from which signi�cant

performance degradation may well result, such as an aircraft

engine rotation defect or a �ow problem in a pipeline.”3

Rapoport explains that Net�ix “used outlier detection in a

very simple way, which was to �rst compute what was the

‘current normal’ right now, given the population of nodes in a

compute cluster. And then we identi�ed which nodes didn’t

�t that pattern, and removed those nodes from production.”4

Rapoport continues,

We can automatically flag misbehaving nodes without

having to actually define what the ‘proper’ behavior is in

any way. And since we’re engineered to run resiliently in

the cloud, we don’t tell anyone in Operations to do

something—instead, we just kill the sick or

misbehaving compute node, and then log it or notify

the engineers in whatever form they want.5

By implementing the server outlier detection process,

Rapoport states, Net�ix has “massively reduced the effort of

�nding sick servers, and, more importantly, massively

reduced the time required to �x them, resulting in improved

service quality. e bene�t of using these techniques to

preserve employee sanity, work/life balance, and service

quality cannot be overstated.”6*

roughout this chapter, we will explore many statistical

and visualization techniques (including outlier detection)

that we can use to analyze our telemetry to better anticipate

problems. is enables us to solve problems faster, cheaper,

and earlier than ever, before our customer or anyone in our

organization is impacted. Gurthermore, we will also create

more context for our data to help us make better decisions

and achieve our organizational goals.

Use Means and Standard Deviations to Detect Potential

Problems

One of the simplest statistical techniques that we can use to

analyze a production metric is computing its mean (or

average) and standard deviations. By doing this, we can create

a �lter that detects when this metric is signi�cantly different

from its norm, and even con�gure our alerting so that we can

take corrective action (e.g., notify on-call production staff at 2

AM to investigate when database queries are signi�cantly

slower than average).

When critical production services have problems, waking

people at 2 AM may be the right thing to do. However, when

we create alerts that are not actionable or are false-positives,

we’ve unnecessarily woken up people in the middle of the

night. As John Vincent, an early leader in the DevOps

movement, observed, “Alert fatigue is the single biggest

problem we have right now… . We need to be more intelligent

about our alerts or we’ll all go insane.”7

We create better alerts by increasing the signal-to-noise

ratio, focusing on the variances or outliers that matter.

Suppose we are analyzing the number of unauthorized login

attempts per day. Our collected data has a Gaussian

distribution (i.e., normal or bell curve distribution) that

matches the graph in the Figure 15.1. e vertical line in the

middle of the bell curve is the mean, and the �rst, second,

and third standard deviations indicated by the other vertical

lines contain 68%, 95%, and 99.7% of the data, respectively.

Figure 15.1: Standard Deviations (σ) & Mean (μ) with

Gaussian Distribution

Source: Wikipedia, “Normal Distribution,”

https://en.wikipedia.org/wiki/Normal_distribution.

A common use of standard deviations is to periodically

inspect the data set for a metric and alert if it has

signi�cantly varied from the mean. For instance, we may set

an alert for when the number of unauthorized login attempts

per day is three standard deviations greater than the mean.

Provided that this data set has Gaussian distribution, we

would expect that only 0.3% of the data points would trigger

the alert.

Even this simple type of statistical analysis is valuable

because no one had to de�ne a static threshold value,

something which is infeasible if we are tracking thousands or

hundreds of thousands of production metrics.†

Instrument and Alert on Undesired Outcomes

Tom Limoncelli, co-author of e Practice of Cloud System

Administration: Designing and Operating Large Distributed

Systems and a former Site Reliability Engineer at Google,

relates the following story on monitoring:

https://en.wikipedia.org/wiki/Normal_distribution

When people ask me for recommendations on what to

monitor, I joke that in an ideal world, we would delete

all the alerts we currently have in our monitoring

system. en, after each user-visible outage, we’d ask

what indicators would have predicted that outage and

then add those to our monitoring system, alerting as

needed. Repeat. Now we only have alerts that prevent

outages, as opposed to being bombarded by alerts after

an outage already occurred.8

In this step, we will replicate the outcomes of such an

exercise. One of the easiest ways to do this is to analyze our

most severe incidents in the recent past (e.g., thirty days) and

create a list of telemetry that could have enabled earlier and

faster detection and diagnosis of the problem, as well as

easier and faster con�rmation that an effective �x had been

implemented. For instance, if we had an issue where our

NGINX web server stopped responding to requests, we would

look at the leading indicators that could have warned us

earlier that we were starting to deviate from standard

operations, such as:

• Application level: increasing web page load times, etc.

• OS level: server free memory running low, disk space

running low, etc.

• Database level: database transaction times taking

longer than normal, etc.

• Network level: number of functioning servers behind

the load balancer dropping, etc.

Each of these metrics is a potential precursor to a

production incident. For each, we would con�gure our

alerting systems to notify us when they deviate sufficiently

from the mean so that we can take corrective action.

By repeating this process on ever-weaker failure signals,

we �nd problems ever earlier in the life cycle, resulting in

fewer customer-impacting incidents and near misses. In

other words, we are preventing problems as well as enabling

quicker detection and correction.

Problems That Arise When Our Telemetry Data Has

Non-Gaussian Distribution

Using means and standard deviations to detect variance can

be extremely useful. However, using these techniques on

many of the telemetry data sets that we use in Operations

will not generate the desired results. As Dr. Tou�c Boubez

observes, “Not only will we get wakeup calls at 2 AM, we’ll get

them at 2:37 AM, 4:13 AM, 5:17 AM. is happens when the

underlying data that we’re monitoring doesn’t have a

Gaussian distribution.”9

In other words, when the distribution of the data set does

not have the Gaussian shape described earlier, the properties

associated with standard deviations do not apply. For

example, consider the scenario in which we are monitoring

the number of �le downloads per minute from our website.

We want to detect periods when we have unusually high

numbers of downloads, such as when our download rate is

greater than three standard deviations from our average, so

that we can proactively add more capacity.

Figure 15.2 shows our number of simultaneous

downloads per minute over time, with a bar overlaid on top.

When the bar is dark, the number of downloads within a

given period (sometimes called a “sliding window”) is at least

three standard deviations from the average. Otherwise, it is

light.

Figure 15.2: Downloads per Minute: Over-Alerting when

Using “ree Standard Deviations” Rule

Source: Dr. Tou�c Boubez, “Simple math for anomaly detection.”

e obvious problem that the graph shows is that we are

alerting almost all of the time. is is because in almost any

given period of time, we have instances when the download

count exceeds our three standard deviation threshold.

To con�rm this, when we create a histogram (see Figure

15.3) that shows the frequency of downloads per minute, we

can see that it does not have the classic symmetrical bell

curve shape. Instead, it is obvious that the distribution is

skewed toward the lower end, showing that the majority of

the time we have very few downloads per minute but that

download counts frequently spike three standard deviations

higher.

Figure 15.3: Downloads per Minute: Histogram of Data

Showing Non-Gaussian Distribution

Source: Dr. Tou�c Boubez, “Simple math for anomaly detection.”

Many production data sets are non-Gaussian distribution.

Dr. Nicole Forsgren explains, “In Operations, many of our

data sets have a ‘chi square’ distribution. Using standard

deviations for this data not only results in over- or under-

alerting, but it also results in nonsensical results.” She

continues, “When you compute the number of simultaneous

downloads that are three standard deviations below the

mean, you end up with a negative number, which obviously

doesn’t make sense.”10

Over-alerting causes Operations engineers to be woken

up in the middle of the night for protracted periods of time,

even when there are few actions that they can appropriately

take. e problem associated with under-alerting is just as

signi�cant.

For instance, suppose we are monitoring the number of

completed transactions, and the completed transaction count

drops by 50% in the middle of the day due to a software

component failure. If this is still within three standard

deviations of the mean, no alert will be generated, meaning

that our customers will discover the problem before we do, at

which point the problem may be much more difficult to solve.

Fortunately, there are techniques we can use to detect

anomalies even in non-Gaussian data sets, which are

described next.

CASE

STUDY

Auto-Scaling Capacity at Netflix (2012)

Another tool developed at Netflix to increase service

quality, Scryer, addresses some of the shortcomings of

Amazon Auto Scaling (AAS), which dynamically

increases and decreases AWS compute server counts

based on workload data. Scryer works by predicting

what customer demands will be based on historical

usage pa�erns and provisions the necessary capacity.11

Scryer addressed three problems with AAS. The first

was dealing with rapid spikes in demand. Because AWS

instance startup times could be ten to forty-five

minutes, additional compute capacity was oen

delivered too late to deal with spikes in demand.

The second problem was that aer outages, the

rapid decrease in customer demand led to AAS removing

too much compute capacity to handle future incoming

demand. The third problem was that AAS didn’t factor in

known usage traffic pa�erns when scheduling compute

capacity.12

Netflix took advantage of the fact that their

consumer viewing pa�erns were surprisingly consistent

and predictable, despite not having Gaussian

distributions. Figure 15.4 is a chart reflecting customer

requests per second throughout the work week,

showing regular and consistent customer viewing

pa�erns Monday through Friday.13

Figure 15.4: Net�ix Customer Viewing Demand for

Five Days

Source: Jacobson, Yuan, and Joshi, “Scryer: Net�ix’s Predictive Auto

Scaling Engine,” e Net�ix Tech Blog, November 5, 2013,

http://techblog.net�ix.com/2013/11/scryer-net�ixs-predictive-auto-

scaling.html.

Scryer uses a combination of outlier detections to

throw out spurious data points and then uses

techniques such as fast fourier transform (FFT) and

linear regression to smooth the data while preserving

legitimate traffic spikes that recur in their data. The

result is that Netflix can forecast traffic demand with

surprising accuracy. (See Figure 15.5).

http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html

Figure 15.5: Net�ix Scryer Forecasting Customer

Traffic and the Resulting AWS Schedule of Compute

Resources

(Source: Jacobson, Yuan, Joshi, “Scryer: Net�ix’s Predictive Auto Scaling

Engine.”)

Only months aer first using Scryer in production,

Netflix significantly improved their customer viewing

experience, improved service availability, and reduced

Amazon EC2 costs.

The Netflix case study illustrates how the Scryer

tool leveraged the power of non-Gaussian data

sets to be�er understand customers, and then

used their behavior to detect and predict issues.

Using Anomaly Detection Techniques

When our data does not have Gaussian distribution, we can

still �nd noteworthy variances using a variety of methods.

ese techniques are broadly categorized as anomaly detection,

often de�ned as “the search for items or events which do not

conform to an expected pattern.”14 Some of these capabilities

can be found inside our monitoring tools, while others may

require help from people with statistical skills.

Tarun Reddy, VP of Development and Operations at Rally

Software, actively advocates this active collaboration between

Operations and statistics, observing:

to better enable service quality, we put all our

production metrics into Tableau, a statistical analysis

software package. We even have an Ops engineer

trained in statistics who writes R code (another

statistical package)—this engineer has her own backlog,

filled with requests from other teams inside the

company who want to find variance ever earlier, before

it causes an even larger variance that could affect our

customers.15

One of the statistical techniques we can use is called

smoothing, which is especially suitable if our data is a time

series, meaning each data point has a time stamp (e.g.,

download events, completed transaction events, etc.).

Smoothing often involves using moving averages (or rolling

averages), which transform our data by averaging each point

with all the other data within our sliding window. is has

the effect of smoothing out short-term �uctuations and

highlighting longer-term trends or cycles.‡

An example of this smoothing effect is shown in Figure

15.6. e light line represents the raw data, while the dark

line indicates the thirty day moving average (i.e., the average

of the trailing thirty days).§

Figure 15.6: Autodesk Share Price and irty-Day Moving

Average Filter

Source: Jacobson, Yuan, Joshi, “Scryer: Net�ix’s Predictive Auto Scaling Engine.”

More exotic �ltering techniques exist, such as fast fourier

transforms, which has been widely used in image processing,

and the Kolmogorov-Smirnov test (found in Graphite and

Grafana), which is often used to �nd similarities or

differences in periodic/seasonal metric data.

We can expect that a large percentage of telemetry

concerning user data will have periodic/seasonal similarities

—web traffic, retail transactions, movie watching, and many

other user behaviors have very regular and surprisingly

predictable daily, weekly, and yearly patterns. is enables us

to be able to detect situations that vary from historical

norms, such as when our order transaction rate on a Tuesday

afternoon drops to 50% of our weekly norms.

Because of the usefulness of these techniques in

forecasting, we may be able to �nd people in the Marketing or

Business Intelligence departments with the knowledge and

skills necessary to analyze this data. We may want to seek

these people out and explore working together to identify

shared problems and use improved anomaly detection and

incident prediction to solve them.¶

CASE

STUDY

Advanced Anomaly Detection (2014)

At Monitorama in 2014, Dr. Toufic Boubez described the

power of using anomaly detection techniques,

specifically highlighting the effectiveness of the

Komogorov-Smirnov test, a technique that is oen used

in statistics to determine whether two data sets differ

significantly and is found in the popular Graphite and

Grafana tools.16

Figure 15.7 shows the number of transactions per

minute at an e-commerce site. Note the weekly

periodicity of the graph, with transaction volume

dropping on the weekends. By visual inspection, we can

see that something peculiar seems to happen on the

fourth week when normal transaction volume doesn’t

return to normal levels on Monday. This suggests an

event we should investigate.

Figure 15.7: Transaction Volume: Under-Alerting

Using “ree Standard Deviations” Rule

(Source: Dr. Tou�c Boubez, “Simple math for anomaly detection.”)

Using the three standard deviations rule would only

alert us twice, missing the critical Monday dropoff in

transaction volume. Ideally, we would also want to be

alerted that the data has dried from our expected

Monday pa�ern.

“Even saying ‘Kolmogorov-Smirnov’ is a great way to

impress everyone,” Dr. Boubez jokes.17

But what Ops engineers should tell

statisticians is that these types of non-

parametric techniques are great for

Operations data, because it makes no

assumptions about normality or any other

probability distribution, which is crucial for

us to understand what’s going on in our very

complex systems. These techniques compare

two probability distributions, allowing us to

compare periodic or seasonal data, which

helps us find variances in data that varies

from day to day or week to week.18

Figure 15.8 shows the same data set with the K-S

filter applied, with the third area highlighting the

anomalous Monday where transaction volume didn’t

return to normal levels. This would have alerted us of a

problem in our system that would have been virtually

impossible to detect using visual inspection or using

standard deviations. In this scenario, this early detection

could prevent a customer impacting event, as well as

be�er enable us to achieve our organizational goals.

Figure 15.8: Transaction Volume: Using Kolmogorov-

Smirnov Test to Alert on Anomalies

Source: Dr. Tou�c Boubez, “Simple math for anomaly detection.”

This case study demonstrates how we can still

find valuable variances in data, even without

Guassian distribution. It illustrates how we can

use these techniques in our work, as well as how

they're likely being used in our organizations in

completely different applications.

Conclusion

In this chapter, we explored several different statistical

techniques that can be used to analyze our production

telemetry so we can �nd and �x problems earlier than ever,

often when they are still small and long before they cause

catastrophic outcomes. is enables us to �nd ever-weaker

failure signals that we can then act upon, creating an ever-

safer system of work, as well as increasing our ability to

achieve our goals.

Speci�c case studies were presented, including how

Net�ix used these techniques to proactively remove servers

from production and auto-scale their compute infrastructure.

We also discussed how to use a moving average and the

Kolmogorov-Smirnov �lter, both of which can be found in

popular telemetry graphing tools.

In the next chapter, we will describe how to integrate

production telemetry into the daily work of Development in

order to make deployments safer and improve the system as a

whole.

* e work done at Netflix highlights one very specific way we can use telemetry to

mitigate problems before they impact our customers and before they snowball

into significant problems for our teams.

† For the remainder of this book, we will use the terms telemetry, metric, and data

sets interchangeably—in other words, a metric (e.g., “page load times”) will map

to a data set (e.g., 2 ms, 8 ms, 11 ms, etc.), the term used by statisticians to

describe a matrix of data points where each column represents a variable of which

statistical operations are performed.

‡ Smoothing and other statistical techniques are also used to manipulate graphic

and audio files—for instance, image smoothing (or blurring) as each pixel is

replaced by the average of all its neighbors.

§ Other examples of smoothing filters include weighted moving averages or

exponential smoothing (which linearly or exponentially weight more recent data

points over older data points, respectively), and so forth.

¶ Tools we can use to solve these types of problems include Microso Excel (which

remains one of the easiest and fastest ways to manipulate data for one-time

purposes), as well as statistical packages such as SPSS, SAS, and the open source R

project, now one of the most widely used statistical packages. Many other tools

have been created, including several that Etsy has open-sourced, such as Oculus,

which finds graphs with similar shapes that may indicate correlation; Opsweekly,

which tracks alert volumes and frequencies; and Skyline, which attempts to

identify anomalous behavior in system and application graphs.

I

16
ENABLE FEEDBACK SO DEVELOPMENT AND
OPERATIONS CAN SAFELY DEPLOY CODE

n 2006, Nick Galbreath was VP of Engineering at Right

Media and responsible for both the Development and

Operations departments for an online advertising platform

that displayed and served over ten billion impressions daily.1

Galbreath described the competitive landscape they

operated in:

In our business, ad inventory levels were extremely

dynamic, so we needed to respond to market conditions

within minutes. is meant that Development had to be

able to quickly make code changes and get them into

production as soon as possible, otherwise we would lose

to faster competitors. We found that having a separate

group for testing, and even deployment, was simply too

slow. We had to integrate all these functions into one

group, with shared responsibilities and goals. Believe it

or not, our biggest challenge was getting developers to

overcome their fear of deploying their own code!2

ere is an interesting irony here: Dev often complains

about Ops being afraid to deploy code. But in this case, when

given the power to deploy their own code, developers became

just as afraid to perform code deployments.

e fear of deploying code that was shared by both Dev

and Ops at Right Media is not unusual. However, Galbreath

observed that providing faster and more frequent feedback to

engineers performing deployments (whether Dev or Ops), as

well as reducing the batch size of their work, created safety

and then con�dence.3

After observing many teams go through this

transformation, Galbreath describes their progression as

follows:

We start with no one in Dev or Ops being willing to

push the “deploy code” button that we’ve built that

automates the entire code deployment process, because

of the paralyzing fear of being the first person to

potentially bring all of the production systems down.

Eventually, when someone is brave enough to volunteer

to push their code into production, inevitably, due to

incorrect assumptions or production subtleties that

weren’t fully appreciated, the first production

deployment doesn’t go smoothly—and because we

don’t have enough production telemetry, we only find

out about the problems when customers tell us.4

To �x the problem, teams should urgently �x the code and

push it into production, but this time with more production

telemetry added to applications and environment. is way,

we can actually con�rm that our �x restored service correctly,

and we’ll be able to detect this type of problem before a

customer tells us next time.

Later, more developers start to push their own code into

production. And because we’re working in a complex system,

we’ll still probably break something in production, but this

time we’ll be able to quickly see what functionality broke, and

quickly decide whether to roll back or �x forward, resolving

the problem. is is a huge victory for the entire team and

everyone celebrates—now we’re on a roll.

However, the team wants to improve the outcomes of

their deployments, so developers proactively get more peer

reviews of their code changes (described in Chapter 18), and

everyone helps each other write better automated tests so we

can �nd errors before deployment. And because everyone

now knows that the smaller our production changes, the

fewer problems we will have, developers start checking ever-

smaller increments of code more frequently into the

deployment pipeline, ensuring that their change is working

successfully in production before moving to their next

change.

We are now deploying code more frequently than ever,

and service stability is better than ever too. We have

rediscovered that the secret to smooth and continuous �ow is

making small, frequent changes that anyone can inspect and

easily understand.

Galbreath observes that the above progression bene�ts

everyone, including Development, Operations, and Infosec.

As the person who is also responsible for security, it’s

reassuring to know that we can deploy fixes into

production quickly, because changes are going into

production throughout the entire day. Furthermore, it

always amazes me how interested every engineer

becomes in security when you find problems in their

code that they are responsible for and that they can

quickly fix themselves.5

e Right Media story shows that it is not enough to

merely automate the deployment process—we must also

integrate the monitoring of production telemetry into our

deployment work, as well as establish the cultural norm that

everyone is equally responsible for the health of the entire

value stream.

In this chapter, we create the feedback mechanisms that

enable us to improve the health of the value stream at every

stage of the service life cycle, from product design through

development and deployment and into operation and

eventually retirement. By doing this, we ensure that our

services are “production ready,” even at the earliest stages of

the project, as well as integrate the learnings from each

release and production problem into our future work,

resulting in better safety and productivity for everyone.

Use Telemetry to Make Deployments Safer

In this step, we ensure that we are actively monitoring our

production telemetry when anyone performs a production

deployment, as was illustrated in the Right Media story. is

allows whoever is doing the deployment, be it Dev or Ops, to

quickly determine whether features are operating as designed

after the new release is running in production. After all, we

should never consider our code deployment or production

change to be done until it is operating as designed in the

production environment.

We do this by actively monitoring the metrics associated

with our feature during our deployment to ensure we haven’t

inadvertently broken our service—or worse, that we broke

another service. If our change breaks or impairs any

functionality, we quickly work to restore service, bringing in

whoever else is required to diagnose and �x the issue.*

As described in Part III, our goal is to catch errors in our

deployment pipeline before they get into production.

However, there will still be errors that we don’t detect, and

we rely on production telemetry to quickly restore service. We

may choose to turn off broken features with feature toggles

(which is often the easiest and least risky option since it

involves no deployments to production), or �x forward (i.e.,

make code changes to �x the defect, which are then pushed

into production through the deployment pipeline), or roll back

(e.g., switch back to the previous release by using feature

toggles or by taking broken servers out of rotation using the

blue-green or canary release patterns, etc.).

Although �xing forward can often be dangerous, it can be

extremely safe when we have automated testing, fast

deployment processes, and sufficient telemetry that allows us

to quickly con�rm whether everything is functioning

correctly in production.

Figure 16.1 shows a deployment of PHP code change at

Etsy that generated a spike in PHP runtime warnings—in

this case, the developer quickly noticed the problem within

minutes and generated a �x and deployed it into production,

resolving the issue in less than ten minutes.

Figure 16.1: Deployment to Etsy.com Causes PHP Run-Time

Warnings and Is Quickly Fixed

Source: Mike Brittain, “Tracking Every Release.”

Because production deployments are one of the top

causes of production issues, each deployment and change

event is overlaid onto our metric graphs to ensure that

everyone in the value stream is aware of relevant activity,

http://etsy.com/

enabling better communication and coordination, as well as

faster detection and recovery.

Dev Shares Pager Rotation Duties with Ops

Even when our production deployments and releases go

�awlessly, in any complex service we will still have

unexpected problems, such as incidents and outages that

happen at inopportune times (every night at 2 AM). Left

un�xed, these can cause recurring problems and suffering for

Ops engineers downstream, especially when these problems

are not made visible to the upstream engineers responsible

for creating the problem.

Even if the problem results in a defect being assigned to

the feature team, it may be prioritized below the delivery of

new features. e problem may keep recurring for weeks,

months, or even years, causing continual chaos and

disruption in Operations. is is an example of how upstream

work centers can locally optimize for themselves but actually

degrade performance for the entire value stream.

To prevent this from happening, we will have everyone in

the value stream share the downstream responsibilities of

handling operational incidents. We can do this by putting

developers, development managers, and architects on pager

rotation, just as Pedro Canahuati, Facebook Director of

Production Engineering, did in 2009.6 is ensures everyone

in the value stream gets visceral feedback on any upstream

architectural and coding decisions they make.

By doing this, Operations doesn’t struggle, isolated and

alone, with code-related production issues; instead, everyone

is helping �nd the proper balance between �xing production

defects and developing new functionality, regardless of where

they reside in the value stream. As Patrick Lightbody, SVP of

Product Management at New Relic, observed in 2011, “We

found that when we woke up developers at 2 AM, defects were

�xed faster than ever.”7

One side effect of this practice is that it helps

Development management see that business goals are not

achieved simply because features have been marked as

“done.” Instead, the feature is only done when it is

performing as designed in production, without causing

excessive escalations or unplanned work for either

Development or Operations.†

is practice is equally applicable for market-oriented

teams responsible for both developing the feature and

running it in production, and for functionally oriented teams.

As Arup Chakrabarti, Operations Engineering Manager at

PagerDuty, observed during a 2014 presentation, “It’s

becoming less and less common for companies to have

dedicated on-call teams; instead, everyone who touches

production code and environments is expected to be

reachable in the event of downtime.”8

Regardless of how we’ve organized our teams, the

underlying principles remain the same: when developers get

feedback on how their applications perform in production,

which includes �xing it when it breaks, they become closer to

the customer. is creates a buy-in that everyone in the value

stream bene�ts from.

Have Developers Follow Work Downstream

One of the most powerful techniques in interaction and user

experience design (UX) is contextual inquiry. is is when the

product team watches a customer use the application in their

natural environment, often working at their desk. Doing so

often uncovers startling ways that customers struggle with

the application, such as requiring scores of clicks to perform

simple tasks in their daily work, cutting and pasting text

from multiple screens, or writing down notes on paper. All of

these are examples of compensatory behaviors and

workarounds for usability issues.

e most common reaction for developers after

participating in a customer observation is dismay, often

stating, “How awful it was seeing the many ways we have

been in�icting pain on our customers.” ese customer

observations almost always result in signi�cant learning and

a fervent desire to improve the situation for the customer.

Our goal is to use this same technique to observe how our

work affects our internal customers. Developers should

follow their work downstream, so they can see how

downstream work centers must interact with their product to

get it running in production.‡

Developers want to follow their work downstream—by

seeing customer difficulties �rsthand, they make better and

more informed decisions in their daily work. By doing this,

we create feedback on the non-functional aspects of our code

—all the elements that are not related to the customer-facing

feature—and identify ways that we can improve

deployability, manageability, operability, and so on.

UX observation often has a powerful impact on the

observers. When describing his �rst customer observation,

Gene Kim, the founder and CTO at Tripwire for thirteen

years and co-author of this book, says:

One of the worst moments of my professional career

was in 2006 when I spent an entire morning watching

one of our customers use our product. I was watching

him perform an operation that we expected customers

to do weekly, and, to our extreme horror, we discovered

that it required sixty-three clicks. is person kept

apologizing, saying things like, “Sorry, there’s probably a

better way to do this.”

Unfortunately, there wasn’t a better way to do that

operation. Another customer described how initial

product setup took 1,300 steps. Suddenly, I understood

why the job of managing our product was always

assigned to the newest engineer on the team—no one

wanted the job of running our product. at was one of

the reasons I helped create the UX practice at my

company, to help atone for the pain we were inflicting

on our customers.

UX design enables the creation of quality at the source

and results in far greater empathy for fellow team members

in the value stream. Ideally, UX design helps us as we create

codi�ed non-functional requirements to add to our shared

backlog of work, eventually allowing us to proactively

integrate them into every service we build, which is an

important part of creating a DevOps work culture.§

Have Developers Initially Self-Manage Their

Production Service

Even when Developers are writing and running their code in

production-like environments in their daily work, Operations

may still experience disastrous production releases because it

is the �rst time we actually see how our code behaves during

a release and under true production conditions. is result

occurs because operational learnings often happen too late in

the software life cycle.

Left unaddressed, the result is often production software

that is difficult to operate. As an anonymous Ops engineer

once said

In our group, most system administrators lasted only

six months. ings were always breaking in production,

the hours were insane, and application deployments

were painful beyond belief—the worst part was pairing

the application server clusters, which would take us six

hours. During each moment, we all felt like the

developers personally hated us.10

is can be an outcome of not having enough Ops

engineers to support all the product teams and the services

we already have in production, which can happen in both

functionally and market-oriented teams.

One potential countermeasure is to do what Google does,

which is have Development groups self-manage their services

in production to prove they are stable before they become

eligible for an SRE (site reliability engineering) team to

manage. By having developers be responsible for deployment

and production support, we are far more likely to have a

smooth transition to Operations.¶

To prevent the possibility of problematic, self-managed

services going into production and creating organizational

risk, we may de�ne launch requirements that must be met in

order for services to interact with real customers and be

exposed to real production traffic. Furthermore, to help the

product teams, Ops engineers should act as consultants to

help them make their services production-ready.

By creating launch guidance, we help ensure that every

product team bene�ts from the cumulative and collective

experience of the entire organization, especially Operations.

Launch guidance and requirements will likely include the

following:11

• Defect counts and severity: Does the application

actually perform as designed?

• Type/frequency of pager alerts: Is the application

generating an unsupportable number of alerts in

production?

• Monitoring coverage: Is the coverage of monitoring

sufficient to restore service when things go wrong?

• System architecture: Is the service loosely coupled

enough to support a high rate of changes and

deployments in production?

• Deployment process: Is there a predictable,

deterministic, and sufficiently automated process to

deploy code into production?

• Production hygiene: Is there evidence of enough

good production habits that would allow production

support to be managed by anyone else?

Super�cially, these requirements may appear similar to

traditional production checklists we have used in the past.

However, the key differences are that we require effective

monitoring to be in place, deployments to be reliable and

deterministic, and architecture to be built that supports fast

and frequent deployments.

If any de�ciencies are found during the review, the

assigned Ops engineer should help the feature team resolve

the issues or even help re-engineer the service if necessary, so

that it can be easily deployed and managed in production.

At this time, we may also want to learn whether this

service is subject to any regulatory compliance objectives or if

it is likely to be in the future:

• Does the service generate a signi�cant amount of

revenue? (For example, if it is more than 5% of total

revenue of a publicly held US corporation, it is a

“signi�cant account” and in scope for compliance with

Section 404 of the Sarbanes-Oxley Act of 2002

[SOX].)

• Does the service have high user traffic or have high

outage/impairment costs? (i.e., do operational issues

risk creating availability or reputational risk?)

• Does the service store payment cardholder

information (such as credit card numbers) or

personally identi�able information (such as Social

Security numbers or patient care records)? Are there

other security issues that could create regulatory,

contractual obligation, privacy, or reputation risk?

• Does the service have any other regulatory or

contractual compliance requirements associated with

it, such as US export regulations, PCI-DSS, HIPAA,

and so forth?

is information helps ensure that we effectively manage

not only the technical risks associated with this service, but

also any potential security and compliance risks. It also

provides essential input into the design of the production

control environment.

Figure 16.2: e “Service Handback” at Google

Source: “SRE@Google: ousands of DevOps Since 2004,” YouTube video, 45:57,

posted by USENIX, January 12, 2012, https://www.youtube.com/watch?

v=iIuTnhdTzK0.

By integrating operability requirements into the earliest

stages of the development process and having Development

initially self-manage their own applications and services, the

process of transitioning new services into production

becomes smoother, easier, and more predictable to complete.

However, for services already in production, we need a

different mechanism to ensure that Operations is never stuck

with an unsupportable service in production. is is

especially relevant for functionally oriented Operations

organizations.

In this step, we may create a service handback mechanism—

in other words, when a production service becomes

sufficiently fragile, Operations has the ability to return

production support responsibility back to Development.

When a service goes back into a developer-managed state,

the role of Operations shifts from production support to

https://www.youtube.com/watch?v=iIuTnhdTzK0

consultation, helping the team make the service production

ready.

is mechanism serves as our pressure escape valve,

ensuring that we never put Operations in a situation where

they are trapped into managing a fragile service while an

ever-increasing amount of technical debt buries them and

ampli�es a local problem into a global problem. is

mechanism also helps ensure that Operations has enough

capacity to work on improvement work and preventive

projects.

e handback remains a long-standing practice at Google

and is perhaps one of the best demonstrations of the mutual

respect between Dev and Ops engineers. By doing this,

Development is able to quickly generate new services, with

Ops engineers joining the team when the services become

strategically important to the company and, in rare cases,

handing them back when they become too troublesome to

manage in production.** e following case study of site

reliability engineering at Google describes how the handoff

readiness review and launch readiness review processes

evolved, and the bene�ts that resulted.

CASE

STUDY

The Launch and HandOff Readiness Review at Google

(2010)

One of the many surprising facts about Google is that

they have a functional orientation for their Ops

engineers, who are referred to as “site reliability

engineers” (SRE), a term coined by Ben Treynor Sloss in

2004. That year, Treynor Sloss started off with a staff of

seven SREs that grew to over 1,200 SREs by 2014. † † As

Treynor Sloss said, “If Google ever goes down, it’s my

fault.” Treynor Sloss has resisted creating a single

sentence definition of what SREs are, but he once

described SREs as “what happens when a soware

engineer is tasked with what used to be called

operations.”12

Every SRE reports to Treynor Sloss’s organization to

help ensure consistency of quality of staffing and hiring,

and they are embedded into product teams across

Google (which also provide their funding). However,

SREs are still so scarce they are assigned only to the

product teams that have the highest importance to the

company or those that must comply with regulatory

requirements. Furthermore, those services must have

low operational burden. Products that don’t meet the

necessary criteria remain in a developer-managed state.

Even when new products become important enough

to the company to warrant being assigned an SRE,

developers still must have self-managed their service in

production for at least six months before it becomes

eligible to have an SRE assigned to the team.13

To help ensure that these self-managed product

teams can still benefit from the collective experience of

the SRE organization, Google created two sets of safety

checks for two critical stages of releasing new services

called the launch readiness review and the handoff

readiness review (LRR and HRR, respectively).

The LRR must be performed and approved before

any new Google service is made publicly available to

customers and receives live production traffic, while the

HRR is performed when the service is transitioned to an

Ops-managed state, usually months aer the LRR. The

LRR and HRR checklists are similar, but the HRR is far

more stringent and has higher acceptance standards,

while the LRR is self-reported by the product teams.

Any product team going through an LRR or HRR has

an SRE assigned to them to help them understand the

requirements and to help them achieve those

requirements. The LRR and HRR launch checklists have

evolved over time so every team can benefit from the

collective experiences of all previous launches, whether

successful or unsuccessful. Tom Limoncelli noted during

his “SRE@Google: Thousands of DevOps Since 2004”

presentation in 2012, “Every time we do a launch, we

learn something. There will always be some people who

are less experienced than others doing releases and

launches. The LRR and HRR checklists are a way to

create that organizational memory.”14

Requiring product teams to self-manage their own

services in production forces Development to walk in

the shoes of Ops, but guided by the LRR and HRR, which

not only makes service transition easier and more

predictable but also helps create empathy between

upstream and downstream work centers.

Limoncelli noted, “In the best case, product teams

have been using the LRR checklist as a guideline,

working on fulfilling it in parallel with developing their

service, and reaching out to SREs to get help when they

need it.”15

Furthermore, Limoncelli observed,

The teams that have the fastest HRR

production approval are the ones that worked

with SREs earliest, from the early design

stages up until launch. And the great thing is,

it’s always easy to get an SRE to volunteer to

help with your project. Every SRE sees value

in giving advice to project teams early, and

will likely volunteer a few hours or days to do

just that.16

Figure 16.3: e LRR and HRR at Google

Source: “SRE@Google: ousands of DevOps Since 2004,” YouTube video,

45:57, posted by USENIX, January 12, 2012,

https://www.youtube.com/watch?v=iIuTnhdTzK0.

The practice of SREs helping product teams early is

an important cultural norm that is continually reinforced

at Google. Limoncelli explained, “Helping product teams

is a long-term investment that will pay off many months

later when it comes time to launch. It is a form of ‘good

citizenship’ and ‘community service’ that is valued, it is

routinely considered when evaluating engineers for SRE

promotions.”17

At Google, having product teams self manage

their own services brings learning to the front,

giving them valuable insight into how their code

behaves in true production conditions. This

https://www.youtube.com/watch?v=iIuTnhdTzK0

practice also strengthens the relationship and

understanding between Dev and Ops, creating a

cultural feedback loop.

Conclusion

In this chapter, we discussed the feedback mechanisms that

enable us to improve our service at every stage of our daily

work, whether it is deploying changes into production, �xing

code when things go wrong and paging engineers, having

developers follow their work downstream, creating non-

functional requirements that help development teams write

more production-ready code, or even handing problematic

services back to be self-managed by Development.

By creating these feedback loops, we make production

deployments safer, increase the production readiness of code

created by Development, and help create a better working

relationship between Development and Operations by

reinforcing shared goals, responsibilities, and empathy.

In the next chapter, we explore how telemetry can enable

hypothesis-driven development and A/B testing to perform

experiments that help us achieve our organizational goals

and win in the marketplace.

* By doing this, and by using the required architecture, we “optimize for MTTR,

instead of MTBF,” a popular DevOps maxim to describe our desire to optimize

for recovering from failures quickly, as opposed to attempting to prevent failures.

† ITIL defines warranty as when a service can run in production reliably without

intervention for a predefined period of time (e.g., two weeks). is definition of

warranty should ideally be integrated into our collective definition of “done.”

‡ By following work downstream, we may uncover ways to help improve flow, such

as automating complex, manual steps (e.g., pairing application server clusters

that require six hours to successfully complete); performing packaging of code

once instead of creating it multiple times at different stages of QA and

Production deployment; working with testers to automate manual test suites,

thus removing a common bottleneck for more frequent deployment; and creating

more useful documentation instead of having someone decipher developer

application notes to build packaged installers.

§ More recently, Jeff Sussna attempted to further codify how to better achieve UX

goals in what he calls “digital conversations,” which are intended to help

organizations understand the customer journey as a complex system, broadening

the context of quality. e key concepts include designing for service, not

soware; minimizing latency and maximizing strength of feedback; designing for

failure and operating to learn; using Operations as an input to design; and

seeking empathy.9

¶ We further increase the likelihood of production problems being fixed by

ensuring that the Development teams remain intact and not disbanded aer the

project is complete.

** In organizations with project-based funding, there may be no developers to hand

the service back to, as the team has already been disbanded or may not have the

budget or time to take on service responsibility. Potential countermeasures

include holding an improvement blitz to improve the service, temporarily

funding or staffing improvement efforts, or retiring the service.

†† In this book, we use the term “Ops engineer,” but the two terms, “Ops engineer”

and “site reliability engineer,” are intended to be interchangeable.

A

17
INTEGRATE HYPOTHESIS-DRIVEN
DEVELOPMENT AND A/B TESTING INTO OUR
DAILY WORK

ll too often in software projects, developers work on

features for months or years spanning multiple releases

without ever con�rming whether the desired business

outcomes are being met, such as whether a particular feature

is achieving the desired results or even being used at all.

Worse, even when we discover that a given feature isn’t

achieving the desired results, making corrections to the

feature may be out-prioritized by other new features,

ensuring that the under-performing feature will never

achieve its intended business goal. In general, Jez Humble,

co-author of this book, observes, “the most inefficient way to

test a business model or product idea is to build the complete

product to see whether the predicted demand actually

exists.”1

Before we build a feature, we should rigorously ask

ourselves, “Should we build it and why?” We should then

perform the cheapest and fastest experiments possible to

validate through user research whether the intended feature

will actually achieve the desired outcomes. We can use

techniques such as hypothesis-driven development, customer

acquisition funnels, and A/B testing, concepts we explore

throughout this chapter. Intuit, Inc. provides a dramatic

example of how organizations use these techniques to create

products that customers love, to promote organizational

learning, and to win in the marketplace.

Hypothesis-Driven Development at Intuit, Inc. (2012)

Intuit is focused on creating business and �nancial

management solutions to simplify life for small businesses,

consumers, and accounting professionals. In 2012, they had

$4.5 billion in revenue and 8,500 employees, with �agship

products that include QuickBooks, TurboTax, Mint, and, until

recently, Quicken.2*

Scott Cook, the founder of Intuit, has long advocated

building a culture of innovation, encouraging teams to take

an experimental approach to product development, and

exhorting leadership to support them. As he said, “Instead of

focusing on the boss’s vote … the emphasis is on getting real

people to really behave in real experiments and basing your

decisions on that.”3 is is the epitome of a scienti�c

approach to product development.

Cook explained that what is needed is “a system where

every employee can do rapid, high-velocity experiments… .

Dan Maurer runs our consumer division… . [which] runs the

TurboTax website. When he took over, we did about seven

experiments a year.”4

He continued, “By installing a rampant innovation culture

[in 2010], they now do 165 experiments in the three months

of the [US] tax season. Business result? [e] conversion rate

of the website is up 50 percent… . e folks [team members]

just love it, because now their ideas can make it to market.”5

Aside from the effect on the website conversion rate, one

of the most surprising elements of this story is that TurboTax

performed production experiments during their peak traffic

seasons. For decades, especially in retailing, the risk of

revenue-impacting outages during the holiday season were so

high that they would often put into place a change freeze

from mid-October to mid-January.

However, by making software deployments and releases

fast and safe, the TurboTax team made online user

experimentation and any required production changes a low-

risk activity that could be performed during the highest

traffic and revenue-generating periods.

is highlights the notion that the period when

experimentation has the highest value is during peak traffic

seasons. Had the TurboTax team waited until April 16th, the

day after the US tax �ling deadline, to implement these

changes, the company could have lost many of its prospective

customers, and even some of its existing customers, to the

competition.

e faster we can experiment, iterate, and integrate

feedback into our product or service, the faster we can learn

and out-experiment the competition. And how quickly we can

integrate our feedback depends on our ability to deploy and

release software.

e Intuit example shows that the Intuit TurboTax team

was able to make this situation work for them and won in the

marketplace as a result.

A Brief History of A/B Testing

As the Intuit TurboTax story highlights, an extremely

powerful user research technique is de�ning the customer

acquisition funnel and performing A/B testing. A/B testing

techniques were pioneered in direct response marketing, which

is one of the two major categories of marketing strategies.

e other is called mass marketing or brand marketing and

often relies on placing as many ad impressions in front of

people as possible to in�uence buying decisions.

In previous eras, before email and social media, direct

response marketing meant sending thousands of postcards or

�yers via postal mail and asking prospects to accept an offer

by calling a telephone number, returning a postcard, or

placing an order.6

In these campaigns, experiments were performed to

determine which offer had the highest conversion rates. ey

experimented with modifying and adapting the offer,

rewording the offer, varying the copywriting styles, design

and typography, packaging, and so forth to determine which

was most effective in generating the desired action (e.g.,

calling a phone number, ordering a product).

Each experiment often required doing another design and

print run, mailing out thousands of offers, and waiting weeks

for responses to come back. Each experiment typically cost

tens of thousands of dollars per trial and required weeks or

months to complete. However, despite the expense, iterative

testing easily paid off if it signi�cantly increased conversion

rates (e.g., the percentage of respondents ordering a product

going from 3–12%).

Well-documented cases of A/B testing include campaign

fundraising, internet marketing, and the Lean Startup

methodology. Interestingly, it has also been used by the

British government to determine which letters were most

effective in collecting overdue tax revenue from delinquent

citizens.7†

Integrating A/B Testing into Our Feature Testing

e most commonly used A/B technique in modern UX

practice involves a website where visitors are randomly

selected to be shown one of two versions of a page, either a

control (the “A”) or a treatment (the “B”). Based on statistical

analysis of the subsequent behavior of these two cohorts of

users, we demonstrate whether there is a signi�cant

difference in the outcomes of the two, establishing a causal

link between the treatment (e.g., a change in a feature, design

element, background color) and the outcome (e.g., conversion

rate, average order size).

For example, we may conduct an experiment to see

whether modifying the text or color on a “buy” button

increases revenue or whether slowing down the response

time of a website (by introducing an arti�cial delay as the

treatment) reduces revenue. is type of A/B testing allows

us to establish a dollar value on performance improvements.

Sometimes, A/B tests are also known as online controlled

experiments and split tests. It’s also possible to run

experiments with more than one variable. is allows us to

see how the variables interact, a technique known as

multivariate testing.

e outcomes of A/B tests are often startling. Dr. Ronny

Kohavi, previous Distinguished Engineer and General

Manager of the Analysis and Experimentation group at

Microsoft, observed that after “evaluating well-designed and

executed experiments that were designed to improve a key

metric, only about one-third were successful at improving the

key metric!”8 In other words, two-thirds of features either

have a negligible impact or actually make things worse.

Kohavi goes on to note that all these features were originally

thought to be reasonable, good ideas, further elevating the

need for user testing over intuition and expert opinions.9

CONTINUOUS

LEARNING

If you’re interested in more detail about

experiment design and A/B testing, check out

Trustworthy Online Controlled Experiments: A

Practical Guide to A/B Testing, from authors Dr.

Diane Tang, Dr. Ron Kohavi, and Dr. Ya Xu.

e authors share stories from several

companies that used online experimentation

and A/B testing to improve their products. e

book also includes tips and tricks so anyone

can improve their products and services using

trusted experiments and not poorly informed

data that may lead them astray.

e implications of Dr. Kohavi’s data are staggering. If we

are not performing user research, the odds are that two-

thirds of the features we are building deliver zero or negative

value to our organization, even as they make our codebase

ever more complex, thus increasing our maintenance costs

over time and making our software more difficult to change.

Furthermore, the effort to build these features is often

made at the expense of delivering features that would deliver

value (i.e., opportunity cost). Jez Humble joked, “Taken to an

extreme, the organization and customers would have been

better off giving the entire team a vacation, instead of

building one of these non–value-adding features.”10

Our countermeasure is to integrate A/B testing into the

way we design, implement, test, and deploy our features.

Performing meaningful user research and experiments

ensures that our efforts help achieve our customer and

organizational goals, and help us win in the marketplace.

Integrate A/B Testing into Our Release

Fast and iterative A/B testing is made possible by being able

to quickly and easily do production deployments on demand,

using feature toggles, and potentially delivering multiple

versions of our code simultaneously to customer segments.

Doing this requires useful production telemetry at all levels

of the application stack.

By hooking into our feature toggles, we can control which

percentage of users see the treatment version of an

experiment. For example, we may have one-half of our

customers be our treatment group and one-half get shown

the following: “Similar items link on unavailable items in the

cart.” As part of our experiment, we compare the behavior of

the control group (no offer made) against the treatment

group (offer made), perhaps measuring the number of

purchases made in that session.

Etsy open-sourced their experimentation framework

Feature API (formerly known as the Etsy A/B API), which not

only supports A/B testing but also online ramp-ups, enabling

throttling exposure to experiments. Other A/B testing

products include Optimizely, Google Analytics, etc. In a 2014

interview with Kendrick Wang of Apptimize, Lacy Rhoades at

Etsy described their journey:

Experimentation at Etsy comes from a desire to make

informed decisions, and ensure that when we launch

features for our millions of members, they work. Too

often, we had features that took a lot of time and had to

be maintained without any proof of their success or any

popularity among users. A/B testing allows us to … say

a feature is worth working on as soon as it’s

underway.11

Integrating A/B Testing into Our Feature Planning

Once we have the infrastructure to support A/B feature

release and testing, we must ensure that product owners

think about each feature as a hypothesis and use our

production releases as experiments with real users to prove

or disprove that hypothesis. Constructing experiments

should be designed in the context of the overall customer

acquisition funnel. Barry O’Reilly, co-author of Lean

Enterprise: How High Performance Organizations Innovate at

Scale, described how we can frame hypotheses in feature

development in the following form:12

• We believe increasing the size of hotel images on the

booking page

• Will result in improved customer engagement and

conversion

• We will have confidence to proceed when we see a

5% increase in customers who review hotel images

who then proceed to book in forty-eight hours.

Adopting an experimental approach to product

development requires us to not only break down work into

small units (stories or requirements) but also validate

whether each unit of work is delivering the expected

outcomes. If it does not, we modify our road map of work

with alternative paths that will actually achieve those

outcomes.

CASE

STUDY

Doubling Revenue Growth through Fast Release Cycle

Experimentation at Yahoo! Answers (2010)

In 2009, Jim Stoneham was General Manager of the

Yahoo! Communities group that included Flickr and

Answers. Previously, he had been primarily responsible

for Yahoo! Answers, competing against other Q&A

companies such as Quora, Aardvark, and Stack

Exchange.13

At that time, Answers had approximately 140 million

monthly visitors, with over twenty million active users

answering questions in over twenty different languages.

However, user growth and revenue had fla�ened, and

user engagement scores were declining.14

Stoneham observes that,

Yahoo Answers was and continues to be one

of the biggest social games on the Internet;

tens of millions of people are actively trying

to “level up” by providing quality answers to

questions faster than the next member of the

community. There were many opportunities

to tweak the game mechanic, viral loops, and

other community interactions. When you’re

dealing with these human behaviors, you’ve

got to be able to do quick iterations and

testing to see what clicks with people.15

He continues,

These [experiments] are the things that

Twi�er, Facebook, and Zynga did so well.

Those organizations were doing experiments

at least twice per week—they were even

reviewing the changes they made before their

deployments, to make sure they were still on

track. So here I am, running [the] largest Q&A

site in the market, wanting to do rapid

iterative feature testing, but we can’t release

any faster than once every 4 weeks. In

contrast, the other people in the market had a

feedback loop 10x faster than us.16

Stoneham observed that as much as product owners

and developers talk about being metrics-driven, if

experiments are not performed frequently (daily or

weekly), the focus of daily work is merely on the feature

they’re working on, as opposed to customer outcomes.17

As the Yahoo! Answers team was able to move to

weekly deployments, and later multiple deployments

per week, their ability to experiment with new features

increased dramatically. Their astounding achievements

and learnings over the next twelve months of

experimentation included increased monthly visits by

72%, increased user engagement by threefold, and

doubled the team’s revenue.18

To continue their success, the team focused on

optimizing the following top metrics:

• Time to first answer: How quickly was an

answer posted to a user question?

• Time to best answer: How quickly did the user

community award a best answer?

• Upvotes per answer: How many times was an

answer upvoted by the user community?

• Answers per week per person: How many

answers were users creating?

• Second search rate: How oen did visitors

have to search again to get an answer? (Lower

is be�er.)

Stoneham concluded, “This was exactly the learning

that we needed to win in the marketplace—and it

changed more than our feature velocity. We transformed

from a team of employees to a team of owners. When

you move at that speed, and are looking at the numbers

and the results daily, your investment level radically

changes.”19

This story from Yahoo! Answers demonstrates

how dramatically outcomes can be affected by

faster cycle times. The faster we can iterate and

integrate feedback into the product or service we

are delivering to customers, the faster we can

learn and the bigger the impact we can create.

Conclusion

Success requires us to not only deploy and release software

quickly but also to out-experiment our competition.

Techniques such as hypothesis-driven development, de�ning

and measuring our customer acquisition funnel, and A/B

testing allow us to perform user experiments safely and

easily, enabling us to unleash creativity and innovation and

create organizational learning. And, while succeeding is

important, the organizational learning that comes from

experimentation also gives employees ownership of business

objectives and customer satisfaction. In the next chapter, we

examine and create review and coordination processes as a

way to increase the quality of our current work.

* In 2016, Intuit sold the Quicken business to the private equity firm HIG Capital.

†ere are many other ways to conduct user research before embarking on

development. Among the most inexpensive methods include performing surveys,

creating prototypes (either mock-ups using tools such as Balsamiq or interactive

versions written in code), and performing usability testing. Alberto Savoia,

Director of Engineering at Google, coined the term pretotyping for the practice of

using prototypes to validate whether we are building the right thing. User research

is so inexpensive and easy relative to the effort and cost of building a useless

feature in code that, in almost every case, we shouldn’t prioritize a feature without

some form of validation.

I

18
CREATE REVIEW AND COORDINATION
PROCESSES TO INCREASE QUALITY OF OUR
CURRENT WORK

n the previous chapters, we created the telemetry

necessary to see and solve problems in production and at

all stages of our deployment pipeline and created fast

feedback loops from customers to help enhance

organizational learning—learning that encourages ownership

and responsibility for customer satisfaction and feature

performance, which help us succeed.

Our goal in this chapter is to enable Development and

Operations to reduce the risk of production changes before

they are made. Traditionally, when we review changes for

deployment, we tend to rely heavily on reviews, inspections,

and approvals just prior to deployment. Frequently, those

approvals are given by external teams who are often too far

removed from the work to make informed decisions on

whether a change is risky or not, and the time required to get

all the necessary approvals also lengthens our change lead

times.

Peer Review at GitHub (2011)

e peer review process at GitHub is a striking example of

how inspection can increase quality, make deployments safe,

and be integrated into the �ow of everyone’s daily work.

GitHub pioneered the process called pull request, one of the

most popular forms of peer review that span Dev and Ops.

Scott Chacon, CIO and co-founder of GitHub, wrote on

his website that pull requests are the mechanism that lets

engineers tell others about changes they have pushed to a

repository on GitHub. Once a pull request is sent, interested

parties can review the set of changes, discuss potential

modi�cations, and even push follow-up commits if necessary.

Engineers submitting a pull request will often request a “+1,”

“+2,” or so forth, depending on how many reviews they need,

or “@mention” engineers that they’d like to get reviews from.1

At GitHub, pull requests are also the mechanism used to

deploy code into production through a collective set of

practices they call “GitHub Flow”—it’s how engineers request

code reviews, gather and integrate feedback, and announce

that code will be deployed to production (i.e., “master”

branch).

Figure 18.1: Comments and Suggestions on a GitHub Pull

Request

Source: Scott Chacon, “GitHub Flow,” ScottChacon.com, August 31, 2011,

http://scottchacon.com/2011/08/31/github-�ow.html.

GitHub Flow is composed of �ve steps:

1. To work on something new, the engineer creates a

descriptively named branch off of master (e.g., “new-

http://scottchacon.com/
http://scottchacon.com/2011/08/31/github-flow.html

oauth2-scopes”).

2. e engineer commits to that branch locally, regularly

pushing their work to the same named branch on the

server.

3. When they need feedback or help, or when they think

the branch is ready for merging, they open a pull

request.

4. When they get their desired reviews and get any

necessary approvals of the feature, the engineer can

then merge it into master.

5. Once the code changes are merged and pushed to

master, the engineer deploys them into production.

ese practices, which integrate review and coordination

into daily work, have allowed GitHub to quickly and reliably

deliver features to market with high quality and security. For

example, in 2012 they performed an amazing 12,602

deployments. In particular, on August 23rd, after a company-

wide summit where many exciting ideas were brainstormed

and discussed, the company had their busiest deployment day

of the year, with 563 builds and 175 successful deployments

into production, all made possible through the pull request

process.2

roughout this chapter, we will integrate practices, such

as those used at GitHub, to shift our reliance away from

periodic inspections and approvals and move to integrated

peer review performed continually as a part of our daily work.

Our goal is to ensure that Development, Operations, and

Infosec are continuously collaborating so that changes we

make to our systems will operate reliably, securely, safely, and

as designed.

The Dangers of Change Approval Processes

e Knight Capital failure is one of the most prominent

software deployment errors in recent memory. A �fteen-

minute deployment error resulted in a $440 million trading

loss, during which the engineering teams were unable to

disable the production services. e �nancial losses

jeopardized the �rm’s operations and forced the company to

be sold over the weekend so they could continue operating

without jeopardizing the entire �nancial system.3

John Allspaw observed that when high-pro�le incidents

occur, such as the Knight Capital deployment accident, there

are typically two counterfactual narratives for why the

accident occurred.4*

e �rst narrative is that the accident was due to a change

control failure, which seems valid because we can imagine a

situation where better change control practices could have

detected the risk earlier and prevented the change from going

into production. And if we couldn’t prevent it, we might have

taken steps to enable faster detection and recovery.

e second narrative is that the accident was due to a

testing failure. is also seems valid: with better testing

practices we could have identi�ed the risk earlier and

canceled the risky deployment or we could have at least taken

steps to enable faster detection and recovery.

e surprising reality is that in environments that have

low-trust and command-and-control cultures the outcomes of

these types of change control and testing countermeasures

often result in an increased likelihood that problems will

occur again, potentially with even worse outcomes.

Gene Kim (co-author of this book) describes his

realization that change and testing controls can potentially

have the opposite effect than intended as “one of the most

important moments of my professional career. is ‘aha’

moment was the result of a conversation in 2013 with John

Allspaw and Jez Humble about the Knight Capital accident,

making me question some of my core beliefs that I’ve formed

over the last ten years, especially having been trained as an

auditor.”

He continues, “However upsetting it was, it was also a

very formative moment for me. Not only did they convince

me that they were correct, we tested these beliefs in the 2014

State of DevOps Report, which led to some astonishing

�ndings that reinforce that building high-trust cultures is

likely the largest management challenge of this decade.”

Potential Dangers of “Overly Controlling Changes”

Traditional change controls can lead to unintended outcomes,

such as contributing to long lead times and reducing the

strength and immediacy of feedback from the deployment

process. In order to understand how these unintended

outcomes happen, let us examine the controls we often put in

place when change control failures occur:

• Adding more questions to the change request form.

• Requiring more authorizations, such as one more level

of management approval (e.g., instead of merely the

VP of Operations approving, we now require that the

CIO also approve) or more stakeholders (e.g., network

engineering, architecture review boards, etc.).

• Requiring more lead time for change approvals so that

change requests can be properly evaluated.

ese controls often add more friction to the deployment

process by multiplying the number of steps and approvals, as

well as increasing batch sizes and deployment lead times,

which we know reduces the likelihood of successful

production outcomes for both Dev and Ops. ese controls

also reduce how quickly we get feedback from our work.

One of the core beliefs in the Toyota Production System is

that “people closest to a problem typically know the most

about it.”5 is becomes more pronounced as the work being

performed and the system the work occurs in become more

complex and dynamic, as is typical in DevOps value streams.

In these cases, creating approval steps from people who are

located further and further away from the work may actually

reduce the likelihood of success. As has been proven time and

again, the further the distance between the person doing the

work (i.e., the change implementer) and the person deciding

to do the work (i.e., the change authorizer), the worse the

outcome.

CONTINUOUS

LEARNING

Research shows that elite organizations do

change approvals quickly, with clarity, and

without friction—and that this contributes to

better software delivery performance. DORA’s

2019 State of DevOps Report found that a clear,

lightweight change process, where developers

are con�dent they can go from “submitted” to

“accepted” for all typical approvals, contributes

to high performance.6 In contrast,

heavyweight change processes, where an

external review board or senior manager is

required for signi�cant changes, has a negative

impact on performance.7 is echoes �ndings

from the 2014 Puppet State of DevOps Report,

which found that high-performing teams

relied more on peer review and less on external

approval of changes.8

In many organizations, change advisory boards serve an

important role in coordinating and governing the delivery

process, but their job should not be to manually evaluate

every change, nor does ITIL mandate such a practice. To

understand why this is the case, consider the predicament of

being on a change advisory board, reviewing a complex

change composed of hundreds of thousands of lines of code

changes and created by hundreds of engineers.

At one extreme, we cannot reliably predict whether a

change will be successful either by reading a hundred-word

description of the change or by merely validating that a

checklist has been completed. At the other extreme, painfully

scrutinizing thousands of lines of code changes is unlikely to

reveal any new insights. Part of this is the nature of making

changes inside of a complex system. Even the engineers who

work inside the codebase as part of their daily work are often

surprised by the side effects of what should be low-risk

changes.

For all these reasons, we need to create effective control

practices that more closely resemble peer review, reducing our

reliance on external bodies to authorize our changes. We also

need to coordinate and schedule changes effectively. We

explore both of these in the next two sections.

CASE STUDY: NEW TO THE

SECOND EDITION

From Six-Eye Principle to Release at Scale at Adidas

(2020)

In November of 2020, aer a tiring year dealing with the

impacts of the Covid-19 pandemic and just before their

peak sales period, Adidas found themselves in crisis

mode. Aer experiencing five really bad outages, it was

clear they had reached their limit. They no longer had

things under control.9

In the year before the crisis, Adidas had experienced

10x growth, increasing digital business revenue by

almost 50%. This growth also meant that they

experienced two to three times more visitors to their

platforms and tracked exponentially more data from

them. This created 10x more technical traffic and load.

Along with this growth, the number of technical teams

and capabilities was constantly growing, as well as the

dependencies among them per Brooke’s Law.10

On a peak day, order rates were reaching three

thousand orders per minute, and Adidas was sending

out 11 billion touchpoints every day. But their strategy

was to double that rate. For hype drop products (special

product releases), they were shooting for 1.5 million hits

per second.11

Going back to November 2020, aer years of growth

and freedom, Adidas had found themselves in the

nightmarish situation where they had to bring three VPs

into a room to approve every single change or release

during the two-month peak sales period.12

Fernando Cornago, Vice President Digital Tech, was

one of those VPs in the room. “I can tell you the reality

of how clueless at the end we were on some of the

details.”13

At that time, Adidas had more than 550 million lines

of code in their ecosystem and almost two thousand

engineers. By the end of the crisis, it was clear they had

to change.14 Thus began a new wave of handling

operations and release management for readiness.

They began by asking three questions on stability:

• How do we detect interruptions as fast as

possible?

• How do we fix interruptions fast?

• And, how do we make sure interruptions don't

even land in the production environment?

They brought in ITIL and SRE practices to help them

answer these questions. And what they began to see

was that interruptions were not affecting only one

product. “And that’s where we realized that everything is

connected,” explains Vikalp Yadav, Senior Director—

Head of Digital SRE Operations.15

They realized they had to look at the value stream as

a thought process. By doing so, they developed the

“%revenue bleed versus net sales” KPI, which measured

the larger impact of an outage. Finally, to ensure they

achieved observability, resilience, and release excellence,

they adopted what they called: release fitness.16

Adidas’s environment had become huge, and the

complexity had grown as well. “Now, it’s not only about

how my system is but also how is the whole

ecosystem?” Andreia O�o, SRE Champion WnM

Services, explains.17 Release processes needed to be

standardized.

They worked with the product teams and service

management team to find a set of KPIs or factors to

check before any release. It began as an Excel

spreadsheet. Each team had to fill out the spreadsheet

before each release to check to see if they had a go or

no-go.

Obviously, this wasn’t a sustainable or well-received

option. Manually filling out a spreadsheet for every

release was tedious and time-consuming. They knew

they needed to find a way to automate the assessment,

which is exactly what they did.

They developed a dashboard that looked at every

release from three different angles: system level (how

my product is), value stream (upsteam/downstream

dependencies, etc.), and environment (platform, events,

etc.). Checking across these three angles, the dashboard

gives a clear go/no-go for release.18

Before anything is released into production, this

automated check is completed. If everything is fine, it

goes into production. If not, the release is stopped and

the team responsible checks the dashboard to see what

the problem is. There might be an event, like Adidas’

hype drop days where no changes are allowed, or it

might be the team doesn’t have any more error budget,

etc.

With their release fitness program, Adidas was able

to build a system that is able to self-adjust and self-

regulate. On the one hand, they have strict release

guidelines. But on the other hand, they have automated

checks and error budgets telling any of their developers

if they can deploy or not. They no longer need three VPs

in a room to approve every change. Last but not least, in

a growing ecosystem where Adidas onboards

approximately one hundred new engineers on a monthly

basis, the release fitness automation massively reduces

their onboarding time

Adidas automated change reviews, ensuring the

quality of the code across numerous

dependencies, without the need for costly and

slow review boards.

Enable Coordination and Scheduling of Changes

Whenever we have multiple groups working on systems that

share dependencies, our changes will likely need to be

coordinated to ensure that they don’t interfere with each

other (e.g., marshaling, batching, and sequencing the

changes). In general, the more loosely coupled our

architecture, the less we need to communicate and coordinate

with other component teams—when the architecture is truly

service oriented, teams can make changes with a high degree

of autonomy, where local changes are unlikely to create global

disruptions.

However, even in a loosely coupled architecture, when

many teams are doing hundreds of independent deployments

per day, there may be a risk of changes interfering with each

other (e.g., simultaneous A/B tests). To mitigate these risks,

we may use chat rooms to announce changes and proactively

�nd collisions that may exist.

For more complex organizations and organizations with

more tightly coupled architectures, we may need to

deliberately schedule our changes, where representatives

from the teams get together, not to authorize changes, but to

schedule and sequence their changes in order to minimize

accidents.

However, certain areas, such as global infrastructure

changes (e.g., core network switch changes) will always have a

higher risk associated with them. ese changes will always

require technical countermeasures, such as redundancy,

failover, comprehensive testing, and (ideally) simulation.

Enable Peer Review of Changes

Instead of requiring approval from an external body prior to

deployment, we may require engineers to get peer reviews of

their changes. In Development, this practice has been called

code review, but it is equally applicable to any change we

make to our applications or environments, including servers,

networking, and databases. e goal is to �nd errors by

having fellow engineers close to the work scrutinize our

changes. is review improves the quality of our changes,

which also creates the bene�ts of cross-training, peer

learning, and skill improvement.

A logical place to require reviews is prior to committing

code to trunk in source control, where changes could

potentially have a team-wide or global impact. At a minimum,

fellow engineers should review our change, but for higher risk

areas, such as database changes or business-critical

components with poor automated test coverage, we may

require further review from a subject matter expert (e.g.,

information security engineer, database engineer) or multiple

reviews (e.g., “+2” instead of merely “+1”).†

e principle of small batch sizes also applies to code

reviews. e larger the size of the change that needs to be

reviewed, the longer it takes to understand and the larger the

burden on the reviewing engineer. As Randy Shoup observed,

“ere is a non-linear relationship between the size of the

change and the potential risk of integrating that change—

when you go from a ten line code change to a one hundred

line code, the risk of something going wrong is more than ten

times higher, and so forth.”19 is is why it’s so essential for

developers to work in small, incremental steps rather than on

long-lived feature branches.

Furthermore, our ability to meaningfully critique code

changes goes down as the change size goes up. As Giray Özil

tweeted, “Ask a programmer to review ten lines of code, he’ll

�nd ten issues. Ask him to do �ve hundred lines, and he’ll say

it looks good.”20

Guidelines for code reviews include:

• Everyone must have someone to review their changes

(e.g., to the code, environment, etc.) before

committing to trunk.

• Everyone should monitor the commit stream of their

fellow team members so that potential con�icts can

be identi�ed and reviewed.

• De�ne which changes qualify as high risk and may

require review from a designated subject matter

expert (e.g., database changes, security-sensitive

modules such as authentication, etc.).‡

• If someone submits a change that is too large to

reason about easily—in other words, you can’t

understand its impact after reading through it a

couple of times, or you need to ask the submitter for

clari�cation—it should be split up into multiple,

smaller changes that can be understood at a glance.

To ensure that we are not merely rubber-stamping

reviews, we may also want to inspect the code review

statistics to determine the number of proposed changes

approved versus not approved, and perhaps sample and

inspect speci�c code reviews.

Code reviews come in various forms:

• Pair programming: Programmers work in pairs (see

section below).

• “Over the shoulder:” One developer looks over the

author’s shoulder as the latter walks through the code.

• Email pass-around: A source code management

system emails code to reviewers automatically after

the code is checked in.

• Tool-assisted code review: Authors and reviewers use

specialized tools designed for peer code review (e.g.,

Gerrit, GitHub pull requests, etc.) or facilities

provided by the source code repositories (e.g., GitHub,

Mercurial, Subversion, as well as other platforms such

as Gerrit, Atlassian Stash, and Atlassian Crucible).

Close scrutiny of changes in many forms is effective in

locating errors previously overlooked. Code reviews can

facilitate increased code commits and production

deployments, and support trunk-based deployment and

continuous delivery at scale, as we will see in the following

case study.

CASE

STUDY

Code Reviews at Google (2010)

As noted earlier in this book, Eran Messeri described

that in 2013 the processes at Google enabled over

thirteen thousand developers to work off of trunk on a

single source code tree, performing over fiy-five

hundred code commits per week, resulting in hundreds

of production deployments per week.21

In 2016, Google’s twenty-five thousand develpers

worldwide were commi�ing sixteen thousand changes

into trunk on a typical workday, with a further twenty-

four thousand changes per day commi�ed by

automated systems.22

This requires considerable discipline from Google

team members and mandatory code reviews, which

cover the following areas:23

• code readability for languages (enforces style

guide)

• ownership assignments for code sub-trees to

maintain consistency and correctness

• code transparency and code contributions

across teams

Figure 18.2 shows how code review lead times are

affected by the size of the change. On the x-axis is the

size of the change and on the y-axis is the lead time

required for the code review process. In general, the

larger the change submi�ed for code reviews, the

longer the lead time required to get the necessary sign-

offs. And the data points in the upper-le corner

represent the more complex and potentially risky

changes that required more deliberation and discussion.

Figure 18.2: Size of Change vs. Lead Time for Reviews

at Google

Source: Ashish Kumar, “Development at the Speed and Scale of Google,”

presentation at QCon, San Francisco, CA, 2010, qconsf.com/sf2010/dl/qcon-

sanfran-

2010/slides/AshishKumar_DevelopingProductsattheSpeedandScaleofGoogle.pdf.

While he was working as a Google engineering

director, Randy Shoup started a personal project to solve

a technical problem that the organization was facing. He

said,

I worked on that project for weeks and finally

got around to asking a subject ma�er expert

to review my code. It was nearly three

thousand lines of code, which took the

reviewer days of work to go through. He told

me, “Please don’t do that to me again.” I was

grateful that this engineer took the time to

http://qconsf.com/sf2010/dl/qcon-sanfran-2010/slides/AshishKumar_DevelopingProductsattheSpeedandScaleofGoogle.pdf

do that. That was also when I learned how to

make code reviews a part of my daily work.24

Google is an excellent example of a company that

employs trunk-based development and

continuous delivery at scale through the use of

code reviews.

Potential Dangers of Doing More Manual Testing and

Change Freezes

Now that we have created peer reviews that reduce our risk,

shortened lead times associated with change approval

processes, and enableed continuous delivery at scale, such as

we saw in the Google case study, let us examine the effects of

how testing countermeasures can sometimes back�re. When

testing failures occur, our typical reaction is to do more

testing. However, if we are merely performing more testing at

the end of the project, we may worsen our outcomes.

is is especially true if we are doing manual testing,

because manual testing is naturally slower and more tedious

than automated testing and performing “additional testing”

often has the consequence of taking signi�cantly longer to

test, which means we are deploying less frequently, thus

increasing our deployment batch size. And we know from

both theory and practice that when we increase our

deployment batch size, our change success rates go down and

our incident counts and MTTR go up—the opposite of the

outcomes we want.

Instead of performing testing on large batches of changes

that are scheduled around change freeze periods, we want to

fully integrate testing into our daily work as part of the

smooth and continual �ow into production and increase our

deployment frequency. By doing this, we build in quality,

which allows us to test, deploy, and release in ever smaller

batch sizes.

Enable Pair Programming to Improve All Our Changes

Pair programming is when two engineers work together at the

same workstation, a method popularized by Extreme

Programming and Agile in the early 2000s. As with code

reviews, this practice started in Development but is equally

applicable to the work that any engineer does in our value

stream.§

In one common pattern of pairing, one engineer �lls the

role of the driver, the person who actually writes the code,

while the other engineer acts as the navigator, observer, or

pointer, the person who reviews the work as it is being

performed. While reviewing, the observer may also consider

the strategic direction of the work, coming up with ideas for

improvements and likely future problems to address. is

frees the driver to focus all of their attention on the tactical

aspects of completing the task, using the observer as a safety

net and guide. When the two have differing specialties, skills

are transferred as an automatic side effect, whether it’s

through ad hoc training or by sharing techniques and

workarounds.

Another pair programming pattern reinforces test-driven

development (TDD) by having one engineer write the

automated test and the other engineer implement the code.

Jeff Atwood, one of the founders of Stack Exchange,

wrote, “I can’t help wondering if pair programming is nothing

more than code review on steroids… . e advantage of pair

programming is its gripping immediacy: it is impossible to

ignore the reviewer when he or she is sitting right next to

you.”25

He continued, “Most people will passively opt out [of

reviewing code] if given the choice. With pair programming,

that’s not possible. Each half of the pair has to understand

the code, right then and there, as it’s being written. Pairing

may be invasive, but it can also force a level of

communication that you’d otherwise never achieve.”26

Dr. Laurie Williams performed a study in 2001 that

showed

paired programmers are 15% slower than two

independent individual programmers, while “error-free”

code increased from 70% to 85%. Since testing and

debugging are often many times more costly than initial

programming, this is an impressive result. Pairs

typically consider more design alternatives than

programmers working alone and arrive at simpler, more

maintainable designs; they also catch design defects

early.27

Dr. Williams also reported that 96% of her respondents

stated that they enjoyed their work more when they

programmed in pairs than when they programmed alone.28¶

Pair programming has the additional bene�t of spreading

knowledge throughout the organization and increasing

information �ow within the team. Having more experienced

engineers review while the less experienced engineer codes is

also an effective way to teach and be taught.

CASE

STUDY

Pair Programming Replacing Broken Code Review

Processes at Pivotal Labs (2011)

Elisabeth Hendrickson, VP of Engineering at Pivotal

Soware, Inc. and author of Explore It!: Reduce Risk and

Increase Confidence with Exploratory Testing, has spoken

extensively about making every team responsible for

their own quality, as opposed to making separate

departments responsible. She argues that doing so not

only increases quality, but significantly increases the

flow of work into production.29

In her 2015 DevOps Enterprise Summit presentation,

she described how in 2011, there were two accepted

methods of code review at Pivotal: pair programming

(which ensured that every line of code was inspected by

two people) or a code review process that was managed

by Gerrit (which ensured that every code commit had

two designated people “+1” the change before it was

allowed into trunk).30

The problem Hendrickson observed with the Gerrit

code review process was that it would oen take an

entire week for developers to receive their required

reviews. Worse, skilled developers were experiencing

the “frustrating and soul-crushing experience of not

being able to get simple changes into the codebase

because we had inadvertently created intolerable

bo�lenecks.”31

Hendrickson lamented that

the only people who had the ability to “+1”

the changes were senior engineers, who had

many other responsibilities and oen didn’t

care as much about the fixes the more junior

developers were working on or their

productivity. It created a terrible situation—

while you were waiting for your changes to

get reviewed, other developers were

checking in their changes. So for a week, you

would have to merge all their code changes

onto your laptop, re-run all the tests to

ensure that everything still worked, and

(sometimes) you’d have to resubmit your

changes for review again!32

To fix the problem and eliminate all of these delays,

they ended up dismantling the entire Gerrit code review

process, instead requiring pair programming to

implement code changes into the system. By doing this,

they reduced the amount of time required to get code

reviewed from weeks to hours.

Hendrickson is quick to note that code reviews work

fine in many organizations, but it requires a culture that

values reviewing code as highly as it values writing the

code in the first place.33

This case study illustrates just one form of code

review. Particularly when the culture is not yet in

place, pair programming can serve as a valuable

interim practice.

Evaluating the Effectiveness of Pull Request Processes

Because the peer review process is an important part of our

control environment, we need to be able to determine

whether it is working effectively or not. One method is to

look at production outages and examine the peer review

process for any relevant changes.

Another method comes from Ryan Tomayko, CIO and co-

founder of GitHub and one of the inventors of the pull

request process. When asked to describe the difference

between a bad pull request and a good pull request, he said it

has little to do with the production outcome. Instead, a bad

pull request is one that doesn’t have enough context for the

reader, having little or no documentation of what the change

is intended to do—for example, a pull request that merely has

the following text: “Fixing issue #3616 and #3841.”34**

at was an actual internal GitHub pull request, which

Tomayko critiqued,

is was probably written by a new engineer here. First

off, no specific engineers were specifically @mentioned

—at a minimum, the engineer should have mentioned

their mentor or a subject matter expert in the area that

they’re modifying to ensure that someone appropriate

reviews their change. Worse, there isn’t any explanation

of what the changes actually are, why it’s important, or

exposing any of the implementer’s thinking.35

On the other hand, when asked to describe a great pull

request that indicates an effective review process, Tomayko

quickly listed off the essential elements: there must be

sufficient detail on why the change is being made, how the

change was made, as well as any identi�ed risks and resulting

countermeasures.36

Tomayko also looks for good discussion of the change,

enabled by all the context that the pull request provided—

often, there will be additional risks pointed out, ideas on

better ways to implement the desired change, ideas on how to

better mitigate the risk, and so forth. And if something bad

or unexpected happens upon deployment, it is added to the

pull request, with a link to the corresponding issue. All

discussion happens without placing blame; instead, there is a

candid conversation on how to prevent the problem from

recurring in the future.

As an example, Tomayko produced another internal

GitHub pull request for a database migration. It was many

pages long, with lengthy discussions about the potential

risks, leading up to the following statement by the pull

request author: “I am pushing this now. Builds are now failing

for the branch, because of a missing column in the CI servers.

(Link to Post-Mortem: MySQL outage).”37

e change submitter then apologized for the outage,

describing what conditions and mistaken assumptions led to

the accident, as well as a list of proposed countermeasures to

prevent it from happening again. is was followed by pages

and pages of discussion. Reading through the pull request,

Tomayko smiled, “Now that is a great pull request.”38

As described above, we can evaluate the effectiveness of

our peer review process by sampling and examining pull

requests, either from the entire population of pull requests or

those that are relevant to production incidents.

Fearlessly Cut Bureaucratic Processes

So far, we have discussed peer review and pair programming

processes that enable us to increase the quality of our work

without relying on external approvals for changes. However,

many companies still have long-standing processes for

approval that require months to navigate. ese approval

processes can signi�cantly increase lead times, not only

preventing us from delivering value quickly to customers, but

potentially increasing the risk to our organizational

objectives. When this happens, we must re-engineer our

processes so that we can achieve our goals more quickly and

safely.

As Adrian Cockcroft observed, “A great metric to publish

widely is how many meetings and work tickets are mandatory

to perform a release—the goal is to relentlessly reduce the

effort required for engineers to perform work and deliver it to

the customer.”39

Similarly, Dr. Tapabrata Pal, technical fellow at Capital

One, described a program at Capital One called Got Goo?,

which involves a dedicated team removing obstacles—

including tools, processes, and approvals—that impede work

completion.40

Jason Cox, Senior Director of Systems Engineering at

Disney, described in his presentation at the DevOps

Enterprise Summit in 2015 a program called Join the

Rebellion that aimed to remove toil and obstacles from daily

work.41

At Target in 2012, a combination of the Technology

Enterprise Adoption Process and Lead Architecture Review

Board (TEAP-LARB process) resulted in complicated, long

approval times for anyone attempting to bring in new

technology. e TEAP form needed to be �lled out by anyone

wanting to propose new technologies to be adopted, such as a

new database or monitoring technologies. ese proposals

were evaluated, and those deemed appropriate were put onto

the monthly LARB meeting agenda.42

Heather Mickman and Ross Clanton, Director of

Development and Director of Operations at Target, Inc.,

respectively, were helping to lead the DevOps movement at

Target. During their DevOps initiative, Mickman had

identi�ed a technology needed to enable an initiative from

the lines of business (in this case, Tomcat and Cassandra).

e decision from the LARB was that Operations could not

support it at the time. However, because Mickman was so

convinced that this technology was essential, she proposed

that her Development team be responsible for service

support as well as integration, availability, and security,

instead of relying on the Operations team.43 Mickman

observed,

As we went through the process, I wanted to better

understand why the TEAP-LARB process took so long

to get through, and I used the technique of “the five

why’s”… . Which eventually led to the question of why

TEAP-LARB existed in the first place. e surprising

thing was that no one knew, outside of a vague notion

that we needed some sort of governance process. Many

knew that there had been some sort of disaster that

could never happen again years ago, but no one could

remember exactly what that disaster was, either.44

Mickman concluded that this process was not necessary

for her group if they were responsible for the operational

responsibilities of the technology she was introducing. She

added, “I let everyone know that any future technologies that

we would support wouldn’t have to go through the TEAP-

LARB process, either.”45

e outcome was that Cassandra was successfully

introduced inside Target and eventually widely adopted.

Furthermore, the TEAP-LARB process was eventually

dismantled. Out of appreciation, her team awarded Mickman

the Lifetime Achievement Award for removing barriers to get

technology work done within Target.46

Conclusion

In this chapter, we discussed how to integrate practices into

our daily work that increase the quality of our changes and

reduce the risk of poor deployment outcomes, reducing our

reliance on approval processes. Case studies from GitHub and

Target show that these practices not only improve our

outcomes but also signi�cantly reduce lead times and

increase developer productivity. To do this kind of work

requires a high-trust culture.

Consider a story that John Allspaw told about a newly

hired junior engineer: e engineer asked if it was okay to

deploy a small HTML change, and Allspaw responded, “I don’t

know, is it?” He then asked “Did you have someone review

your change? Do you know who the best person to ask is for

changes of this type? Did you do everything you absolutely

could to assure yourself that this change operates in

production as designed? If you did, then don’t ask me—just

make the change!”47

By responding this way, Allspaw reminded the engineer

that she was solely responsible for the quality of her change

—if she did everything she felt she could to give herself

con�dence that the change would work, then she didn’t need

to ask anyone for approval, she should make the change.

Creating the conditions that enable change implementers

to fully own the quality of their changes is an essential part of

the high-trust, generative culture we are striving to build.

Furthermore, these conditions enable us to create an ever-

safer system of work, where we are all helping each other

achieve our goals, spanning whatever boundaries necessary

to get there.

* Counterfactual thinking is a term used in psychology that involves the human

tendency to create possible alternatives to life events that have already occurred.

In reliability engineering, it oen involves narratives of the “system as imagined”

as opposed to the “system in reality.”

† In this book, the terms code review and change review will be used

interchangeably.

‡ Incidentally, a list of high-risk areas of code and environments has likely already

been created by the change advisory board.

§ In this book, we will use the term pairing and pair programming interchangeably

to indicate that the practice is not just for developers.

¶ Some organizations may require pair programming, while in others, engineers

find someone to pair program with when working in areas where they want more

scrutiny (such as before checking in) or for challenging tasks. Another common

practice is to set pairing hours for a subset of the working day, perhaps four hours

from mid-morning to mid-aernoon.

** Gene Kim is grateful to Shawn Davenport, James Fryman, Will Farr, and Ryan

Tomayko at GitHub for discussing the differences between good and bad pull

requests.

P
PART IV CONCLUSION

art IV has shown us that by implementing feedback

loops we can enable everyone to work together toward

shared goals, see problems as they occur, and, with quick

detection and recovery, ensure that features not only operate

as designed in production, but also achieve organizational

goals and drive organizational learning. We have also

examined how to enable shared goals spanning Dev and Ops

so that they can improve the health of the entire value

stream.

We are now ready to enter Part V: e ird Way, e

Technical Practices of Learning, so we can create

opportunities for learning that happen earlier and ever more

quickly and cheaply, and so that we can unleash a culture of

innovation and experimentation that enables everyone to do

meaningful work that helps our organization succeed.

Additional Resources

Two white papers that can help you learn more about

feedback and metrics are Measuring Software Quality and

Measure Efficiency, Effectiveness, and Culture to Optimize

DevOps Transformation: Metrics for DevOps Initiatives

(itrevolution.com).

Mark Schwartz, former CIO of the US Center for Immigration

Services, has expert advice on how to cut bloat and make

bureaucracy lean, learning, and enabling in e (Delicate) Art

of Bureaucracy: Digital Transformation with the Monkey, the

Razor, and the Sumo Wrestler.

Elisabeth Hendrickson’s 2015 DevOps Enterprise Summit

presentation “It’s All About Feedback” has a wealth of

information and is always worth a watch

(videolibrary.doesvirtual.com/?video=524439999).

http://itrevolution.com/
http://videolibrary.doesvirtual.com/?video=524439999

You can also learn even more from Elisabeth Hendrickson on

feedback in her interviews with Gene Kim on e Idealcast

podcast. (itrevolution.com/the-idealcast-podcast/.)

Rachel Potvin and Josh Levenberg write more extensively on

Google’s practices in the paper “Why Google Stores Billions of

Lines of Code in a Single Repository”

(https://cacm.acm.org/magazines/2016/7/204032-why-

google-stores-billions-of-lines-of-code-in-a-single-

repository/fulltext).

http://itrevolution.com/the-idealcast-podcast/
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext

I
PART V: INTRODUCTION

n Part III: e First Way: e Technical Practices of Flow,

we discussed implementing the practices required to

create fast �ow in our value stream. In Part IV: e Second

Way: e Technical Practices of Feedback, our goal was to

create as much feedback as possible, from as many areas in

our system as possible—sooner, faster, and cheaper.

In Part V: e ird Way: e Technical Practices of

Continual Learning and Experimentation, we present the

practices that create opportunities for learning as quickly,

frequently, cheaply, and soon as possible. is includes

creating learnings from accidents and failures, which are

inevitable when we work within complex systems, as well as

organizing and designing our systems of work so that we are

constantly experimenting and learning, continually making

our systems safer. e results include higher resilience and an

ever-growing collective knowledge of how our system actually

works, so that we are better able to achieve our goals.

In the following chapters, we will institutionalize rituals

that increase safety, continuous improvement, and learning

by doing the following:

• establish a just culture to make safety possible

• inject production failures to create resilience

• convert local discoveries into global improvements

• reserve time to create organizational improvements

and learning

We will also create mechanisms so that any new learnings

generated in one area of the organization can be rapidly used

across the entire organization, turning local improvements

into global advancements. In this way, we not only learn

faster than our competition, helping us win in the

marketplace, but we also create a safer, more resilient work

culture that people are excited to be a part of and that helps

them achieve their highest potential.

W

19
ENABLE AND INJECT LEARNING INTO DAILY
WORK

hen we work within a complex system, it is

impossible for us to predict all the outcomes for the

actions we take. is contributes to unexpected and

sometimes catastrophic accidents, even when we use static

precautionary tools, such as checklists and runbooks, which

codify our current understanding of the system.

To enable us to safely work within complex systems, our

organizations must become ever-better at self-diagnostics

and self-improvement and must be skilled at detecting

problems, solving them, and multiplying the effects by

making the solutions available throughout the organization.

is creates a dynamic system of learning that allows us to

understand our mistakes and translate that understanding

into actions that helps to prevent those mistakes from

recurring in the future.

e result is what Dr. Steven Spear describes as resilient

organizations who are “skilled at detecting problems, solving

them, and multiplying the effect by making the solutions

available throughout the organization.”1 ese organizations

can heal themselves. “For such an organization, responding

to crises is not idiosyncratic work. It is something that is

done all the time. It is this responsiveness that is their source

of reliability.”2

AWS US-East and Netflix (2011)

A striking example of the incredible resilience that can result

from these principles and practices was seen on April 21,

2011, when an entire availability zone in Amazon Web

Services’ (AWS) US-East region went down, taking down

virtually all of the organizations who depended on it,

including Reddit and Quora.3* However, Net�ix was a

surprising exception, seemingly unaffected by this massive

AWS outage.

Following the event, there was considerable speculation

about how Net�ix kept their services running. A popular

theory ran that since Net�ix was one of the largest customers

of Amazon Web Services, it was given some special treatment

that allowed them to keep running. However, a Net�ix

Engineering blog post explained that their architectural design

decisions in 2009 enabled their exceptional resilience.

Back in 2008, Net�ix’s online video delivery service ran

on a monolithic J2EE application hosted in one of their data

centers. However, starting in 2009, they began re-

architecting this system to be what they called cloud native—

it was designed to run entirely in the Amazon public cloud

and to be resilient enough to survive signi�cant failures.5

One of their speci�c design objectives was to ensure

Net�ix services kept running, even if an entire AWS

availability zone went down, such as what happened with US-

East. To do this required that their system be loosely coupled,

with each component having aggressive timeouts and circuit

breakers† to ensure that failing components didn’t bring the

entire system down.

Instead, each feature and component was designed to

gracefully degrade. For example, during traffic surges that

created CPU-usage spikes, instead of showing a list of movies

personalized to the user, they would show static content,

such as cached or un-personalized results, which required less

computation.6

Furthermore, as the blog post explained, in addition to

implementing these architectural patterns, they also built

and had been running a surprising and audacious service

called Chaos Monkey, which simulated AWS failures by

constantly and randomly killing production servers. ey did

so because they wanted all “engineering teams to be used to a

constant level of failure in the cloud” so that services could

“automatically recover without any manual intervention.”7

In other words, the Net�ix team ran Chaos Monkey to

gain assurance that they had achieved their operational

resilience objectives, constantly injecting failures into their

pre-production and production environments.

As one might expect, when they �rst ran Chaos Monkey

in their production environments, services failed in ways they

never could have predicted or imagined. By constantly �nding

and �xing these issues during normal working hours, Net�ix

engineers quickly and iteratively created a more resilient

service, while simultaneously creating organizational

learnings (during normal working hours!) that enabled them

to evolve their systems far beyond their competition.

Chaos Monkey is just one example of how learning can be

integrated into daily work. e story also shows how learning

organizations think about failures, accidents, and mistakes—

as an opportunity for learning and not something to be

punished. is chapter explores how to create a system of

learning and how to establish a just culture, as well as how to

routinely rehearse and deliberately create failures to

accelerate learning.

Establish a Just, Learning Culture

One of the prerequisites for a learning culture is that when

accidents occur (which they undoubtedly will), the response

to those accidents is seen as “just.” Dr. Sidney Dekker, who

helped codify some of the key elements of safety culture and

coined the term just culture, writes, “When responses to

incidents and accidents are seen as unjust, it can impede

safety investigations, promoting fear rather than

mindfulness in people who do safety-critical work, making

organizations more bureaucratic rather than more careful,

and cultivating professional secrecy, evasion, and self-

protection.”8

is notion of punishment is present, either subtly or

prominently, in the way many managers have operated

during the last century. e thinking goes, in order to achieve

the goals of the organization, leaders must command,

control, establish procedures to eliminate errors, and enforce

compliance of those procedures.

Dr. Dekker calls this notion of eliminating error by

eliminating the people who caused the errors the bad apple

theory. He asserts that this is invalid, because “human error is

not our cause of troubles; instead, human error is a

consequence of the design of the tools that we gave them.”9

If accidents are not caused by “bad apples” but rather are

due to inevitable design problems in the complex system that

we created, then instead of “naming, blaming, and shaming”

the person who caused the failure, our goal should always be

to maximize opportunities for organizational learning,

continually reinforcing that we value actions that expose and

share more widely the problems in our daily work. is is

what enables us to improve the quality and safety of the

system we operate within and reinforce the relationships

between everyone who operates within that system.

By turning information into knowledge and building the

results of the learning into our systems, we start to achieve

the goals of a just culture, balancing the needs for safety and

accountability. As John Allspaw, CTO of Etsy, states, “Our

goal at Etsy is to view mistakes, errors, slips, lapses, and so

forth with a perspective of learning.”10

When engineers make mistakes and feel safe when giving

details about it, they are not only willing to be held

accountable, but also enthusiastic in helping the rest of the

company avoid the same error in the future. is is what

creates organizational learning. On the other hand, if we

punish that engineer, everyone is dis-incentivized to provide

the necessary details to get an understanding of the

mechanism, pathology, and operation of the failure, which

guarantees that the failure will occur again.

Two effective practices that help create a just, learning-

based culture are blameless post-mortems (also called

retrospectives or learning reviews) and the controlled

introduction of failures into production to create

opportunities to practice for the inevitable problems that

arise within complex systems. We will �rst look at a

retrospective and follow that with an exploration of why

failure can be a good thing.

Schedule Retrospective Meetings aer Accidents

Occur

To help enable a just culture, when accidents and signi�cant

incidents occur (e.g., failed deployment, production issue that

affected customers), we should conduct a retrospective after

the incident has been resolved. ‡ Retrospectives help us

examine “mistakes in a way that focuses on the situational

aspects of a failure’s mechanism and the decision-making

process of individuals proximate to the failure.”11

To do this, we conduct the retrospective as soon as

possible after the accident occurs and before memories and

the links between cause and effect fade or circumstances

change. (Of course, we wait until after the problem has been

resolved so as not to distract the people who are still actively

working on the issue.)

In the meeting, we will do the following:

• Construct a timeline and gather details from multiple

perspectives on failures, ensuring we don’t punish

people for making mistakes.

• Empower all engineers to improve safety by allowing

them to give detailed accounts of their contributions

to failures.

• Enable and encourage people who do make mistakes

to be the experts who educate the rest of the

organization on how not to make them in the future.

• Accept that there is always a discretionary space

where humans can decide to take action or not, and

that the judgment of those decisions lies in hindsight.

• Propose countermeasures to prevent a similar

accident from happening in the future and ensure

these countermeasures are recorded with a target date

and an owner for follow-up.

To enable us to gain this understanding, the following

stakeholders need to be present at the meeting:

• the people involved in decisions that may have

contributed to the problem

• the people who identi�ed the problem

• the people who responded to the problem

• the people who diagnosed the problem

• the people who were affected by the problem

• anyone else who is interested in attending the

meeting

Our �rst task in the retrospective is to record our best

understanding of the timeline of relevant events as they

occurred. is includes all actions we took and at what time

(ideally supported by chat logs, such as IRC or Slack), what

effects we observed (ideally in the form of the speci�c metrics

from our production telemetry, as opposed to merely

subjective narratives), all investigation paths we followed,

and what resolutions were considered.

To enable these outcomes, we must be rigorous about

recording details and reinforcing a culture within which

information can be shared without fear of punishment or

retribution. Because of this, especially for our �rst few

retrospectives, it may be helpful to have the meeting led by a

trained facilitator who wasn’t involved in the accident.

During the meeting and the subsequent resolution, we

should explicitly disallow the phrases “would have” or “could

have,” as they are counterfactual statements that result from

our human tendency to create possible alternatives to events

that have already occurred.

Counterfactual statements, such as “I could have … ” or

“If I had known about that, I should have … ,” frame the

problem in terms of the system as imagined instead of in

terms of the system that actually exists, which is the context

we need to restrict ourselves to. (See Appendix 8.)

One of the potentially surprising outcomes of these

meetings is that people will often blame themselves for

things outside of their control or question their own abilities.

Ian Malpass, an engineer at Etsy observes,

In that moment when we do something that causes the

entire site to go down, we get this “ice-water down the

spine” feeling, and likely the first thought through our

head is, “I suck and I have no idea what I’m doing.” We

need to stop ourselves from doing that, as it is route to

madness, despair, and feelings of being an imposter,

which is something that we can’t let happen to good

engineers. e better question to focus on is, “Why did

it make sense to me when I took that action?”12

In the meeting, we must reserve enough time for

brainstorming and deciding which countermeasures to

implement. Once the countermeasures have been identi�ed,

they must be prioritized and given an owner and timeline for

implementation. Doing this further demonstrates that we

value improvement of our daily work more than daily work

itself.

Dan Milstein, one of the principal engineers at Hubspot,

writes that he begins all retrospectives by saying, “We’re

trying to prepare for a future where we’re as stupid as we are

today.”13 In other words, it is not acceptable to have a

countermeasure to merely “be more careful” or “be less

stupid”—instead, we must design real countermeasures to

prevent these errors from happening again.

Examples of such countermeasures include new

automated tests to detect dangerous conditions in our

deployment pipeline, adding further production telemetry,

identifying categories of changes that require additional peer

review, and conducting rehearsals of this category of failure

as part of regularly scheduled game day exercises.

Publish Our Retrospective Reviews as Widely as

Possible

After we conduct a retrospective, we should widely announce

the availability of the meeting notes and any associated

artifacts (e.g., timelines, IRC chat logs, external

communications). is information should (ideally) be placed

in a centralized location where our entire organization can

access it and learn from the incident. Conducting

retrospectives is so important that we may even prohibit

production incidents from being closed until the

retrospective has been completed.

Doing this helps us translate local learnings and

improvements into global learnings and improvements.

Randy Shoup, former engineering director for Google App

Engine, describes how documentation of retrospectives can

have tremendous value to others in the organization: “As you

can imagine at Google, everything is searchable. All the

retrospective documents are in places where other Googlers

can see them. And trust me, when any group has an incident

that sounds similar to something that happened before, these

retrospective documents are among the �rst documents

being read and studied.”14§

Widely publishing retrospectives and encouraging others

in the organization to read them increases organizational

learning. It is also becoming increasingly commonplace for

online service companies to publish retrospectives for

customer-impacting outages. is often signi�cantly

increases the transparency we have with our internal and

external customers, which in turn increases their trust in us.

is desire to conduct as many retrospective meetings as

necessary at Etsy led to some problems—over the course of

four years, Etsy accumulated a large number of post-mortem

meeting notes (retrospectives) in wiki pages, which became

increasingly difficult to search, save, and collaborate from. To

help with this issue, they developed a tool called Morgue to

easily record aspects of each accident, such as the incident

MTTR and severity, better address time zones (which became

relevant as more Etsy employees were working remotely), and

other data, such as rich text in Markdown format, embedded

images, tags, and history.16

Morgue was designed to make it easy for the team to

record:

• whether the problem was due to a scheduled or

unscheduled incident

• the retrospective owner

• relevant IRC chat logs (especially important for 3 AM

issues when accurate note-taking may not happen)

• relevant JIRA tickets for corrective actions and their

due dates (information particularly important to

management)

• links to customer forum posts (where customers

complain about issues)

After developing and using Morgue, the number of

recorded retrospectives at Etsy increased signi�cantly

compared to when they used wiki pages, especially for P2, P3,

and P4 incidents (i.e., lower severity problems).17 is result

reinforced the hypothesis that if they made it easier to

document retrospectives through tools such as Morgue, more

people would record and detail the outcomes of their

retrospective, enabling more organizational learning.

CONTINUOUS

LEARNING

Conducting retrospectives does more than

help us learn from failure. DORA’s 2018 State

of DevOps Report found that they contribute to

our culture, helping teams feel better about

sharing information, taking smart risks, and

understanding the value of learning. In

addition, the research found that elite

performers were 1.5 times more likely to

consistently hold retrospectives and use them

to improve their work—so these elite teams

continue to reap the bene�ts.18

Dr. Amy C. Edmondson, Novartis Professor of Leadership

and Management at Harvard Business School and co-author

of Building the Future: Big Teaming for Audacious Innovation,

writes:

Again, the remedy—which does not necessarily involve

much time and expense—is to reduce the stigma of

failure. Eli Lilly has done this since the early 1990s by

holding “failure parties” to honor intelligent, high-

quality scientific experiments that fail to achieve the

desired results. e parties don’t cost much, and

redeploying valuable resources—particularly scientists

—to new projects earlier rather than later can save

hundreds of thousands of dollars, not to mention

kickstart potential new discoveries.19

Decrease Incident Tolerances to Find Ever-Weaker

Failure Signals

Inevitably, as organizations learn how to see and solve

problems efficiently, they need to decrease the threshold of

what constitutes a problem in order to keep learning. To do

this, we seek to amplify weak failure signals. For example, as

described in Chapter 4, when Alcoa was able to reduce the

rate of workplace accidents so that they were no longer

commonplace, Paul O’Neill, CEO of Alcoa, started to be

noti�ed of accident near-misses in addition to actual

workplace accidents.20

Dr. Spear summarizes O’Neill’s accomplishments at Alcoa

when he writes, “ough it started by focusing on problems

related to workplace safety, it soon found that safety

problems re�ected process ignorance and that this ignorance

would also manifest itself in other problems such as quality,

timeliness, and yield versus scrap.”21

When we work within complex systems, this need to

amplify weak failure signals is critical to averting catastrophic

failures. e way NASA handled failure signals during the

space shuttle era serves as an illustrative example. In 2003,

sixteen days into the Columbia space shuttle mission, it

exploded as it re-entered the earth’s atmosphere. We now

know that a piece of insulating foam had broken off the

external fuel tank during takeoff.

However, prior to Columbia’s re-entry, a handful of mid-

level NASA engineers had reported this incident, but their

voices had gone unheard. ey observed the foam strike on

video monitors during a post-launch review session and

immediately noti�ed NASA’s managers, but they were told

that the foam issue was nothing new. Foam dislodgement had

damaged shuttles in previous launches but had never resulted

in an accident. It was considered a maintenance problem and

not acted upon until it was too late.22

Michael Roberto, Richard M. J. Bohmer, and Amy C.

Edmondson wrote in a 2006 article for Harvard Business

Review how NASA culture contributed to this problem. ey

described how organizations are typically structured in one of

two models: a standardized model, where routine and systems

govern everything, including strict compliance with timelines

and budgets, or an experimental model, where every day, every

exercise and every piece of new information is evaluated and

debated in a culture that resembles a research and design

(R&D) laboratory.23

ey observe, “Firms get into trouble when they apply the

wrong mind-set to an organization [which dictates how they

respond to ambiguous threats or, in the terminology of this

book, weak failure signals]… . By the 1970s, NASA had created

a culture of rigid standardization, promoting to Congress the

space shuttle as a cheap and reusable spacecraft.”24

NASA favored strict process compliance instead of an

experimental model where every piece of information needed

to be evaluated as it occured without bias. e absence of

continuous learning and experimentation had dire

consequences. e authors conclude that it is culture and

mindset that matters, not just “being careful”—as they write,

“vigilance alone will not prevent ambiguous threats [weak

failure signals] from turning into costly (and sometimes

tragic) failures.”25

Our work in the technology value stream, like space

travel, should be approached as a fundamentally

experimental endeavor and managed that way. All work we do

is a potentially important hypothesis and a source of data,

rather than a routine application and validation of past

practice. Instead of treating technology work as entirely

standardized, where we strive for process compliance, we

must continually seek to �nd ever-weaker failure signals so

that we can better understand and manage the system we

operate in.

Redefine Failure and Encourage Calculated Risk-Taking

Leaders of an organization, whether deliberately or

inadvertently, reinforce the organizational culture and values

through their actions. Audit, accounting, and ethics experts

have long observed that the “tone at the top” predicts the

likelihood of fraud and other unethical practices. To reinforce

our culture of learning and calculated risk-taking, we need

leaders to continually reinforce that everyone should feel

both comfortable with and responsible for surfacing and

learning from failures.

On failures, Roy Rapoport from Net�ix observes,

What the 2014 State of DevOps Report proved to me is

that high performing DevOps organizations will fail and

make mistakes more often. Not only is this okay, it’s

what organizations need! You can even see it in the

data: if high performers are performing thirty times

more frequently but with only half the change failure

rate, they’re obviously having more failures… .26

I was talking with a co-worker about a massive outage

we just had at Netflix—it was caused by, frankly, a

dumb mistake. In fact, it was caused by an engineer who

had taken down Netflix twice in the last eighteen

months. But, of course, this is a person we’d never fire.

In that same eighteen months, this engineer moved the

state of our operations and automation forward not by

miles but by light-years. at work has enabled us to do

deployments safely on a daily basis, and has personally

performed huge numbers of production deployments.27

He concludes, “DevOps must allow this sort of innovation

and the resulting risks of people making mistakes. Yes, you’ll

have more failures in production. But that’s a good thing and

should not be punished.”28

Inject Production Failures to Enable Resilience and

Learning

As we saw in the chapter introduction, injecting faults into

the production environment (such as using Chaos Monkey) is

one way we can increase our resilience. In this section, we

describe the processes involved in rehearsing and injecting

failures into our system to con�rm that we have designed and

architected our systems properly, so that failures happen in

speci�c and controlled ways. We do this by regularly (or even

continuously) performing tests to make certain that our

systems fail gracefully.

As Michael Nygard, author of Release It! Design and Deploy

Production-Ready Software, comments, “Like building crumple

zones into cars to absorb impacts and keep passengers safe,

you can decide what features of the system are indispensable

and build in failure modes that keep cracks away from those

features. If you do not design your failure modes, then you

will get whatever unpredictable—and usually dangerous—

ones happen to emerge.”29

Resilience requires that we �rst de�ne our failure modes

and then perform testing to ensure that these failure modes

operate as designed. One way we do this is by injecting faults

into our production environment and rehearsing large-scale

failures so we are con�dent we can recover from accidents

when they occur, ideally without even impacting our

customers.

e 2012 story about Net�ix and the Amazon AWS US-

East outage presented at the beginning of this chapter is just

one example. An even more interesting example of resilience

at Net�ix was during the “Great Amazon Reboot of 2014,”

when nearly 10% of the entire Amazon EC2 server �eet had

to be rebooted to apply an emergency Xen security patch.30

As Christos Kalantzis of Net�ix Cloud Database

Engineering recalled, “When we got the news about the

emergency EC2 reboots, our jaws dropped. When we got the

list of how many Cassandra nodes would be affected, I felt

ill.”31 But, Kalantzis continues, “en I remembered all the

Chaos Monkey exercises we’ve gone through. My reaction

was, ‘Bring it on!’”32

Once again, the outcomes were astonishing. Of the

2,700+ Cassandra nodes used in production, 218 were

rebooted, and twenty-two didn’t reboot successfully. As

Kalantzis and Bruce Wong from Net�ix Chaos Engineering

wrote, “Net�ix experienced 0 downtime that weekend.

Repeatedly and regularly exercising failure, even in the

persistence [database] layer, should be part of every

company’s resilience planning. If it wasn’t for Cassandra’s

participation in Chaos Monkey, this story would have ended

much differently.”33

Even more surprising, not only was no one at Net�ix

working active incidents due to failed Cassandra nodes, no

one was even in the office—they were in Hollywood at a party

celebrating an acquisition milestone.34 is is another

example demonstrating that proactively focusing on

resilience often means that a �rm can handle events that may

cause crises for most organizations in a manner that is

routine and mundane.¶ (See Appendix 9.)

Institute Game Days to Rehearse Failures

In this section, we describe speci�c disaster recovery

rehearsals called game days, a term popularized by Jesse

Robbins, one of the founders of the Velocity Conference

community and co-founder of Chef. While at Amazon,

Robbins was responsible for creating programs to ensure site

availability and was widely known internally as the “Master of

Disaster.”36 e concept of game days comes from the

discipline of resilience engineering. Robbins de�nes resilience

engineering as “an exercise designed to increase resilience

through large-scale fault injection across critical systems.”37

Robbins observes that “whenever you set out to engineer

a system at scale, the best you can hope for is to build a

reliable software platform on top of components that are

completely unreliable. at puts you in an environment

where complex failures are both inevitable and

unpredictable.”38

Consequently, we must ensure that services continue to

operate when failures occur, potentially throughout our

system, ideally without crisis or even manual intervention. As

Robbins quips, “a service is not really tested until we break it

in production.”39

Our goal for game day is to help teams simulate and

rehearse accidents to give them the ability to practice. First,

we schedule a catastrophic event, such as the simulated

destruction of an entire data center, to happen at some point

in the future. We then give teams time to prepare, to

eliminate all the single points of failure, and to create the

necessary monitoring procedures, failover procedures, etc.

Our game day team de�nes and executes drills, such as

conducting database failovers (i.e., simulating a database

failure and ensuring that the secondary database works) or

turning off an important network connection to expose

problems in the de�ned processes. Any problems or

difficulties that are encountered are identi�ed, addressed, and

tested again.

At the scheduled time, we then execute the outage. As

Robbins describes, at Amazon they “would literally power off

a facility—without notice—and then let the systems fail

naturally and [allow] the people to follow their processes

wherever they led.”40

By doing this, we start to expose the latent defects in our

system, which are the problems that appear only because of

having injected faults into the system. Robbins explains, “You

might discover that certain monitoring or management

systems crucial to the recovery process end up getting turned

off as part of the failure you’ve orchestrated. You would �nd

some single points of failure you didn’t know about that

way.”41 ese exercises are then conducted in an increasingly

intense and complex way with the goal of making them feel

like just another part of an average day.

By executing game days, we progressively create a more

resilient service and a higher degree of assurance that we can

resume operations when inopportune events occur, as well as

create more learnings and a more resilient organization.

An excellent example of simulating disaster is Google’s

Disaster Recovery Program (DiRT). Kripa Krishnan, Technical

Program Director at Google at the time, had led the program

for over seven years. During that time, they had simulated an

earthquake in Silicon Valley, which resulted in the entire

Mountain View campus being disconnected from Google;

major data centers having complete loss of power; and even

aliens attacking cities where engineers resided.42

As Krishnan wrote, “An often-overlooked area of testing

is business process and communications. Systems and

processes are highly intertwined, and separating testing of

systems from testing of business processes isn’t realistic: a

failure of a business system will affect the business process,

and conversely a working system is not very useful without

the right personnel.”43

Some of the learnings gained during these disasters

included:44

• When connectivity was lost, the failover to the

engineer workstations didn’t work.

• Engineers didn’t know how to access a conference call

bridge or the bridge only had capacity for �fty people

or they needed a new conference call provider who

would allow them to kick off engineers who had

subjected the entire conference to hold music.

• When the data centers ran out of diesel for the backup

generators, no one knew the procedures for making

emergency purchases through the supplier, resulting

in someone using a personal credit card to purchase

$50,000 worth of diesel.

By creating failure in a controlled situation, we can

practice and create the playbooks we need. One of the other

outputs of game days is that people actually know who to call

and know who to talk to—by doing this, they develop

relationships with people in other departments so they can

work together during an incident, turning conscious actions

into unconscious actions that are able to become routine.

CASE STUDY: NEW TO

SECOND EDITION

Turning an Outage into a Powerful Learning

Opportunity at CSG (2021)

CSG is North America’s largest SaaS-based customer

care and billing provider, with over sixty-five million

subscribers and a tech stack that covers everything from

Java to mainframe. At the DevOps Enterprise Summit in

2020, Erica Morrison, Vice President of Soware

Engineering, shared the story of CSG’s worst outage—

the result of a complex system failure that pushed CSG

beyond the limits of its response systems, processes,

and culture.45

But in the face of that adversity, they were able to

find opportunity and use the lessons they learned to

improve how they understand incidents, respond to

them, and prevent them in the first place.

The 2/4 Outage, as it later came to be known, lasted

thirteen hours. It started abruptly and large portions of

CSG’s product were unavailable. On the initial calls as

the outage began, the team was troubleshooting blind

as they had trouble accessing the tools they normally

use, including their health monitoring system and server

access. With the number of vendors and customers

involved, the initial calls were particularly chaotic.

In the end, it would take several days to figure out

what had actually happened by reproducing the outage

in their lab. The issue started with routine server

maintenance on an OS that was different than most of

the servers they ran. When that server rebooted, it put

an LLDP packet out on the network. Due to a bug, CSG’s

network soware picked it up and interpreted it as a

spanning tree. It broadcast it out to the network and it

was then picked up by their load balancer. Due to a

misconfiguration in the load balancer, this got

rebroadcast to the network, creating a network loop,

taking the network down.

The aermath was severe. The extent of angry

customers required leadership to pivot their focus from

their planned work (strategic initiatives, etc.) to just this

outage. Throughout the company, there was also a large

sense of loss and heartbreak over having failed their

customers so severely. Morale was extremely low.

Hurtful things were said, like “DevOps doesn’t work.”

CSG knew they wanted to respond to this failure

differently. They needed to maximize learnings while

also reducing the likelihood of an incident like this

happening again. Their first step was incident analysis.

Their standard incident analysis was a structured

process to help them understand what happened and

identify opportunities for improvement. They did this by

understanding the timeline of the incident; asking,

“What happened? How can we detect it sooner? How

can we recover sooner? What went well?”

Understanding system behavior. And maintaining a

blameless culture and avoiding finger pointing.

Because of this incident they also knew they needed

to up their game. They reached out to Dr. Richard Cook

and John Allspaw of Adaptive Capacity Labs to analyze

the incident. Through two weeks of intense interviews

and research, they gained a more thorough

understanding of the events, and, in particular, learned

the different perspectives of the people who were

working on the outage.

From this intensive retrospective, they created an

operation improvement program based on the Incident

Command System. They broke the program into four

categories: incident response, tool reliability, data

center/platform resiliency, and application reliability.

Even before the whole organization had been

through the training for their new incident management

process, people started to see observable improvements

in how outage calls were run: clu�er on the calls had

been removed; status reports had a known, steady

cadence; and having an LNO (liaison officer) helped

avoid interruptions on the incident calls.

The next biggest improvement was a sense of

control over chaos. The simple act of having predictable

cadences and pa�erns to follow helped everyone feel

more confident and in control. It also allowed activities

to run in parallel until the set time for a status update,

allowing that activity to run without interruption.

Additionally, decision-making was updated from the

old system by giving the incident commander clear

command and authority so there’s no question about

who can make decisions.

Now, CSG has a stronger organizational ability to

perform incident management. They’ve reinforced and

broadened culture norms around safety and, most

impactfully, implemented the incident management

system that changed how they run outage calls.

In this case study, a blameless post-mortem

(retrospective) led CSG to completely revamp the

way they handle incidents. They directly applied

their learnings regarding how they conduct their

work, changing their culture and not blaming an

individual or team.

Conclusion

To create a just culture that enables organizational learning,

we have to re-contextualize so-called failures. When treated

properly, errors that are inherent in complex systems can

create a dynamic learning environment where all of the

shareholders feel safe enough to come forward with ideas and

observations, and where groups rebound more readily from

projects that don’t perform as expected.

Both retrospectives and injecting production failures

reinforce a culture that everyone should feel both

comfortable with and responsible for surfacing and learning

from failures. In fact, when we sufficiently reduce the number

of accidents, we decrease our tolerance so that we can keep

learning. As Peter Senge is known to say, “e only

sustainable competitive advantage is an organization’s ability

to learn faster than the competition.”46

* In January 2013 at re:Invent, James Hamilton, VP and Distinguished Engineer for

Amazon Web Services, said that the US-East region had more than ten data

centers all by itself, and added that a typical data center has between fiy thousand

and eighty thousand servers. By this math, the 2011 EC2 outage affected

customers on more than half a million servers.4

† See Martin Fowler’s article on circuit breakers for more on this:

https://martinfowler.com/bliki/CircuitBreaker.html.

‡is practice has also been called blameless post-incident reviews as well as post-

event retrospectives. ere is also a noteworthy similarity to the routine

retrospectives that are a part of many iterative and Agile development practices.

§ We may also choose to extend the philosophies of transparent uptime to our post-

mortem reports and, in addition to making a service dashboard available to the

public, we may choose to publish (maybe sanitized) post-mortem meetings to the

public. Some of the most widely admired public post-mortems include those

posted by the Google App Engine team aer a significant 2010 outage, as well as

the post-mortem of the 2015 Amazon DynamoDB outage. Interestingly, Chef

publishes their post-mortem meeting notes on their blog, as well as recorded

videos of the actual post-mortem meetings.15

https://martinfowler.com/bliki/CircuitBreaker.html

¶ Specific architectural patterns that they implemented included fail fasts (setting

aggressive timeouts such that failing components don’t make the entire system

crawl to a halt), fallbacks (designing each feature to degrade or fall back to a lower

quality representation), and feature removal (removing non-critical features when

they run slowly from any given page to prevent them from impacting the member

experience). Another astonishing example of the resilience that the Netflix team

created beyond preserving business continuity during the AWS outage was that

Netflix went over six hours into the AWS outage before declaring a Sev 1 incident,

assuming that AWS service would eventually be restored (i.e., “AWS will come

back … it usually does, right?”). Only aer six hours into the outage did they

activate any business continuity procedures.35

I

20
CONVERT LOCAL DISCOVERIES INTO
GLOBAL IMPROVEMENTS

n the previous chapter, we discussed developing a safe

learning culture by encouraging everyone to talk about

mistakes and accidents through blameless post-mortems. We

also explored �nding and �xing ever-weaker failure signals, as

well as reinforcing and rewarding experimentation and risk-

taking. Furthermore, we helped make our system of work

more resilient by proactively scheduling and testing failure

scenarios, making our systems safer by �nding latent defects

and �xing them.

In this chapter, we will create mechanisms that make it

possible for new learnings and improvements discovered

locally to be captured and shared globally throughout the

entire organization, multiplying the effect of global

knowledge and improvement. By doing this, we elevate the

state of the practice of the entire organization so that

everyone doing work bene�ts from the cumulative experience

of the organization.

Use Chat Rooms and Chat Bots to Automate and

Capture Organizational Knowledge

Many organizations have created chat rooms to facilitate fast

communication within teams. Chat rooms can also be used to

trigger automation.

is technique was pioneered in the ChatOps journey at

GitHub. e goal was to put automation tools into the middle

of the conversation in their chat rooms, helping create

transparency and documentation of their work. As Jesse

Newland, a systems engineer at GitHub, describes, “Even

when you’re new to the team, you can look in the chat logs

and see how everything is done. It’s as if you were pair-

programming with them all the time.”1

ey created Hubot, a software application that interacted

with the Ops team in their chat rooms, where it could be

instructed to perform actions merely by sending it a

command (e.g., “@hubot deploy owl to production”). e

results would also be sent back into the chat room.2

Having this work performed by automation in the chat

room (as opposed to running automated scripts via command

line) had numerous bene�ts, including:

• Everyone saw everything that was happening.

• Engineers, on their �rst day of work, could see what

daily work looked like and how it was performed.

• People were more apt to ask for help when they saw

others helping each other.

• Rapid organizational learning was enabled and

accumulated.

Furthermore, beyond the above tested bene�ts, chat

rooms inherently record and make all communications public;

in contrast, emails are private by default, and the information

in them cannot easily be discovered or propagated within an

organization.

Integrating our automation into chat rooms helps

document and share our observations and problem-solving as

an inherent part of performing our work. is reinforces a

culture of transparency and collaboration in everything we

do.

Hubot at GitHub

is is also an extremely effective way of converting local

learning to global knowledge. At GitHub, all the Operations

staff worked remotely—in fact, no two engineers worked in

the same city. As Mark Imbriaco, former VP of Operations at

GitHub, recalls, “ere was no physical watercooler at

GitHub. e chat room was the water cooler.”3

GitHub enabled Hubot to trigger their automation

technologies, including Puppet, Capistrano, Jenkins, resque

(a Redis-backed library for creating background jobs), and

graphme (which generates graphs from Graphite).4

Actions performed through Hubot included checking the

health of services, doing Puppet pushes or code deployments

into production, and muting alerts as services went into

maintenance mode. Actions that were performed multiple

times, such as pulling up the smoke test logs when a

deployment failed, taking production servers out of rotation,

reverting to master for production front-end services, or even

apologizing to the engineers who were on call, also became

Hubot actions.5*

Similarly, commits to the source code repository and the

commands that trigger production deployments both emit

messages to the chat room. Additionally, as changes move

through the deployment pipeline, their status is posted in the

chat room.

A typical, quick chat room exchange might look like:

@sr: @jnewland, how do you get that list of big repos?

disk_hogs or something?

@jnewland: /disk-hogs

Newland observes that certain questions that were

previously asked during the course of a project are rarely

asked now.6 For example, engineers may ask each other,

“How is that deploy going?” or “Are you deploying that or

should I?” or “How does the load look?”

Among all the bene�ts that Newland describes, which

include faster onboarding of newer engineers and making all

engineers more productive, the result that he felt was most

important was that Ops work became more humane as Ops

engineers were enabled to discover problems and help each

other quickly and easily.7

GitHub created an environment for collaborative local

learning that could be transformed into learnings across the

organization. roughout the rest of this chapter, we will

explore ways to create and accelerate the spread of new

organizational learnings.

Automate Standardized Processes in Soware for

Reuse

All too often, we codify our standards and processes for

architecture, testing, deployment, and infrastructure

management in prose, storing them in Word documents that

are uploaded somewhere. e problem is that engineers who

are building new applications or environments often don’t

know that these documents exist, or they don’t have the time

to implement the documented standards. e result is they

create their own tools and processes, with all the

disappointing outcomes we’d expect: fragile, insecure, and

unmaintainable applications and environments that are

expensive to run, maintain, and evolve.

Instead of putting our expertise into Word documents, we

need to transform these documented standards and

processes, which encompass the sum of our organizational

learnings and knowledge, into an executable form that makes

them easier to reuse.8 One of the best ways we can make this

knowledge reusable is by putting it into a centralized source

code repository, making the tool available for everyone to

search and use.

Justin Arbuckle was chief architect at GE Capital in 2013

when he said, “We needed to create a mechanism that would

allow teams to easily comply with policy—national, regional,

and industry regulations across dozens of regulatory

frameworks, spanning thousands of applications running on

tens of thousands of servers in tens of data centers.”9

e mechanism they created was called ArchOps, which

“enabled our engineers to be builders, not bricklayers. By

putting our design standards into automated blueprints that

were able to be used easily by anyone, we achieved

consistency as a byproduct.”10

By encoding our manual processes into code that is

automated and executed, we enable the process to be widely

adopted, providing value to anyone who uses them. Arbuckle

concluded that “the actual compliance of an organization is in

direct proportion to the degree to which its policies are

expressed as code.”11

By making this automated process the easiest means to

achieve the goal, we allow practices to be widely adopted—we

may even consider turning them into shared services

supported by the organization.

Create a Single, Shared Source Code Repository for Our

Entire Organization

A �rm-wide, shared source code repository is one of the most

powerful mechanisms used to integrate local discoveries

across the entire organization. When we update anything in

the source code repository (e.g., a shared library), it rapidly

and automatically propagates to every other service that uses

that library, and it is integrated through each team’s

deployment pipeline.

Google is one of the largest examples of using an

organization-wide shared source code repository. By 2015,

Google had a single shared source code repository with over

one billion �les and over two billion lines of code. is

repository is used by every one of their twenty-�ve thousand

engineers and spans every Google property, including Google

Search, Google Maps, Google Docs, Google Calendar, Gmail,

and YouTube.12†

One of the valuable results of this is that engineers can

leverage the diverse expertise of everyone in the

organization. Rachel Potvin, a Google engineering manager

overseeing the Developer Infrastructure group, told Wired

that every Google engineer can access “a wealth of libraries”

because “almost everything has already been done.”14

Furthermore, as Eran Messeri, an engineer in the Google

Developer Infrastructure group, explains, one of the

advantages of using a single repository is that it allows users

to easily access all of the code in its most up-to-date form,

without the need for coordination.15

We put into our shared source code repository not only

source code but also other artifacts that encode knowledge

and learning, including:

• con�guration standards for our libraries,

infrastructure, and environments (Chef, Puppet, or

Ansible scripts)

• deployment tools

• testing standards and tools, including security

• deployment pipeline tools

• monitoring and analysis tools

• tutorials and standards

Encoding knowledge and sharing it through this

repository is one of the most powerful mechanisms we have

for propagating knowledge. As Randy Shoup describes,

the most powerful mechanism for preventing failures at

Google is the single code repository. Whenever

someone checks in anything into the repo, it results in a

new build, which always uses the latest version of

everything. Everything is built from source rather than

dynamically linked at runtime—there is always a single

version of a library that is the current one in use, which

is what gets statically linked during the build process.16

Tom Limoncelli is the co-author of e Practice of Cloud

System Administration: Designing and Operating Large

Distributed Systems and a former site reliability engineer at

Google. In his book, he states that the value of having a single

repository for an entire organization is so powerful it is

difficult to even explain.

You can write a tool exactly once and have it be usable

for all projects. You have 100% accurate knowledge of

who depends on a library; therefore, you can refactor it

and be 100% sure of who will be affected and who needs

to test for breakage. I could probably list one hundred

more examples. I can’t express in words how much of a

competitive advantage this is for Google.17

CONTINUOUS

LEARNING

Research shows that good code-related

practices contribute to elite performance.

Based on her expertise building systems and

leading development teams at Google, Rachel

Potvin was an advisor on DORA’s 2019 State of

DevOps Report, which identi�ed code

maintainability as a key construct in helping

teams to do continuous delivery successfully.

is new construct, based on the bene�ts that

Potvin saw from the infrastructure available at

Google, helps teams think about structuring

their work and their code.18

According to the report,

Teams that manage code maintainability

well have systems and tools that make it

easy for developers to change code

maintained by other teams, find

examples in the codebase, reuse other

people’s code, as well as add, upgrade,

and migrate to new versions of

dependencies without breaking their

code. Having these systems and tools in

place not only contributes to CD, but

also helps decrease technical debt, which

in turn improves productivity.19

At Google, every library (e.g., libc, OpenSSL, as well as

internally developed libraries, such as Java threading

libraries) has an owner who is responsible for ensuring that

the library not only compiles but also successfully passes the

tests for all projects that depend upon it, much like a real-

world librarian. at owner is also responsible for migrating

each project from one version to the next.

Consider the real-life example of an organization that

runs eighty-one different versions of the Java Struts

framework library in production—all but one of those

versions have critical security vulnerabilities, and

maintaining all those versions, each with its own quirks and

idiosyncrasies, creates signi�cant operational burden and

stress. Furthermore, all this variance makes upgrading

versions risky and unsafe, which in turn discourages

developers from upgrading. And the cycle continues. e

single source repository solves much of this problem, as well

as having automated tests that allow teams to migrate to new

versions safely and con�dently.

If we are not able to build everything off a single source

tree, then we must �nd another means to maintain known

good versions of the libraries and their dependencies. For

instance, we may have an organization-wide repository such

as Nexus, Artifactory, or a Debian or RPM repository, which

we must then update when there are known vulnerabilities,

both in these repositories and in production systems.

It is essential to ensure that dependencies are drawn only

from within the organization’s source control repository or

package repository in order to prevent attacks through this

“sofware supply chain” from compromising an organization’s

systems.

Spread Knowledge by Using Automated Tests as

Documentation and Communities of Practice

When we have shared libraries being used across the

organization, we should enable rapid propagation of expertise

and improvements. Ensuring that each of these libraries has

signi�cant amounts of automated testing included means

these libraries become self-documenting and show other

engineers how to use them.

is bene�t will be nearly automatic if we have test-

driven development (TDD) practices in place, where

automated tests are written before we write the code. is

discipline turns our test suites into a living, up-to-date

speci�cation of the system. Any engineer wishing to

understand how to use the system can look at the test suite

to �nd working examples of how to use the system’s API.

Ideally, each library will have a single owner or a single

team supporting it, representing where knowledge and

expertise for the library resides. Furthermore, we should

(ideally) only allow one version to be used in production,

ensuring that whatever is in production leverages the best

collective knowledge of the organization.

In this model, the library owner is also responsible for

safely migrating each group using the repository from one

version to the next. is in turn requires quick detection of

regression errors through comprehensive automated testing

and continuous integration for all systems that use the

library.

In order to more rapidly propagate knowledge, we can

also create discussion groups or chat rooms for each library or

service, so anyone who has questions can get responses from

other users, who are often faster to respond than the

developers.

By using this type of communication tool instead of

having isolated pockets of expertise spread throughout the

organization, we facilitate an exchange of knowledge and

experience, ensuring that workers are able to help each other

with problems and new patterns.

Design for Operations through Codified Non-

Functional Requirements

When Development follows their work downstream and

participates in production incident resolution activities, the

application becomes increasingly better designed for

Operations. Furthermore, as we start to deliberately design

our code and application so that it can accommodate fast �ow

and deployability, we will likely identify a set of non-

functional requirements that we will want to integrate into all

of our production services.

Implementing these non-functional requirements will

enable our services to be easy to deploy and keep running in

production, where we can quickly detect and correct problems

and ensure they degrade gracefully when components fail.

Examples of non-functional requirements include ensuring

that we have:

• sufficient production telemetry in our applications

and environments

• the ability to accurately track dependencies

• services that are resilient and degrade gracefully

• forward and backward compatibility between versions

• the ability to archive data to manage the size of the

production data set

• the ability to easily search and understand log

messages across services

• the ability to trace requests from users through

multiple services

• simple, centralized runtime con�guration using

feature �ags, etc.

By codifying these types of non-functional requirements,

we make it easier for all of our new and existing services to

leverage the collective knowledge and experience of the

organization. ese are all responsibilities of the team

building the service.

Build Reusable Operations User Stories into

Development

When there is Operations work that cannot be fully

automated or made self-service, our goal is to make this

recurring work as repeatable and deterministic as possible.

We do this by standardizing the needed work, automating as

much as possible, and documenting our work so that we can

best enable product teams to better plan and resource this

activity.

Instead of manually building servers and then putting

them into production according to manual checklists, we

should automate as much of this work as possible, including

post-installation con�guration management. Where certain

steps cannot be automated (e.g., manually racking a server

and having another team cable it), we should collectively

de�ne the handoffs as clearly as possible to reduce lead times

and errors. is will also enable us to better plan and

schedule these steps in the future.

For instance, we can use tools such as Terraform to

automate provisioning and con�guration management of

cloud infrastructure. Ad hoc changes or project work can be

captured in work ticket systems such as JIRA or ServiceNow,

with changes to infrastructure con�guration captured in

version control and linked to work tickets and then applied to

our system automatically (a paradigm known as

infrastructure-as-cod or GitOps).

Ideally, for all our recurring Ops work, we will know the

following: what work is required, who is needed to perform it,

what the steps to complete it are, and so forth. For instance,

“We know a high-availability rollout takes fourteen steps,

requiring work from four different teams, and the last �ve

times we performed this it took an average of three days.”

Just as we create user stories in Development that we put

into the backlog and then pull into work, we can create well-

de�ned “Ops user stories” that represent work activities that

can be reused across all our projects (e.g., deployment,

capacity, security, etc.). By creating these well-de�ned Ops

user stories, we expose repeatable IT Operations work in a

manner where it shows up alongside Development work,

enabling better planning and more repeatable outcomes.

Ensure Technology Choices Help Achieve

Organizational Goals

When one of our goals is to maximize developer productivity,

and we have service-oriented architectures, small service

teams can potentially build and run their service in whatever

language or framework best serves their speci�c needs. In

some cases, this is what best enables us to achieve our

organizational goals.

However, there are scenarios when the opposite occurs,

such as when expertise for a critical service resides only in

one team, and only that team can make changes or �x

problems, creating a bottleneck. In other words, we may have

optimized for team productivity but inadvertently impeded

the achievement of organizational goals.

is often happens when we have a functionally oriented

Operations group responsible for any aspect of service

support. In these scenarios, to ensure that we enable the deep

skill sets in speci�c technologies, we want to make sure that

Operations can in�uence which components are used in

production or give them the ability to not be responsible for

unsupported platforms.

If we do not have a list of technologies that Operations

will support, collectively generated by Development and

Operations, we should systematically go through the

production infrastructure and services, as well as all their

dependencies that are currently supported, to �nd which

ones are creating a disproportionate amount of failure

demand and unplanned work.

Our goal is to identify the technologies that:

• impede or slow down the �ow of work

• disproportionately create high levels of unplanned

work

• disproportionately create large numbers of support

requests

• are most inconsistent with our desired architectural

outcomes (e.g., throughput, stability, security,

reliability, business continuity)

By removing these problematic infrastructures and

platforms from the technologies supported by Ops, we enable

everyone to focus on infrastructure that best helps achieve

the global goals of the organization.

CONTINUOUS

LEARNING

e goal is to create infrastructure platforms

where users (including development teams)

can self-service the operations they need

without having to raise tickets or send emails.

is is a key capability enabled by modern

cloud infrastructure—it is even one of the �ve

essential characteristics of cloud computing

de�ned by the US Federal Government’s

National Institute of Standards and

Technology (NIST):20

• On-demand self service: Consumers can

automatically provision computing

resources as needed, without human

interaction from the provider.

• Broad network access: Capabilities can

be accessed through heterogeneous

platforms, such as mobile phones, tablets,

laptops, and workstations.

• Resource pooling: Provider resources are

pooled in a multi-tenant model, with

physical and virtual resources dynamically

assigned on demand. e customer may

specify location at a higher level of

abstraction, such as country, state, or

data center.

• Rapid elasticity: Capabilities can be

elastically provisioned and released to

rapidly scale outward or inward on

demand, appearing to be unlimited and

able to be appropriated in any quantity at

any time.

• Measured service: cloud systems

automatically control, optimize, and

report resource use based on the type of

service, such as storage, processing,

bandwidth, and active user accounts.

It’s possible to achieve success in building

infrastructure platforms with private, public,

and hybrid models—provided you also

modernize your traditional datac enter

operations’ practices and processes so you can

meet these �ve essential characteristics. If

your technology platforms don’t support these

characteristics, it should be a priority to

replace them with ones that do or modernize

your existing platform to achieve these

architectural outcomes as much as possible.

DORA’s 2019 State of DevOps Report found

that only 29% of respondents who said they

were using cloud infrastructure agreed or

strongly agreed that they met all �ve of the

characteristics of essential cloud computing as

de�ned by the NIST. And leveraging all �ve

characteristics of cloud computing mattered;

elite performers were twenty-four times more

likely to have met all essential cloud

characteristics when compared to low

performers.21

is demonstrates two things: First, the

apparent disconnect between teams who may

say they are in the cloud but may not reap the

bene�ts—it takes executing on the

characteristics described above to be

successful. Second, the impact of technical and

architectural capabilities on software delivery

performance. By executing well, elite teams

saw signi�cant performance in speed and

stability compared to their low-performing

peers.

CASE

STUDY

Standardizing a New Technology Stack at Etsy (2010)

In many organizations’ adopting DevOps, a common

story developers tell is, “Ops wouldn’t provide us what

we needed, so we just built and supported it ourselves.”

However, in the early stages of the Etsy transformation,

technology leadership took the opposite approach,

significantly reducing the number of supported

technologies in production.

In 2010, aer a nearly disastrous peak holiday

season, the Etsy team decided to massively reduce the

number of technologies used in production, choosing a

few that the entire organization could fully support and

eradicating the rest.‡

Their goal was to standardize and very deliberately

reduce the supported infrastructure and configurations.

One of the early decisions was to migrate Etsy’s entire

platform to PHP and MySQL. This was primarily a

philosophical decision rather than a technological

decision—they wanted both Dev and Ops to be able to

understand the full technology stack so that everyone

could contribute to a single platform, as well as enable

everyone to be able to read, rewrite, and fix each other’s

code.

Over the next several years, as Michael Rembetsy,

who was Etsy’s Director of Operations at the time,

recalls, “We retired some great technologies, taking

them entirely out of production,” including ligh�pd,

Postgres, MongoDB, Scala, CoffeeScript, Python, and

many others.23

Similarly, Dan McKinley, a developer on the feature

team that introduced MongoDB into Etsy in 2010, writes

on his blog that all the benefits of having a schema-less

database were negated by all the operational problems

the team had to solve. These included problems

concerning logging, graphing, monitoring, production

telemetry, and backups and restoration, as well as

numerous other issues that developers typically do not

need to concern themselves with. The result was to

abandon MongoDB, porting the new service to use the

already supported MySQL database infrastructure.24

This case study from Etsy shows that, by

removing problematic infrastructure and

platforms, an organization can shi its focus to

architectures that best align with and help

achieve their goals.

CASE STUDY: NEW TO THE

SECOND EDITION

Crowdsourcing Technology Governance at Target (2018)

One of the key findings from the State of DevOps Reports

has been that teams move faster when we don’t control

how they work and operate or what technologies they

use.25 In the past, technology selection was an

enforcement mechanism to limit variability in the

enterprise. This led to perceived compliance in

conforming to architecture, security, and business

architecture needs. The tollgates, centralized approvals,

and silos resulted in less automation, limited

automation, and continued the “process & tool first”

ideology ahead of results and outcomes.

But in 2015, Target began a new program:

recommend_tech, which uses crowdsourcing to make

technology choices. It started with a basic template on a

single page layout for all technologies by domain,

providing a scope (local versus enterprise) and a half-life

that Target’s internal experts felt was applicable to a

specific disposition.26

During their 2018 DevOps Enterprise Summit

presentation, Dan Cundiff, Principal Engineer, Levi

Geinert, Director of Engineering, and Lucas Re�if,

Principal Product Owner, explained how they wanted to

move faster by shiing from governance to guidance

when it came to technologies: libraries, frameworks,

tools, etc. This guidance would provide guardrails that

teams could feel comfortable operating within while

also removing the friction of a strict governance

process.27

They found that the key to providing guidance

versus governance was that it needed to be accessible

(everyone can contribute), transparent (everyone should

be able to see), flexible (easy to change), and cultural

(community-driven) in the simplest way possible.

Ultimately, guidance should be there to empower

engineers, not constrain them.28

Previously Target had in place what they called an

architectural review board (ARB),§ a centralized group

that met on a regular basis to make tool decisions for all

product teams. This was neither efficient nor effective.

To improve, Dan Cundiff and his colleague Jason

Walker created a repo in GitHub that featured a simple

list of technology choices: collaboration tools,

application frameworks, caching, datastores, etc. They

named it recommended_tech. Each technology is listed

as either recommended, limited use, or do not use. Each

file shows why that technology is recommended or not,

how you can use it, etc. Plus, the full history showing

how the decision was made is available in the repo.29

The context of the decisions—and most importantly,

the tracking of discussions—provided more “why”

answers to the engineering community. As mentioned

above, the “half-life” of a disposition was a directional

waypoint for teams to understand the possibility of a

shi within a domain.

This list isn’t handed down to engineers without any

input. Anybody at Target can open a pull request to any

of the technology categories and suggest a change, a

new technology, etc. Everyone can comment and

discuss the various benefits or risks of that technology.

And when it gets merged, that’s it. The technology

choice is strongly recommended and loosely held until

the next pa�ern emerges.30

As changes are localized and easy for teams to

adjust, the reversibility is easy and flexibility is high. For

example, switching from Python to Golan for a given

product’s API is considered highly flexible and easy to

reverse. Changing a cloud provider or decommissioning

a data center, on the other hand, is rigid and has an

extremely large blast radius.

For changes with a “steep cost,” the CIO is brought

into the process. Any engineer can then pitch their idea

directly to the CIO and a group of senior leaders.

Ultimately, the recommended_tech approach is about

empowering engineers at any level to be invested in

their work in the simplest way possible.31

This simple solution shows how removing

impediments and bo�lenecks can empower

teams while still making sure they operate within

approved guardrails.

Conclusion

e techniques described in this chapter enable every new

learning to be incorporated into the collective knowledge of

the organization, multiplying its effect. We do this by actively

and widely communicating new knowledge, such as through

chat rooms and through technology such as architecture as

code, shared source code repositories, technology

standardization, and so forth. By doing this, we elevate the

state of the practice of not only Dev and Ops but also the

entire organization, so everyone who performs work does so

with the cumulative experience of the entire organization.

* Hubot oen performed tasks by calling shell scripts, which could then be executed

from the chat room anywhere, including from an engineer’s phone.

†e Chrome and Android projects reside in a separate source code repository, and

certain algorithms that are kept secret, such as PageRank, are available only to

certain teams.13

‡ At that time, Etsy used PHP, lighttp, Postgres, MongoDB, Scala, CoffeeScript,

Python, as well as many other platforms and languages.22

§ e TEP-LARB described in e Unicorn Project is partially based on the ARB at

Target.

O

21
RESERVE TIME TO CREATE
ORGANIZATIONAL LEARNING AND
IMPROVEMENT

ne of the practices that forms part of the Toyota

Production System is called the improvement blitz (or

sometimes a kaizen blitz), de�ned as a dedicated and

concentrated period of time to address a particular issue,

often over the course of several days.1 Dr. Spear explains,

“blitzes often take this form: A group is gathered to focus

intently on a process with problems… . e blitz lasts a few

days, the objective is process improvement, and the means

are the concentrated use of people from outside the process

to advise those normally inside the process.”2

Spear observes that the output of the improvement blitz

team will often be a new approach to solving a problem, such

as new layouts of equipment, new means of conveying

material and information, a more organized workspace, or

standardized work. ey may also leave behind a to-do list of

changes to be made down the road.3

Thirty-Day Challenge at Target (2015)

An example of a DevOps improvement blitz is the monthly

challenge program at the Target DevOps Dojo. Ross Clanton,

former Director of Operations at Target, was responsible for

accelerating the adoption of DevOps. One of his primary

mechanisms for this was the Technology Innovation Center,

more popularly known as the DevOps Dojo.

Target’s DevOps Dojo occupies about eighteen thousand

square feet of open office space, where DevOps coaches help

teams from across the Target technology organization elevate

the state of their practice. e most intensive format is what

they call “thirty-day challenges,” where internal development

teams come in for a month and work together with dedicated

Dojo coaches and engineers. e team brings their work with

them, with the goal of solving an internal problem they have

been struggling with and creating a breakthrough in thirty

days.

roughout the thirty days, they work intensively with

the Dojo coaches on the problem—planning, working, and

doing demos in two-day sprints. When the thirty-day

challenge is complete, the internal teams return to their lines

of business, not only having solved a signi�cant problem, but

bringing their new learnings back to their teams.

Clanton described, “We currently have capacity to have

eight teams doing 30-Day Challenges concurrently, so we are

focused on the most strategic projects of the organization. So

far, we’ve had some of our most critical capabilities come

through the Dojo, including teams from Point Of Sale (POS),

Inventory, Pricing, and Promotion.”4

By having full-time assigned Dojo staff and being focused

on only one objective, teams going through a thirty-day

challenge make incredible improvements. Ravi Pandey, a

Target development manager who went through this

program, explains, “In the old days, we would have to wait six

weeks to get a test environment. Now, we get it in minutes,

and we’re working side by side with Ops engineers who are

helping us increase our productivity and building tooling for

us to help us achieve our goals.”5

Clanton expands on this idea: “It is not uncommon for

teams to achieve in days what would usually take them three

to six months. So far, two hundred learners have come

through the Dojo, having completed fourteen challenges.”6

e Dojo also supports less intensive engagement models,

including �ash builds, where teams come together for one- to

three-day events, with the goal of shipping a minimal viable

product (MVP) or a capability by the end of the event. ey

also host open labs every two weeks, where anyone can visit

the Dojo to talk to the Dojo coaches, attend demos, or receive

training.

In this chapter, we will describe this and other ways of

reserving time for organizational learning and improvement,

further institutionalizing the practice of dedicating time for

improving daily work.

Institutionalize Rituals to Pay Down Technical Debt

In this section, we schedule rituals that help enforce the

practice of reserving Dev and Ops time for improvement

work, such as non-functional requirements, automation, etc.

One of the easiest ways to do this is to schedule and conduct

day- or week-long improvement blitzes, where everyone on a

team (or in the entire organization) self-organizes to �x

problems they care about—no feature work is allowed. It

could be a problematic area of the code, environment,

architecture, tooling, and so forth. ese teams span the

entire value stream, often combining Development,

Operations, and Infosec engineers. Teams that typically don’t

work together combine their skills and effort to improve a

chosen area and then demonstrate their improvement to the

rest of the company.

In addition to the Lean-oriented terms kaizen blitz and

improvement blitz, the technique of dedicated rituals for

improvement work has also been called spring or fall cleanings

and ticket queue inversion weeks.7 Other terms have also been

used, such as hack days, hackathons, and 20% innovation time.

Unfortunately, these speci�c rituals sometimes focus on

product innovation and prototyping new market ideas rather

than on improvement work, and, worse, they are often

restricted to developers—which is considerably different than

the goals of an improvement blitz.*

Our goal during these blitzes is not to simply experiment

and innovate for the sake of testing out new technologies but

to improve our daily work, such as solving our daily

workarounds. While experiments can also lead to

improvements, improvement blitzes are very focused on

solving speci�c problems we encounter in our daily work.

We may schedule week-long improvement blitzes that

prioritize Dev and Ops working together toward

improvement goals. ese improvement blitzes are simple to

administer: One week is selected where everyone in the

technology organization works on an improvement activity at

the same time. At the end of the period, each team makes a

presentation to their peers that discusses the problem they

were tackling and what they built. is practice reinforces a

culture in which engineers work across the entire value

stream to solve problems. Furthermore, it reinforces �xing

problems as part of our daily work and demonstrates that we

value paying down technical debt.

What makes improvement blitzes so powerful is that we

are empowering those closest to the work to continually

identify and solve their own problems. Consider for a

moment that our complex system is like a spider web, with

intertwining strands that are constantly weakening and

breaking. If the right combination of strands breaks, the

entire web collapses.

ere is no amount of command-and-control

management that can direct workers to �x each strand one by

one. Instead, we must create the organizational culture and

norms that lead to everyone continually �nding and �xing

broken strands as part of our daily work. As Dr. Spear

observes, “No wonder then that spiders repair rips and tears

in the web as they occur, not waiting for the failures to

accumulate.”8

A great example of the success of the improvement blitz

concept is described by Mark Zuckerberg, Facebook CEO. In

an interview with Jessica Stillman of Inc., he says,

Every few months we have a hackathon, where

everyone builds prototypes for new ideas they have. At

the end, the whole team gets together and looks at

everything that has been built. Many of our most

successful products came out of hackathons, including

Timeline, chat, video, our mobile development

framework and some of our most important

infrastructure like the HipHop compiler.9

Of particular interest is the HipHop PHP compiler. In

2008, Facebook was facing signi�cant capacity problems,

with over one hundred million active users and rapidly

growing, creating tremendous problems for the entire

engineering team.10 During a hack day, Haiping Zhao, Senior

Server Engineer at Facebook, started experimenting with

converting PHP code to compilable C++ code, with the hope

of signi�cantly increasing the capacity of their existing

infrastructure. Over the next two years, a small team was

assembled to build what became known as the HipHop

compiler, converting all Facebook production services from

interpreted PHP to compiled C++ binaries. HipHop enabled

Facebook’s platform to handle production loads six times

higher than the native PHP.11

In an interview with Cade Metz of Wired, Drew Paroski,

one of the engineers who worked on the project, noted,

“ere was a moment where, if HipHop hadn’t been there, we

would have been in hot water. We would probably have

needed more machines to serve the site than we could have

gotten in time. It was a Hail Mary pass that worked out.”12

Later, Paroski and fellow engineers Keith Adams and

Jason Evans decided that they could beat the performance of

the HipHop compiler effort and reduce some of its

limitations that reduced developer productivity. e resulting

project was the HipHop virtual machine project (“HHVM”),

taking a just-in-time compilation approach. By 2012, HHVM

had completely replaced the HipHop compiler in production,

with nearly twenty engineers contributing to the project.13

By performing regularly scheduled improvement blitzes

and hack weeks, we enable everyone in the value stream to

take pride and ownership in the innovations they create, and

we continually integrate improvements into our system,

further enabling safety, reliability, and learning.

Enable Everyone to Teach and Learn

A dynamic culture of learning creates conditions so that

everyone can not only learn but also teach, whether through

traditional didactic methods (e.g., people taking classes,

attending training) or more experiential or open methods

(e.g., conferences, workshops, mentoring). One way that we

can foster this teaching and learning is to dedicate

organizational time to it.

Steve Farley, VP of Information Technology at

Nationwide Insurance, said,

We have five thousand technology professionals, who

we call “associates.” Since 2011, we have been

committed to create a culture of learning—part of that

is something we call Teaching ursday, where each

week we create time for our associates to learn. For two

hours, each associate is expected to teach or learn. e

topics are whatever our associates want to learn about

—some of them are on technology, on new software

development or process improvement techniques, or

even on how to better manage their career. e most

valuable thing any associate can do is mentor or learn

from other associates.14

As has been made evident throughout this book, certain

skills are becoming increasingly needed by all engineers, not

just by developers. For instance, it is becoming more

important for all Operations and Test engineers to be familiar

with Development techniques, rituals, and skills, such as

version control, automated testing, deployment pipelines,

con�guration management, and creating automation.

Familiarity with Development techniques helps Operations

engineers remain relevant as more technology value streams

adopt DevOps principles and patterns.

Although the prospect of learning something new may be

intimidating or cause a sense of embarrassment or shame, it

shouldn’t. After all, we are all lifelong learners, and one of the

best ways to learn is from our peers. Karthik Gaekwad, who

was part of the National Instruments DevOps

transformation, said, “For Operations people who are trying

to learn automation, it shouldn’t be scary—just ask a friendly

developer, because they would love to help.”15

We can further help teach skills through our daily work by

jointly performing code reviews that include both parties so

that we learn by doing, as well as by having Development and

Operations work together to solve small problems. For

instance, we might have Development show Operations how

to authenticate an application and log in and run automated

tests against various parts of the application to ensure that

critical components are working correctly (e.g., key

application functionality, database transactions, message

queues). We would then integrate this new automated test

into our deployment pipeline and run it periodically, sending

the results to our monitoring and alerting systems so that we

get earlier detection when critical components fail.

As Glenn O’Donnell from Forrester Research quipped in

his 2014 DevOps Enterprise Summit presentation, “For all

technology professionals who love innovating, love change,

there is a wonderful and vibrant future ahead of us.”16

CONTINUOUS

LEARNING

ASREDS Learning Loop

Humans have an innate need to belong to

groups. But this instinct to belong can also be

an instinct to exclude. When it comes to

shared learning, this group mentality can

result in learning bubbles (learning silos) or

the permanent loss of institutional knowledge

when people leave the group (company).

When learnings become trapped in

bubbles, knowledge is hidden and different

teams unnecessarily struggle with similar

issues, run similar experiments, develop the

same antipatterns, and fail to use each other’s

learnings. In Sooner Safer Happier, the authors

use the ASREDS learning loop to pop these

learning bubbles.17

e loop asks teams to �rst Align on a goal,

then Sense the context, Respond by designing

one or more Experiments, Distill the results

into insights and metrics, and then Share the

results by publishing the learnings so others

can pick them up again at Sense.

Practices like ASREDS help pop

disconnected learning bubbles, and when

combined with awards and Centers of Practice

(see Sooner Safer Happier for more), these

patterns eventually promote the creation of a

learning ecosystem.

Figure 21.1: e ASREDS Learning Loop

Source: Smart et al., Sooner Safer Happier: Antipatterns and Patterns

for Business Agility (Portland, OR: IT Revolution, 2020).

Share your Experiences from DevOps Conferences

In many cost-focused organizations, engineers are often

discouraged from attending conferences and learning from

their peers. To help build a learning organization, we should

encourage our engineers (both from Development and

Operations) to attend conferences, give talks at them, and,

when necessary, create and organize internal or external

conferences themselves.

DevOpsDays remains one of the most vibrant self-

organized conference series today. Many DevOps practices

have been shared and promulgated at these events. It has

remained free or nearly free, supported by a vibrant

community of practitioner communities and vendors.

e DevOps Enterprise Summit was created in 2014 for

technology leaders to share their experiences adopting

DevOps principles and practices in large, complex

organizations. e program is organized primarily around

experience reports from technology leaders on the DevOps

journey, as well as subject matter experts on topics selected

by the community. By 2021, DevOps Enterprise Summit has

held fourteen conferences, with nearly one thousand talks

from technology experts from almost every industry vertical.

CASE

STUDY

Internal Technology Conferences at Nationwide

Insurance, Capital One, and Target (2014)

Along with a�ending external conferences, many

companies have internal conferences for their

technology employees. Nationwide Insurance is a

leading provider of insurance and financial services and

operates in heavily regulated industries. Their many

offerings include auto and homeowner's insurance, and

they are the top provider of public-sector retirement

plans and pet insurance. As of 2014, they had $195

billion in assets, with $24 billion in revenue.18

Since 2005, Nationwide has been adopting Agile

and Lean principles to elevate the state of practice for

their five thousand technology professionals, enabling

grassroots innovation.

Steve Farley, VP of Information Technology,

remembers,

Exciting technology conferences were

starting to appear around that time, such as

the Agile national conference. In 2011, the

technology leadership at Nationwide agreed

that we should create a technology

conference, called TechCon. By holding this

event, we wanted to create a be�er way to

teach ourselves, as well as ensure that

everything had a Nationwide context, as

opposed to sending everyone to an external

conference.19

Capital One, one of the largest banks in the US with

over $298 billion in assets and $24 billion in revenue in

2015, held their first internal soware engineering

conference in 2015 as part of their goal to create a

world-class technology organization.20 The mission was

to promote a culture of sharing and collaboration, and

to build relationships between the technology

professionals and enable learning. The conference had

thirteen learning tracks and fiy-two sessions, and over

1,200 internal employees a�ended.21

Dr. Tapabrata Pal, a technical fellow at Capital One

and one of the organizers of the event, describes, “We

even had an expo hall, where we had twenty-eight

booths, where internal Capital One teams were showing

off all the amazing capabilities they were working on.

We even decided very deliberately that there would be

no vendors there, because we wanted to keep the focus

on Capital One goals.”22

Target is the sixth-largest retailer in the US, with $72

billion in revenue in 2014 and 1,799 retail stores and

347,000 employees worldwide.23 Heather Mickman, a

director of Development, and Ross Clanton have held six

internal DevOpsDays events since 2014 and have over

975 followers inside their internal technology

community, modeled aer the DevOpsDays held at ING

in Amsterdam in 2013.24†

Aer Mickman and Clanton a�ended the DevOps

Enterprise Summit in 2014, they held their own internal

conference, inviting many of the speakers from outside

firms so that they could re-create their experience for

their senior leadership. Clanton describes, “2015 was the

year when we got executive a�ention and when we

built up momentum. Aer that event, tons of people

came up to us, asking how they could get involved and

how they could help.”26

Institutions can enable their technologists by

providing a dynamic culture of learning and

teaching, not only through a�ending and

presenting at external conferences but also by

building and holding internal conferences. This

can foster greater team and organizational

trust, increase communication and innovation,

and improve daily work.

CONTINUOUS

LEARNING

e DORA 2019 State of DevOps Report

investigated how oganizations spread DevOps

and Agile practices, asking them to choose

from a variety of common methods, such as

training centers, centers of excellence, various

kinds of proof of concept, big bang, and

communities of practice.

Analysis showed that:

high performers favor strategies that

create community structures at both low

and high levels in the organization, likely

making them more sustainable and

resilient to re-organizations and product

changes. e top two strategies

employed are communities of practice

and grassroots, followed by proof of

concept as a template (a pattern where

the proof of concept gets reproduced

elsewhere in the organization), and

proof of concept as a seed.27

Create Community Structures to Spread Practices

Earlier in the book, we began the story of how the Testing

Grouplet built a world-class automated testing culture at

Google starting in 2005. eir story continues here, as they

try to improve the state of automated testing across all of

Google by using dedicated improvement blitzes, internal

coaches, and even an internal certi�cation program.

Mike Bland said, at that time, there was a 20% innovation

time policy at Google, enabling developers to spend roughly

one day per week on a Google-related project outside of their

primary area of responsibility. Some engineers chose to form

communities of practice they called grouplets, ad hoc teams of

like-minded engineers who wanted to pool their 20% time,

allowing them to do focused improvement blitzes.28

A testing community of practice was formed by Bharat

Mediratta and Nick Lesiecki, with the mission of driving the

adoption of automated testing across Google. Even though

they had no budget or formal authority, as Mike Bland

described, “ere were no explicit constraints put upon us,

either. And we took advantage of that.”29

ey used several mechanisms to drive adoption, but one

of the most famous was Testing on the Toilet (or TotT), their

weekly testing periodical. Each week, they published a

newsletter in nearly every bathroom in nearly every Google

office worldwide. Bland said, “e goal was to raise the degree

of testing knowledge and sophistication throughout the

company. It’s doubtful an online-only publication would’ve

involved people to the same degree.”30

Bland continues, “One of the most signi�cant TotT

episodes was the one titled, ‘Test Certi�ed: Lousy Name,

Great Results,’ because it outlined two initiatives that had

signi�cant success in advancing the use of automated

testing.”31

Test Certi�ed (TC) provided a road map to improve the

state of automated testing. As Bland describes, “It was

intended to hack the measurement-focused priorities of

Google culture … and to overcome the �rst, scary obstacle of

not knowing where or how to start. Level 1 was to quickly

establish a baseline metric, Level 2 was setting a policy and

reaching an automated test coverage goal, and Level 3 was

striving towards a long-term coverage goal.”32

e second capability was providing test certi�ed mentors

to any team who wanted advice or help, and test mercenaries

(i.e., a full-time team of internal coaches and consultants) to

work hands-on with teams to improve their testing practices

and code quality. e mercenaries did so by applying the

testing grouplet’s knowledge, tools, and techniques to a

team’s own code, using TC as both a guide and a goal.

Bland was eventually a leader of the testing grouplet from

2006 to 2007, and a member of the test mercenaries from

2007 to 2009.33

Bland continues,

It was our goal to get every team to TC Level 3, whether

they were enrolled in our program or not. We also

collaborated closely with the internal testing tools

teams, providing feedback as we tackled testing

challenges with the product teams. We were boots on

the ground, applying the tools we built, and eventually,

we were able to remove ‘I don’t have time to test’ as a

legitimate excuse… .34

e TC levels exploited the Google metrics-driven

culture—the three levels of testing were something that

people could discuss and brag about at performance

review time. e Testing Grouplet eventually got

funding for the Test Mercenaries, a staffed team of full-

time internal consultants. is was an important step,

because now management was fully onboard, not with

edicts, but by actual funding.35

Another important construct was leveraging company-

wide “�xit” improvement blitzes. Bland describes �xits as

“when ordinary engineers with an idea and a sense of mission

recruit all of Google engineering for one-day, intensive

sprints of code reform and tool adoption.”36

He organized four company-wide �xits, two pure testing

�xits and two that were more tools-related, the last involving

more than one hundred volunteers in over twenty offices in

thirteen countries. He also led the Fixit Grouplet from 2007

to 2008.37

ese �xits, as Bland describes, mean that we should

provide focused missions at critical points in time to generate

excitement and energy, which helps advance the state of the

art. is will help the long-term culture change mission reach

a new plateau with every big, visible effort.38

e results of the testing culture are self-evident in the

amazing results Google has achieved, as presented

throughout the book.

Conclusion

is chapter described how we can institute rituals that help

reinforce the culture that we are all lifelong learners and that

we value the improvement of daily work over daily work

itself. We do this by reserving time to pay down technical

debt, and creating community structures that allow everyone

to learn from and teach each other, both inside our

organization and outside it. By having everyone help each

other learn in our daily work, we out-learn the competition,

helping us win in the marketplace. But also, we help each

other achieve our full potential as human beings.

* From here on, the terms “hack week” and “hackathon” are used interchangeably

with “improvement blitz,” and not in the context of “you can work on whatever

you want.”

† Incidentally, the first Target internal DevOpsDays event was modeled aer the

first ING DevOpsDays that was organized by Ingrid Algra, Jan-Joost Bouwman,

Evelijn Van Leeuwen, and Kris Buytaert in 2013, aer some of the ING team

attended the 2013 Paris DevOpsDays.25

T
CONCLUSION TO PART V

hroughout Part V, we have explored the practices that

help create a culture of learning and experimentation in

your organization. Learning from incidents, creating shared

repositories, and sharing learnings is essential when we work

in complex systems, helping to make our work culture more

just and our systems safer and more resilient.

In Part VI, we’ll explore how to extend �ow, feedback, and

learning and experimentation by using them to

simultaneously help us achieve our Information Security

goals.

Additional Resources

Amy Edmondson’s e Fearless Organization: Creating

Psychological Safety in the Workplace for Learning, Innovation,

and Growth is a go-to book on building psychological safety in

the workplace.

Team of Teams: New Rules of Engagement for a Complex World

by General Stanley McChrystal showcases the art of

leadership in the US military.

e Five Dysfunctions of a Team: A Leadership Fable from

Patrick Lencioni brings a leadership fable that reveals the �ve

dysfunctions that go to the very heart of why teams—even

the best ones—often struggle.

Release It! Design and Deploy Production-Ready Software from

Michael Nygard helps you avoid the pitfalls that cost

companies millions of dollars in downtime and reputation.

Just Culture by Sidney Dekker can help you see how to build a

culture of trust, learning, and accountability.

To learn more about incident command models, check out the

2018 DevOps Enterprise Summit presentation, “Mastering

Outages with Incident Command for DevOps,” from Brent

Chapman, Principal at Great Circle Associates

(https://videolibrary.doesvirtual.com/?video=524038081).

https://videolibrary.doesvirtual.com/?video=524038081

I
PART VI: INTRODUCTION

n the previous chapters, we discussed enabling the fast

�ow of work from check-in to release, as well as creating

the reciprocal fast �ow of feedback. We explored the cultural

rituals that reinforce the acceleration of organizational

learning and the ampli�cation of weak failure signals that

help us to create an ever-safer system of work.

In Part VI, we further extend these activities so that we

not only achieve Development and Operations goals but also

simultaneously achieve Information Security goals, helping

us to create a high degree of assurance around the

con�dentiality, integrity, and availability of our services and

data.

Instead of injecting security into our product at the end of

the process, we will create and integrate security controls into

the daily work of Development and Operations, so that

security is part of everyone’s job every day. Ideally, much of

this work will be automated and put into our deployment

pipeline. Furthermore, we will augment our manual practices,

acceptances, and approval processes with automated controls,

relying less on controls such as separation of duties and

change approval processes.

By automating these activities, we can generate evidence

on demand to demonstrate that our controls are operating

effectively, whether to auditors, assessors, or anyone else

working in our value stream.

In the end, we will not only improve security but also

create processes that are easier to audit and that attest to the

effectiveness of controls, in support of compliance with

regulatory and contractual obligations. We do this by:

• making security a part of everyone’s job

• integrating preventative controls into our shared

source code repository

• integrating security with our deployment pipeline

• integrating security with our telemetry to better

enable detection and recovery

• protecting our deployment pipeline

• integrating our deployment activities with our change

approval processes

• reducing reliance on separation of duty

When we integrate security work into everyone’s daily

work, making it everyone’s responsibility, we help the

organization have better security. Better security means that

we are defensible and sensible with our data. It means that

we are reliable and have business continuity by being more

available and more capable of easily recovering from issues.

We are also able to overcome security problems before they

cause catastrophic results, and we can increase the

predictability of our systems. And, perhaps most importantly,

we can secure our systems and data better than ever.

O

22
INFORMATION SECURITY IS EVERYONE’S
JOB EVERY DAY

ne of the top objections to implementing DevOps

principles and patterns has been: “Information Security

and Compliance won’t let us.” And yet, DevOps may be one of

the best ways to better integrate information security into

the daily work of everyone in the technology value stream.

When Infosec is organized as a silo outside of

Development and Operations, many problems arise. James

Wicket, one of the creators of the Gauntlt security tool and

organizer of DevOpsDays Austin and the Lonestar

Application Security conference, observed:

One interpretation of DevOps is that it came from the

need to enable developer’s productivity, because as the

number of developers grew, there weren’t enough Ops

people to handle all the resulting deployment work. is

shortage is even worse in Infosec—the ratio of

engineers in Development, Operations, and Infosec in a

typical technology organization is 100:10:1. When

Infosec is that outnumbered, without automation and

integrating information security into the daily work of

Dev and Ops, Infosec can only do compliance checking,

which is the opposite of security engineering—and

besides, it also makes everyone hate us.1

James Wickett and Josh Corman, former CTO of

Sonatype and respected information security researcher, have

written about incorporating information security objectives

into DevOps, a set of practices and principles termed Rugged

DevOps.2*

roughout e DevOps Handbook, we have explored how

to fully integrate QA and Operations objectives throughout

our entire technology value stream. In this chapter, we

describe how to similarly integrate Infosec objectives into our

daily work, where we can increase our safety and security

while maintaining developer and operational productivity.

Integrate Security into Development Iteration

Demonstrations

One of our goals is to have feature teams engaged with

Infosec as early as possible, as opposed to primarily engaging

at the end of the project. One way we can do this is by

inviting Infosec to the product demonstrations at the end of

each development interval so that they can better understand

the team goals in the context of organizational goals, observe

their implementations as they are being built, and provide

guidance and feedback at the earliest stages of the project,

when there is the most amount of time and freedom to make

corrections.

Justin Arbuckle, former Chief Architect at GE Capital,

observes,

When it came to information security and compliance,

we found that blockages at the end of the project as

much more expensive than at the beginning—and

Infosec blockages were among the worst. ‘Compliance

by demonstration’ became one of the rituals we used to

shift all this complexity earlier in the process… .4

By having Infosec involved throughout the creation

of any new capability, we were able to reduce our use of

static checklists dramatically and rely more on using

their expertise throughout the entire software

development process.5

is helped the organization achieve its goals. Snehal

Antani, former CIO of Enterprise Architecture at GE Capital

Americas, described their top three key business

measurements as “development velocity (i.e., speed of

delivering features to market), failed customer interactions

(i.e., outages, errors), and compliance response time (i.e., lead

time from audit request to delivery of all quantitative and

qualitative information required to ful�ll the request).”6

When Infosec is an assigned part of the team, even if they

are only being kept informed and observing the process, they

gain the business context they need to make better risk-based

decisions. Furthermore, Infosec is able to help feature teams

learn what is required to meet security and compliance

objectives.

Integrate Security into Defect Tracking and Post-

Mortems

When possible, we want to track all open security issues in

the same work tracking system that Development and

Operations are using, ensuring the work is visible and can be

prioritized against all other work. is is very different from

how Infosec has traditionally worked, where all security

vulnerabilities are stored in a GRC (governance, risk, and

compliance) tool that only Infosec has access to. Instead, we

will put any needed work in the systems that Dev and Ops

use.

In a presentation at the 2012 Austin DevOpsDays, Nick

Galbreath, who headed up Information Security at Etsy for

many years, describes how his team treated security issues:

“We put all security issues into JIRA, which all engineers use

in their daily work, and they were either ‘P1’ or ‘P2,’ meaning

that they had to be �xed immediately or by the end of the

week, even if the issue is only an internally facing

application.”7

Furthermore, he states, “Any time we had a security issue,

we would conduct a post-mortem, because it would result in

better educating our engineers on how to prevent it from

happening again in the future, as well as a fantastic

mechanism for transferring security knowledge to our

engineering teams.”8

Integrate Preventive Security Controls into Shared

Source Code Repositories and Shared Services

In Chapter 20, we created a shared source code repository

that makes it easy for anyone to discover and reuse the

collective knowledge of our organization—not only for our

code but also for our toolchains, deployment pipeline,

standards, etc. By doing this, anyone can bene�t from the

cumulative experience of everyone in the organization.

Now we will add to our shared source code repository any

mechanisms or tools that help enable us to ensure our

applications and environments are secure. We will add

libraries that are pre-blessed by security to ful�ll speci�c

Infosec objectives, such as authentication and encryption

libraries and services.

Because everyone in the DevOps value stream uses

version control for anything they build or support, putting

our information security toolchain and approved libraries

there makes it much easier to in�uence the daily work of Dev

and Ops, because anything we create is available, searchable,

and reusable. Version control also serves as an omni-

directional communication mechanism to keep all parties

aware of changes being made.

If we have a centralized shared services organization, we

may also collaborate with them to create and operate shared

security-relevant platforms, such as authentication,

authorization, logging, and other security and auditing

services that Dev and Ops require. When engineers use one

of these prede�ned libraries or services, they won’t need to

schedule a separate security design review for that module;

they’ll be using the guidance we’ve created concerning

con�guration hardening, database security settings, key

lengths, and so forth.

To further increase the likelihood that the services and

libraries we provide will be used correctly, we can provide

security training to Dev and Ops, as well as review what

they’ve created to help ensure that security objectives are

being implemented correctly, especially for teams using these

tools for the �rst time.

Ultimately, our goal is to provide the security libraries or

services that every modern application or environment

requires, such as enabling user authentication, authorization,

password management, data encryption, and so forth.

Furthermore, we can provide Dev and Ops with effective

security-speci�c con�guration settings for the components

they use in their application stacks, such as for logging,

authentication, and encryption. We may include items such

as:

• code libraries and their recommended con�gurations

(e.g., 2FA [two-factor authentication library], bcrypt

password hashing, logging)

• secret management (e.g., connection settings,

encryption keys) using tools such as Vault, sneaker,

Keywhiz, credstash, Trousseau, Red October, etc.†

• OS packages and builds (e.g., NTP for time syncing,

secure versions of OpenSSL with correct

con�gurations, OSSEC or Tripwire for �le integrity

monitoring, syslog con�guration to ensure logging of

critical security into our centralized ELK stack)

By putting all these into our shared source code

repository, we make it easy for any engineer to correctly

create and use logging and encryption standards in their

applications and environments, with no further work from

us.

We should also collaborate with Ops teams to create a

base cookbook or base image of our OS, databases, and other

infrastructure (e.g., NGINX, Apache, Tomcat), showing they

are in a known, secure, and risk-reduced state. Our shared

repository not only becomes the place where we can get the

latest versions but also becomes a place where we can

collaborate with other engineers and monitor and alert on

changes made to security-sensitive modules.

Now that Docker-based systems are ubiquitous,

organizations should use a container registry to hold all base

images. In order to secure the software supply chain, these

source versions should be stored along with a secure hash of

the image created. is hash must be validated whenever the

image is used or deployed.

Integrate Security into Our Deployment Pipeline

In previous eras, in order to harden and secure our

application, we would start our security review after

development was completed. Often, the output of this review

would be hundreds of pages of vulnerabilities in a PDF, which

we’d give to Development and Operations, which would be

completely unaddressed due to project due date pressure or

problems being found too late in the software life cycle to be

easily corrected.

In this step, we will automate as many of our information

security tests as possible, so that they run alongside all our

other automated tests in our deployment pipeline, being

performed (ideally) upon every code commit by Dev or Ops,

and even in the earliest stages of a software project.

Our goal is to provide both Dev and Ops with fast

feedback on their work so that they are noti�ed whenever

they commit changes that are potentially insecure. By doing

this, we enable them to quickly detect and correct security

problems as part of their daily work, which enables learning

and prevents future errors.

Ideally, these automated security tests will be run in our

deployment pipeline alongside the other static code analysis

tools.

Tools such as Gauntlt have been designed to integrate

into the deployment pipelines, which run automated security

tests on our applications, our application dependencies, our

environment, etc. Remarkably, Gauntlt even puts all its

security tests in Gherkin syntax test scripts, which is widely

used by developers for unit and functional testing. Doing this

puts security testing in a framework they are likely already

familiar with. is also allows security tests to easily run in a

deployment pipeline on every committed change, such as

static code analysis, checking for vulnerable dependencies, or

dynamic testing.

By doing this, we provide everyone in the value stream

with the fastest possible feedback about the security of what

they are creating, enabling Dev and Ops engineers to �nd and

�x issues quickly.

Figure 22.1: Jenkins Running Automated Security Testing

Source: James Wicket and Gareth Rushgrove, “Battle-tested code without the

battle,” Velocity 2014 conference presentation, posted to Speakerdeck.com, June

24, 2014, https://speakerdeck.com/garethr/battle-tested-code-without-the-battle.

Ensure Security of the Application

Often, Development testing focuses on the correctness of

functionality, looking at positive logic �ows. is type of

testing is often referred to as the happy path, which validates

user journeys (and sometimes alternative paths) where

everything goes as expected, with no exceptions or error

conditions.

On the other hand, effective QA, Infosec, and fraud

practitioners will often focus on the sad paths, which happen

when things go wrong, especially in relation to security-

related error conditions. (ese types of security-speci�c

conditions are often jokingly referred to as the bad paths.)

For instance, suppose we have an e-commerce site with a

customer input form that accepts credit card numbers as part

of generating a customer order. We want to de�ne all the sad

and bad paths required to ensure that invalid credit cards are

properly rejected to prevent fraud and security exploits, such

as SQL injections, buffer overruns, and other undesirable

outcomes.

http://speakerdeck.com/
https://speakerdeck.com/garethr/battle-tested-code-without-the-battle

Instead of performing these tests manually, we would

ideally generate them as part of our automated unit or

functional tests so that they can be run continuously in our

deployment pipeline.

As part of our testing, we will want to include the

following:

Static analysis: is is testing that we perform in a

non-runtime environment, ideally in the

deployment pipeline. Typically, a static analysis

tool will inspect program code for all possible run-

time behaviors and seek out coding �aws, back

doors, and potentially malicious code (this is

sometimes known as “testing from the inside

out”). Examples of tools include Brakeman, Code

Climate, and searching for banned code functions

(e.g., “exec()”).

Dynamic analysis: As opposed to static testing,

dynamic analysis consists of tests executed while a

program is in operation. Dynamic tests monitor

items such as system memory, functional

behavior, response time, and overall performance

of the system. is method (sometimes known as

“testing from the outside in”) is similar to the

manner in which a malicious third party might

interact with an application. Examples include

Arachni and OWASP ZAP (Zed Attack Proxy). ‡

Some types of penetration testing can also be

performed in an automated fashion and should be

included as part of dynamic analysis using tools

such as Nmap and Metasploit. Ideally, we should

perform automated dynamic testing during the

automated functional testing phase of our

deployment pipeline, or even against our services

while they are in production. To ensure correct

security handling, tools like OWASP ZAP can be

con�gured to attack our services through a web

browser proxy and inspect the network traffic

within our test harness.

Dependency scanning: Another type of static testing

we would normally perform at build time inside of

our deployment pipeline involves inventorying all

our dependencies for binaries and executables and

ensuring that these dependencies, which we often

don’t have control over, are free of vulnerabilities

or malicious binaries. Examples include

Gemnasium and bundler audit for Ruby, Maven

for Java, and the OWASP Dependency-Check.

Source code integrity and code signing: All

developers should have their own PGP key,

perhaps created and managed in a system such as

keybase.io. All commits to version control should

be signed—that is straightforward to con�gure

using the open-source tools gpg and git.

Furthermore, all packages created by the CI

process should be signed, and their hash recorded

in the centralized logging service for audit

purposes.

Furthermore, we should de�ne design patterns to help

developers write code to prevent abuse, such as putting in

rate limits for our services and graying out submit buttons

after they have been pressed.

OWASP publishes a great deal of useful guidance such as

the Cheat Sheet series, which includes:9

• how to store passwords

• how to handle forgotten passwords

• how to handle logging

• how to prevent cross-site scripting (XSS)

vulnerabilities

CASE

STUDY

Static Security Testing at Twi�er (2009)

The “10 Deploys per Day: Dev and Ops Cooperation at

Flickr” presentation by John Allspaw and Paul Hammond

is famous for catalyzing the Dev and Ops community in

2009. The equivalent for the information security

community is likely the presentation that Justin Collins,

Alex Smolen, and Neil Matatall gave on their

information security transformation work at Twi�er at

the AppSecUSA conference in 2012.

Twi�er had many challenges due to hyper-growth.

For years, the famous Fail Whale error page would be

displayed when Twi�er did not have sufficient capacity

to keep up with user demand, showing a graphic of a

whale being lied by eight birds. The scale of user

growth was breathtaking—between January and March

2009, the number of active Twi�er users went from 2.5

million to 10 million.10

Twi�er also had security problems during this

period. In early 2009, two serious security breaches

occurred. First, in January the @BarackObama Twi�er

account was hacked. Then in April, the Twi�er

administrative accounts were compromised through a

brute-force dictionary a�ack. These events led the

Federal Trade Commission to judge that Twi�er was

misleading its users into believing that their accounts

were secure and issued an FTC consent order.11

The consent order required that Twi�er comply

within sixty days by instituting a set of processes that

were to be enforced for the following twenty years and

would do the following:12

• Designate an employee or employees to be

responsible for Twi�er’s information security

plan.

• Identify reasonably foreseeable risks, both

internal and external, that could lead to an

intrusion incident and create and implement a

plan to address these risks.§

• Maintain the privacy of user information, not

just from outside sources but also internally,

with an outline of possible sources of

verification and testing of the security and

correctness of these implementations.

The group of engineers assigned to solve this

problem had to integrate security into the daily work of

Dev and Ops and close the security holes that allowed

the breaches to happen in the first place.

In their previously mentioned presentation, Collins,

Smolen, and Matatall identified several problems they

needed to address:13

• Prevent security mistakes from being

repeated: They found that they were fixing the

same defects and vulnerabilities over and over

again. They needed to modify the system of

work and automation tools to prevent the

issues from happening again.

• Integrate security objectives into existing

developer tools: They identified early on that

the major source of vulnerabilities were code

issues. They couldn’t run a tool that generated

a huge PDF report and then email it to

someone in Development or Operations.

Instead, they needed to provide the developer

who had created the vulnerability with the

exact information needed to fix it.

• Preserve trust of Development: They needed

to earn and maintain the trust of Development.

That meant they needed to know when they

sent Development false positives, so they

could fix the error that prompted the false

positive and avoid wasting Development’s

time.

• Maintain fast flow through Infosec through

automation: Even when code vulnerability

scanning was automated, Infosec still had to

do lots of manual work and waiting. They had

to wait for the scan to complete, get back the

big stack of reports, interpret the reports, and

then find the person responsible for fixing it.

And when the code changed, it had to be done

all over again. By automating the manual work,

they removed “bu�on-pushing” tasks, saving

time and enabling them to use more creativity

and judgment to solve new problems.

• Make everything security related self-service,

if possible: They trusted that most people

wanted to do the right thing, so it was

necessary to provide them with all the context

and information they needed to fix any issues.

• Take a holistic approach to achieving Infosec

objectives: Their goal was to do analysis from

all the angles: source code, the production

environment, and even what their customers

were seeing.

The first big breakthrough occurred during a

company-wide hack week when they integrated static

code analysis into the Twi�er build process. The team

used Brakeman, which scans Ruby on Rails applications

for vulnerabilities. The goal was to integrate security

scanning into the earliest stages of the Development

process, not just when the code was commi�ed into the

source code repo.14

The results of integrating security testing into the

development process were breathtaking. Over the years,

by creating fast feedback for developers when they

write insecure code and showing them how to fix the

vulnerabilities, Brakeman has reduced the rate of

vulnerabilities found by 60%,15 as shown in Figure 22.2.

(The spikes are usually associated with new releases of

Brakeman.)

Figure 22.2: Number of Brakeman Security

Vulnerabilities Detected

This case study illustrates just how necessary it is

to integrate security into the daily work and

tools of DevOps and how effectively it can work.

Doing so mitigates security risk, reduces the

probability of vulnerabilities in the system, and

helps teach developers to write more secure code.

Ensure Security of Our Soware Supply Chain

Josh Corman observed that as developers “we are no longer

writing customized software—instead, we assemble what we

need from open source parts, which has become the software

supply chain that we are very much reliant upon.”16 In other

words, when we use components or libraries—either

commercial or open source—in our software, we not only

inherit their functionality, but also any security

vulnerabilities they contain.

CONTINUOUS

LEARNING

In the 2020 State of the Octoverse report, Dr.

Nicole Forsgren and her team conducted a

deep dive on open source and their

dependencies in the Securing Software section

of the report. ey found the most frequent

use of open-source dependencies in JavaScript

(94%), Ruby (90%), and .NET (90%).17

eir research also found that when teams

used automation to generate a pull request

patch for detected vulnerabilities, it

accelerated their supply chain security thirteen

days sooner, or 1.4 times faster, than those

who didn’t. is shows the effectiveness of

shifting left and integrating security into our

development and operations work�ows.18

When selecting software, we detect when our software

projects are relying on components or libraries that have

known vulnerabilities and help developers choose the

components they use deliberately and with due care, selecting

those components (e.g., open-source projects) that have a

demonstrated history of quickly �xing software

vulnerabilities. We also look for multiple versions of the same

library being used across our production landscape,

particularly the presence of older versions of libraries that

contain known vulnerabilities.

Examining cardholder data breaches shows how

important the security of open-source components we choose

can be. Since 2008, the annual Verizon PCI Data Breach

Investigation Report (DBIR) has been the most authoritative

voice on data breaches where cardholder data was lost or

stolen. e 2014 report studied over eighty-�ve thousand

breaches to better understand where attacks were coming

from, how cardholder data was stolen, and factors leading to

the breaches.

e 2014 DBIR found that ten vulnerabilities (i.e., CVEs)

accounted for almost 97% of the exploits used in studied

cardholder data breaches in 2014. Of these ten

vulnerabilities, eight of them were over ten years old.19

CONTINUOUS

LEARNING

In 2021, the authors of the DBIR analyzed the

vulnerabilities on all the internet-facing assets

for eighty-�ve organizations and found that

most had vulnerabilities that were from 2010

or before. ey wrote, “one might think that

more recent vulnerabilities would be more

common. However, as we saw last year, it is

actually the older vulnerabilities that are

leading the way.”20

e 2019 Sonatype State of the Software

Supply Chain Report, coauthored by Dr.

Stephen Magill and Gene Kim, described the

analysis of the Maven Central repository,

which stores software components for the Java

ecosystem (similar to what NPM does for

JavaScript, PyPi for Python, or Gems for

Ruby). In 2019, Maven Central contained over

four million versions of 310,000 components,

servicing over 146 billion download requests

(68% year-over-year growth). In the study, the

authors analyzed 4.2 million JAR artifacts

(Java archive �les) and 6,952 GitHub projects

where they resided.21

e report included these startling

�ndings:22

• 9% of components had at least one

vulnerability associated with them.

• When the component and all of its

transitives are analyzed, 47% of

components have at least one

vulnerability.

• e median time for software

components to remediate software

vulnerabilities was 326 days.

Figure 22.3: Time to Remediate vs. Time to

Update Dependencies (TTU)

Source: Sonatype, 2019 Software Supply Chain Report.

e 2019 report also showed that when

analyzing software components, the time

required for those projects to remediate their

security vulnerabilities (TTR) was correlated

with the time required to update any of their

dependencies (TTU).23 In other words,

projects that update more frequently tend to

remediate their security vulnerabilities faster.

is fact motivates why Jeremy Long,

founder of the OWASP Dependency Check

project, suggests that the best security

patching strategy is to remain current on all

dependencies.24 He speculates that “only 25%

of organizations report vulnerabilities to

users, and only 10% of vulnerabilities are

reported as Common Vulnerabilities and

Exposures (CVE).”25 Furthermore, the

publication of a CVE is often for a vulnerability

that was �xed in an earlier version of a

component.

For example, the PrimeFaces CVE-2017-

1000486 was published January 3, 2018,

which cryptominers then started exploiting.

However, the vulnerability was actually �xed in

February 2016. ose who had already

updated to a newer version were unaffected.26

e 2019 study also found that the

“popularity” of a software project (e.g., number

of GitHub stars or forks or the number of

Maven Central downloads) is not correlated

with better security characteristics.27 is is

problematic because many engineers select

open-source components based on the

project’s popularity. However, project

popularity has not been shown to correlate

with their TTU (time to update their

dependencies).28

e 2019 Sonatype study found �ve

behavioral clusters for open-source projects:29

• Small exemplar: small development

teams (1.6 devs), exemplary MTTU.

• Large exemplar: large development

teams (8.9 devs), exemplary MTTU, very

likely to be foundation supported, 11x

more popular.

• Laggards: poor MTTU, high stale

dependency count, more likely to be

commercially supported.

• Features first: frequent releases but poor

TTU, still reasonably popular.

• Cautious: good TTU but seldom

completely up to date.

Figure 22.4: Five Behavioral Clusters for Open-

Source Projects

Source: Sonatype, 2019 Software Supply Chain Report.

e 2020 State of the Software Supply Chain

Report surveyed developers to determine what

practices help achieve developer productivity

and security objectives. When comparing the

high-performing versus low-performing

clusters (as measured by developer

productivity and security outcomes), they

found that high performers had these

properties:30

Confidence of Changes:

• 15x more frequent deployments

• 4.9x less likely to have dependencies

break application functionality

• 3.8x more likely to describe updating

dependencies as easy (i.e., not painful)

Security of Components:

• 26x faster detection and remediation of

vulnerable OSS components

• 33x more likely to be con�dent that OSS

dependencies are secure (i.e., no known

vulnerabilities)

• 4.6x more likely to be con�dent that OSS

licenses of dependencies are compliant

with internal requirements

• 2.1x more likely to have access to newer

OSS component versions where prior

defects have been �xed

Productivity:

• 5.7x less time required to developers to be

productive when switching teams

• 26x less time to approve a new OSS

dependency for use

• 1.5x more likely for employees to

recommend their organizations as a great

place to work

When comparing the practices between

these clusters, performance differences can be

explained by the degree to which governance

objectives are automated and integrated into

the processes that developers use in their daily

work. High performers were:31

• 77% more likely to automate approval,

management, and analysis of

dependencies

• 59% more likely to be using software

composition analysis (SCA) tools

• 28% more likely to enforce governance

policies in Continous Integration (CI)

• 56% more likely to have centrally

managed CI infrastructure (where

information security governance policies

can be enforced)

• 51% more likely to maintain a centralized

record of all deployed artifacts,

supporting the collection of a Software

Bill of Materials (SBOM) for each

application

• 96% more likely to be able to centrally

scan all deployed artifacts for security and

license compliance

Another study that con�rms these statistics is by Dr. Dan

Geer and Josh Corman, which showed that of the open-

source projects with known vulnerabilities registered in the

National Vulnerability Database, only 41% were ever �xed

and required, on average, 390 days to publish a �x. For those

vulnerabilities that were labeled at the highest severity (i.e.,

those scored as CVSS level 10), �xes required 224 days.32¶

CONTINUOUS

LEARNING

e 2020 State of the Octoverse report showed

open-source vulnerability timelines: Across

GitHub, a vulnerability typically takes 218

weeks (just over four years) before being

disclosed; then it takes about 4.4 weeks for the

community to identify and release a �x. From

there, it takes ten weeks to alert on the

availability of a �x. For the repos that do apply

the �x, it typically takes one week to resolve.33

Two very prominent security breaches in

recent years, SolarWinds and Codecov,

involved attacks on the software supply chain.

In spring 2020, a malicious payload was added

to an update to the SolarWinds Orion network

management software, which then affected

over 18,000 of their customers. e payload

used the privileged accounts to corporate

network infrastructure to gain unauthorized

access, ranging from reading emails to planting

something far more destructive.34

In April 2021, a “CI poisoning attack” was

discovered in Codecov, a code coverage analysis

tool. A malicious payload was added to the

Codecov docker image and bash uploader,

which stole the credentials from the CI

environment. is likely impacted a signi�cant

number of their reported 29,000 customers.35

Both of these attacks show how reliant

organizations have become on automated

updates, how any CI/CD pipeline can be

compromised to insert malicious payloads

(this is addressed later in the book), and how

new risks can emerge as new development

practices are adopted. is serves as another

example of how information security must

continually examine threats presented by a

thinking adversary.

Ensure Security of the Environment

In this step, we should do whatever is required to help ensure

that the environments are in a hardened, risk-reduced state.

Although we may have created known, good con�gurations

already, we must put in monitoring controls to ensure that all

production instances match these known good states.

We do this by generating automated tests to ensure that

all appropriate settings have been correctly applied for

con�guration hardening, database security settings, key

lengths, and so forth. Furthermore, we will use tests to scan

our environments for known vulnerabilities.**

Another category of security veri�cation is understanding

actual environments (i.e., “as they actually are”). Examples of

tools for this include Nmap, to ensure that only expected

ports are open, and Metasploit, to ensure that we’ve

adequately hardened our environments against known

vulnerabilities, such as scanning with SQL injection attacks.

e output of these tools should be put into our artifact

repository and compared with the previous version as part of

our functional testing process. Doing this will help us detect

any undesirable changes as soon as they occur.

CASE

STUDY

18F Automating Compliance for the Federal

Government with Compliance Masonry (2016)

US Federal Government agencies were projected to

spend nearly $80 billion on IT in 2016, supporting the

mission of all the executive branch agencies.

Regardless of agency, to take any system from “dev

complete” to “live in production” requires obtaining an

authority to operate (ATO) from a designated approving

authority (DAA).

The laws and policies that govern compliance in

government are composed of tens of documents that

together number over four thousand pages, li�ered with

acronyms such as FISMA, FedRAMP, and FITARA. Even for

systems that only require low levels of confidentiality,

integrity, and availability, over one hundred controls

must be implemented, documented, and tested. It

typically takes between eight and fourteen months for

an ATO to be granted following “dev complete.”36

The 18F team in the federal government’s General

Services Administration has taken a multipronged

approach to solving this problem. Mike Bland explains,

“18F was created within the General Services

Administration to capitalize on the momentum

generated by the Healthcare.gov recovery to reform how

the government builds and buys soware.”37

One 18F effort is a platform as a service called

Cloud.gov, created from open-source components.

Cloud.gov runs on AWS GovCloud in 2016. Not only

does the platform handle many of the operational

concerns delivery teams might otherwise have to take

care of, such as logging, monitoring, alerting, and

http://healthcare.gov/
http://cloud.gov/
http://cloud.gov/

service life cycle management, it also handles the bulk

of compliance concerns.

By running on this platform, a large majority of the

controls that government systems must implement can

be taken care of at the infrastructure and platform level.

Then, only the remaining controls that are in scope at

the application layer have to be documented and tested,

significantly reducing the compliance burden and the

time it takes to receive an ATO.38

AWS GovCloud has already been approved for use

for federal government systems of all types, including

those which require high levels of confidentiality,

integrity, and availability. Cloud.gov has been approved

for all systems that require moderate levels of

confidentiality, integrity, and availability.††

Furthermore, the Cloud.gov team has built

framework to automate the creation of system security

plans (SSPs), which are “comprehensive descriptions of

the system’s architecture, implemented controls, and

general security posture … [which are] oen incredibly

complex, running several hundred pages in length.”39

They developed a prototype tool called compliance

masonry so that SSP data is stored in machine-readable

YAML and then turned into GitBooks and PDFs

automatically.

18F is dedicated to working in the open and

publishes its work open source in the public domain.

You can find compliance masonry and the components

that make up Cloud.gov in 18F’s GitHub repositories—

you can even stand up your own instance of Cloud.gov.

The work on open documentation for SSPs is being

http://cloud.gov/
http://cloud.gov/
http://cloud.gov/
http://cloud.gov/

done in close partnership with the OpenControl

community.

This case study demonstrates how an

organization—even one as monolithic as the

federal government—can use a PaaS to generate

automated tests and still meet compliance.

Integrate Information Security into Production

Telemetry

Marcus Sachs observed in 2010, that

year after year, in the vast majority of cardholder data

breaches, the organization detected the security breach

months or quarters after the breach occurred. Worse,

the way the breach was detected was not an internal

monitoring control but was far more likely someone

outside of the organization, usually a business partner

or the customer who notices fraudulent transactions.

One of the primary reasons for this is that no one in the

organization was regularly reviewing the log files.40

In other words, internal security controls are often

ineffective in successfully detecting breaches in a timely

manner, either because of blind spots in our monitoring or

because no one in our organization is examining the relevant

telemetry in their daily work.

In Chapter 14, we discussed creating a culture in Dev and

Ops where everyone in the value stream is creating

production telemetry and metrics, making them visible in

prominent public places so that everyone can see how our

services are performing in production. Furthermore, we

explored the necessity of relentlessly seeking ever-weaker

failure signals so that we can �nd and �x problems before

they result in a catastrophic failure.

Here, we deploy the monitoring, logging, and alerting

required to ful�ll our information security objectives

throughout our applications and environments, as well as

ensure that it is adequately centralized to facilitate easy and

meaningful analysis and response.

We do this by integrating our security telemetry into the

same tools that Development, QA, and Operations are using,

giving everyone in the value stream visibility into how their

application and environments are performing in a hostile

threat environment where attackers are constantly

attempting to exploit vulnerabilities, gain unauthorized

access, plant backdoors, commit fraud, perform denials of

service, and so forth.

By radiating how our services are being attacked in the

production environment, we reinforce that everyone needs to

be thinking about security risks and designing

countermeasures in their daily work.

Creating Security Telemetry in Our Applications

In order to detect problematic user behavior that could be an

indicator or enabler of fraud and unauthorized access, we

must create the relevant telemetry in our applications.

Examples may include:

• successful and unsuccessful user logins

• user password resets

• user email address resets

• user credit card changes

For instance, as an early indicator of brute-force login

attempts to gain unauthorized access, we might display the

ratio of unsuccessful login attempts to successful logins. And,

of course, we should create alerting around important events

to ensure we can detect and correct issues quickly.

Creating Security Telemetry in Our Environment

In addition to instrumenting our application, we also need to

create sufficient telemetry in our environments so that we

can detect early indicators of unauthorized access, especially

in the components that are running on infrastructure that we

do not control (e.g., hosting environments, in the cloud).

We need to monitor and potentially alert on items,

including the following:41

• OS changes (e.g., in production, in our build

infrastructure)

• security group changes

• changes to all our production con�gurations (e.g.,

OSSEC, Puppet, Chef, Tripwire, Kubernetes, network

infrastructure, middleware)

• cloud infrastructure changes (e.g., VPC, security

groups, users and privileges)

• XSS attempts (i.e., cross-site scripting attacks)

• SQLi attempts (i.e., SQL injection attacks)

• web server errors (e.g., 4XX and 5XX errors)

We also want to con�rm that we’ve correctly con�gured

our logging so that all telemetry is being sent to the right

place. When we detect attacks, in addition to logging that it

happened, we may also choose to block access and store

information about the source to aid us in choosing the best

mitigation actions.

CASE

STUDY

Instrumenting the Environment at Etsy (2010)

In 2010, Nick Galbreath was director of engineering at

Etsy and responsible for information security, fraud

control, and privacy. Galbreath defined fraud as when

“the system works incorrectly, allowing invalid or un-

inspected input into the system, causing financial loss,

data loss/the, system downtime, vandalism, or an

a�ack on another system.”42

To achieve these goals, Galbreath did not create a

separate fraud control or information security

department; instead, he embedded those

responsibilities throughout the DevOps value stream.

Galbreath created security-related telemetry that

was displayed alongside all the other more Dev and Ops

oriented metrics, which every Etsy engineer routinely

saw:43

• Abnormal production program terminations

(e.g., segmentation faults, core dumps, etc.):

“Of particular concern was why certain

processes kept dumping core across our entire

production environment, triggered from traffic

coming from the one IP address, over and over

again. Of equal concern were those HTTP ‘500

Internal Server Errors.’ These are indicators

that a vulnerability was being exploited to gain

unauthorized access to our systems, and that a

patch needs to be urgently applied.”44

• Database syntax error: “We were always

looking for database syntax errors inside our

code—these either enabled SQL injection

a�acks or were actual a�acks in progress. For

this reason, we had zero tolerance for database

syntax errors in our code, because it remains

one of the leading a�ack vectors used to

compromise systems.”45

• Indications of SQL injection a�acks: “This was

a ridiculously simple test—we’d merely alert

whenever ‘UNION ALL’ showed up in user-

input fields, since it almost always indicates a

SQL injection a�ack. We also added unit tests

to make sure that this type of uncontrolled

user input could never be allowed into our

database queries.”46

Figure 22.5 is an example of a graph that every

developer would see, which shows the number of

potential SQL injection a�acks that were a�empted in

the production environment.

Figure 22.5: Developers See SQL Injection Attempts

in Graphite at Etsy

Source: “DevOpsSec: Applying DevOps Principles to Security, DevOpsDays

Austin 2012,” SlideShare.net, posted by Nick Galbreath, April 12, 2012,

http://www.slideshare.net/nickgsuperstar/devopssec-apply-devops-

principles-to-security.

As Galbreath observed, “Nothing helps developers

understand how hostile the operating environment is

than seeing their code being a�acked in real time.”47

Galbreath continued, “One of the results of showing this

http://slideshare.net/
http://www.slideshare.net/nickgsuperstar/devopssec-apply-devops-principles-to-security

graph was that developers realized that they were being

a�acked all the time! And that was awesome, because it

changed how developers thought about the security of

their code as they were writing the code.”48

Presenting security-related telemetry brought

security into developers’ daily work and made

vulnerabilities more visible to everyone.

Protect Our Deployment Pipeline

e infrastructure that supports our continuous integration

and continuous deployment processes also presents a new

surface area vulnerable to attack. For instance, if someone

compromises the servers running the deployment pipeline

that has the credentials for our version control system, it

could enable someone to steal source code. Worse, if the

deployment pipeline has write access, an attacker could also

inject malicious changes into our version control repository

and, therefore, inject malicious changes into our application

and services.

As Jonathan Claudius, former Senior Security Tester at

TrustWave SpiderLabs, observed, “Continuous build and test

servers are awesome, and I use them myself. But I started

thinking about ways to use CI/CD as a way to inject malicious

code. Which led to the question: Where would be a good place

to hide malicious code? e answer was obvious: in the unit

tests. No one actually looks at the unit tests, and they’re run

every time someone commits code to the repo.”49

is demonstrates that in order to adequately protect the

integrity of our applications and environments, we must also

mitigate the attack vectors on our deployment pipeline. Risks

include developers introducing code that enables

unauthorized access (which we’ve mitigated through controls

such as code testing, code reviews, and penetration testing)

and unauthorized users gaining access to our code or

environment (which we’ve mitigated through controls such as

ensuring con�gurations match known, good states and

through effective patching).

However, in order to protect our continuous build,

integration, or deployment pipeline, our mitigation strategies

may also include the following:

• hardening continuous build and integration servers

and ensuring we can reproduce them in an automated

manner, just as we would for infrastructure that

supports customer-facing production services, to

prevent our continuous build and integration servers

from being compromised

• reviewing all changes introduced into version control,

either through pair programming at commit time or

by a code review process between commit and merge

into trunk, to prevent continuous integration servers

from running uncontrolled code (e.g., unit tests may

contain malicious code that allows or enables

unauthorized access)

• instrumenting our repository to detect when test code

contains suspicious API calls (e.g., unit tests accessing

the �le system or network) is checked into the

repository, perhaps quarantining it and triggering an

immediate code review

• ensuring every CI process runs on its own isolated

container or VM, and ensuring this is recreated from a

known, good, veri�ed base image at the start of every

build

• ensuring the version control credentials used by the

CI system are read-only

CASE STUDY: NEW TO THE

SECOND EDITION

Shiing Security Le at Fannie Mae (2020)

Fannie Mae has a more than $3 billion balance sheet and

helps finance approximately one in four homes in the US

as of 2020.50 At Fannie Mae, safety and soundness is part

of their mission.

They’ve experienced crises before. With a low risk

tolerance, their challenge was ensuring that security

strengthened everything they did. DevOps provided a

solution to learn from chaos engineering to improve

security, put security in the pipeline, and weave security

transparently into the fabric of everything they did.

Chris Porter, Fannie Mae’s CISO, and Kimberly

Johnson, the Executive Vice President and COO, talked

about their evolution at the 2020 DevOps Enterprise

Summit. It boiled down to two key changes: changing

culture and changing the way security communicated

with Dev teams and how they integrated security tools.51

In the old way, Dev would hand off code that was

ready for production. Security would conduct their own

tests and send back a list of vulnerabilities that the Dev

team would have to correct. It was inefficient and no

one liked it. They needed to learn to shi security le.

They did this by relinquishing control over their

security tools, making them more self-service, making

them API-based, and integrating them with Jira and

Jenkins. They trained developers to run the tools and to

learn what the results meant, and they had to change

their own nomenclature (instead of vulnerabilities, they

talked about defects).52

They also had to fully integrate all security tests

within the CI/CD pipeline so that every time code was

checked in they were running a test. Ultimately, this

made it easier for developers to know what to do. They

could see a test fail, understand why, and fix the

problem.53

“I call this the paved road. If you follow the paved

road and you use the CI/CD pipeline, which has all the

checks integrated into the pipeline, then it will be easier

for you to deploy code,” says Chris Porter.54

This was treated like an Andon cord. If the test didn’t

pass, then it broke the line and had to be fixed before

the line could continue. If you didn’t use the paved road,

it was a much slower, bumpier journey.

According to Porter, a mindset change is needed

from development and security. In the past, security’s

mindset had been to protect developers from

themselves. But in a DevOps model, the work has

moved to “you build it, you own it.”55 Everyone has

shared accountability, and security is baked into the

code instead of being inserted later.

As Kimberly Johnson put it:

In the old way, with Dev handing off

production-ready code to Security for

testing, we had a major bo�leneck in the

throughput of the Security team. For large

organizations that operate at scale, it can be

really hard to find enough Security talent to

continually test everything that is developed.

Building the security tests into the

development pipeline unlocked a lot more

productivity for us and reduced our

dependence on Security personnel for

standard testing and routine deployments.

In addition to reducing our reliance on the

Information Security team, shiing le and

automating our testing has yielded be�er

business results. Our deployment frequency

has increased by 25% in the last year, and our

deployment failure rate has fallen by about

the same amount. We are ge�ing critical

business changes into production much

faster, with fewer errors, using fewer

resources, and generating less rework.

Moving to DevSecOps has been a win-win-

win for us.56

By shiing security le, Fannie Mae was able to

maintain security and soundness of their code

without sacrificing speed, efficiency, and the

happiness of their teams.

Conclusion

roughout this chapter, we have described ways to integrate

information security objectives into all stages of our daily

work. We do this by integrating security controls into the

mechanisms we’ve already created, ensuring that all on-

demand environments are also in a hardened, risk-reduced

state—by integrating security testing into the deployment

pipeline and ensuring the creation of security telemetry in

pre-production and production environments. By doing so,

we enable developer and operational productivity to increase

while simultaneously increasing our overall safety. Our next

step is to protect the deployment pipeline.

* Rugged DevOps traces some of its history to Visible Ops Security, written by

Gene Kim, Paul Love, and George Spafford. Similar ideas were created by Dr.

Tapabrata Pal, former Sr. Director and Platform Engineering Technical Fellow at

Capital One, and the Capital One team; they describe their processes as

DevOpsSec and described it as a set of processes where Infosec is integrated into

all stages of the SDLC.3

† Note that all major cloud providers now operate cloud-based secret management

systems that provide a good alternative to running your own.

‡ e Open Web Application Security Project (OWASP) is a nonprofit

organization focused on improving the security of soware.

§ Strategies for managing these risks include providing employee training and

management; rethinking the design of information systems, including network

and soware; and instituting processes designed to prevent, detect, and respond

to attacks.

¶ Tools that can help ensure the integrity of our soware dependencies include

OWASP Dependency Check and Sonatype Nexus Lifecycle.

** Examples of tools that can help with security correctness testing (i.e., “as it

should be”) include automated configuration management systems (e.g., Puppet,

Chef, Ansible, Salt), as well as tools such as ServerSpec and the Netflix Simian

Army (e.g., Conformity Monkey, Security Monkey, etc.).

††ese approvals are known as FedRAMP JAB P-ATOs.

T

23
PROTECTING THE DEPLOYMENT PIPELINE

hroughout this chapter, we will look at how to protect

our deployment pipeline, as well as how to achieve

security and compliance objectives in our control

environment, including change management and separation

of duty.

Integrate Security and Compliance into Change

Approval Processes

Almost any IT organization of any signi�cant size will have

existing change management processes, which are the

primary controls to reduce operations and security risks.

Compliance managers and security managers place reliance

on change management processes for compliance

requirements, and they typically require evidence that all

changes have been appropriately authorized.

If we have constructed our deployment pipeline correctly

so that deployments are low risk, the majority of our changes

won’t need to go through a manual change approval process,

because we will have placed our reliance on controls such as

automated testing and proactive production monitoring.

In this step, we will do what is required to ensure that we

can successfully integrate security and compliance into any

existing change management process. Effective change

management policies will recognize that there are different

risks associated with different types of changes and that

those changes are all handled differently. ese processes are

de�ned in ITIL, which breaks changes down into three

categories:

Standard changes: ese are lower-risk changes that

follow an established and approved process but

can also be pre-approved. ey include monthly

updates of application tax tables or country codes,

website content and styling changes, and certain

types of application or operating system patches

that have well-understood impacts. e change

proposer does not require approval before

deploying the change, and change deployments

can be completely automated and should be logged

so there is traceability.

Normal changes: ese are higher-risk changes that

require review or approval from the agreed-upon

change authority. In many organizations, this

responsibility is inappropriately placed on the

change advisory board (CAB) or emergency change

advisory board (ECAB), which may lack the

required expertise to understand the full impact of

the change, often leading to unacceptably long

lead times. is problem is especially relevant for

large code deployments, which may contain

hundreds of thousands (or even millions) of lines

of new code, submitted by hundreds of developers

over the course of several months. In order for

normal changes to be authorized, the CAB will

almost certainly have a well-de�ned request for

change (RFC) form that de�nes what information

is required for the go/no-go decision. e RFC

form usually includes the desired business

outcomes, planned utility and warranty,* a

business case with risks and alternatives, and a

proposed schedule.†

Urgent changes: ese are emergency and,

consequently, potentially high-risk changes that

must be put into production immediately (e.g.,

urgent security patch, restore service). ey often

require senior management approval but allow

documentation to be performed after the fact. A

key goal of DevOps practices is to streamline our

normal change process such that it is also suitable

for emergency changes.

Recategorize Lower-Risk Changes as Standard Changes

Ideally, by having a reliable deployment pipeline in place, we

will have already earned a reputation for fast, reliable, and

undramatic deployments. At this point, we should seek to

gain agreement from Operations and the relevant change

authorities that our changes have been demonstrated to be

low risk enough to be de�ned as standard changes, pre-

approved by the CAB. is enables us to deploy into

production without need for further approval, although the

changes should still be properly recorded.

One way to support an assertion that our changes are low

risk is to show a history of changes over a signi�cant time

period (e.g., months or quarters) and provide a complete list

of production issues during that same period. If we can show

high change success rates and low MTTR, we can assert that

we have a control environment that is effectively preventing

deployment errors, as well as prove that we can effectively

and quickly detect and correct any resulting problems.

Even when our changes are categorized as standard

changes, they still need to be visual and recorded in our

change management systems (e.g., Remedy or ServiceNow).

Ideally, deployments will be performed automatically by our

con�guration management and deployment pipeline tools

and the results will be automatically recorded. By doing this,

everyone in our organization (DevOps or not) will have

visibility into our changes in addition to all the other changes

happening in the organization.

We may automatically link these change request records

to speci�c items in our work planning tools (e.g., JIRA, Rally,

LeanKit), allowing us to create more context for our changes,

such as linking to feature defects, production incidents, or

user stories. is can be accomplished in a lightweight way by

including ticket ‡ numbers from planning tools in the

comments associated with version control check-ins. By

doing this, we can trace a production deployment to the

changes in version control and, from there, trace them

further back to the planning tool tickets.

Creating this traceability and context should be easy and

should not create an overly onerous or time-consuming

burden for engineers. Linking to user stories, requirements,

or defects is almost certainly sufficient—any further detail,

such as opening a ticket for each commit to version control, is

likely not useful, and thus unnecessary and undesired, as it

will impose a signi�cant level of friction on their daily work.

What to Do When Changes Are Categorized as Normal

Changes

For those changes that we cannot get classi�ed as standard

changes, they will be considered normal changes and will

require approval from at least a subset of the CAB before

deployment. In this case, our goal is still to ensure that we

can deploy quickly, even if it is not fully automated.

In this case, we must ensure that any submitted change

requests are as complete and accurate as possible, giving the

CAB everything they need to properly evaluate our change—

after all, if our change request is malformed or incomplete, it

will be bounced back to us, increasing the time required for us

to get into production and casting doubt on whether we

actually understand the goals of the change management

process.

We can almost certainly automate the creation of

complete and accurate RFCs, populating the ticket with

details of exactly what is to be changed. For instance, we

could automatically create a ServiceNow change ticket with a

link to the JIRA user story, along with the build manifests

and test output from our deployment pipeline tool and links

to the scripts that will be run and the dry run output of these

commands.

Because our submitted changes will be manually

evaluated by people, it is even more important that we

describe the context of the change. is includes identifying

why we are making the change (e.g., providing a link to the

features, defects, or incidents), who is affected by the change,

and what is going to be changed.

Our goal is to share the evidence and artifacts that give us

con�dence that the change will operate in production as

designed. Although RFCs typically have free-form text �elds,

we should provide links to machine-readable data to enable

others to integrate and process our data (e.g., links to JSON

�les).

In many toolchains, this can be done in a compliant and

fully automated way by associating a ticket number with

every commit in version control. When we release a new

change, we can automatically collate the commits included in

that change and then assemble an RFC by enumerating every

ticket or bug that was completed or �xed as part of these

changes.

Upon submission of our RFC, the relevant members of

the CAB will review, process, and approve these changes as

they would any other submitted change request. If all goes

well, the change authorities will appreciate the thoroughness

and detail of our submitted changes because we have allowed

them to quickly validate the correctness of the information

we’ve provided (e.g., viewing the links to artifacts from our

deployment pipeline tools). However, our goal should be to

continually show an exemplary track record of successful

changes, so we can eventually gain their agreement that our

automated changes can be safely classi�ed as standard

changes.

CASE

STUDY

Automated Infrastructure Changes as Standard

Changes at Salesforce.com (2012)

Salesforce was founded in 2000 with the aim of making

customer relationship management easily available and

deliverable as a service. Salesforce’s offerings were

widely adopted by the marketplace, leading to a

successful IPO in 2004.3 By 2007, the company had over

fiy-nine thousand enterprise customers, processing

hundreds of millions of transactions per day, with an

annual revenue of $497 million.4

However, around that same time, their ability to

develop and release new functionality to their

customers seemed to grind to a halt. In 2006, they had

four major customer releases, but in 2007 they were

only able to do one customer release despite having

hired more engineers.5 The result was that the number

of features delivered per team kept decreasing and the

http://salesforce.com/

days between major releases kept increasing. And

because the batch size of each release kept ge�ing

larger, the deployment outcomes also kept ge�ing

worse.

Karthik Rajan, then VP of Infrastructure Engineering,

reports in a 2013 presentation that 2007 marked “the

last year when soware was created and shipped using a

waterfall process and when we made our shi to a more

incremental delivery process.”6

At the 2014 DevOps Enterprise Summit, Dave

Mangot and Reena Mathew described the resulting

multiyear DevOps transformation that started in 2009.

According to Mangot and Mathew, by implementing

DevOps principles and practices, the company reduced

their deployment lead times from six days to five

minutes by 2013. As a result, they were able to scale

capacity more easily, allowing them to process over one

billion transactions per day.7

One of the main themes of the Salesforce

transformation was to make quality engineering

everyone’s job, regardless of whether they were part of

Development, Operations, or Infosec. To do this, they

integrated automated testing into all stages of the

application and environment creation, as well as into the

continuous integration and deployment process, and

created the open-source tool Rouster to conduct

functional testing of their Puppet modules.8

They also started to routinely perform destructive

testing, a term used in manufacturing to refer to

performing prolonged endurance testing under the

most severe operating conditions until the component

being tested is destroyed. The Salesforce team started

routinely testing their services under increasingly higher

loads until the service broke, which helped them

understand their failure modes and make appropriate

corrections. Unsurprisingly, the result was significantly

higher service quality with normal production loads.9

Information Security also worked with Quality

Engineering at the earliest stages of their project,

continually collaborating in critical phases such as

architecture and test design, as well as properly

integrating security tools into the automated testing

process.10

For Mangot and Mathew, one of the key successes

from all the repeatability and rigor they designed into

the process was being told by their change management

group that “infrastructure changes made through

Puppet would now be treated as ‘standard changes,’

requiring far less or even no further approvals from the

CAB.” However, they noted that “manual changes to

infrastructure would still require approvals.”11

Salesforce not only integrated their DevOps

processes with the change management process

but also created further motivation to automate

the change process for more of their

infrastructure.

Implement Separation of Duty through Code Review

For decades, we have used separation of duty as one of our

primary controls to reduce the risk of fraud or mistakes in

the software development process. It has been the accepted

practice in most SDLCs to require developer changes to be

submitted to a code librarian, who would review and approve

the change before IT Operations promoted the change into

production.

ere are plenty of other less contentious examples of

separation of duty in Ops work, such as server administrators

ideally being able to view logs but not delete or modify them,

in order to prevent someone with privileged access from

deleting evidence of fraud or other issues.

When we did production deployments less frequently

(e.g., annually) and when our work was less complex,

compartmentalizing our work and doing handoffs were

tenable ways of conducting business. However, as complexity

and deployment frequency increase, performing successful

production deployments increasingly requires everyone in

the value stream to quickly see the outcomes of their actions.

e traditional approach to implementing separation of

duty can often impede this by slowing down and reducing the

feedback engineers receive on their work. is prevents

engineers from taking full responsibility for the quality of

their work and reduces a �rm’s ability to create organizational

learning.

Consequently, wherever possible, we should implement

separation of duties as a control. Instead, we should choose

controls such as pair programming, continuous inspection of

code check-ins, and code review. ese controls can give us

the necessary reassurance about the quality of our work.

Furthermore, by putting these controls in place, if separation

of duties is required, we can show that we achieve equivalent

outcomes with the controls we have created.

CASE

STUDY

PCI Compliance and a Cautionary Tale of Separating

Duties at Etsy (2014)§

Bill Massie is a development manager at Etsy and is

responsible for the payment application called ICHT (an

abbreviation for “I Can Haz Tokens”). ICHT takes

customer credit orders through a set of internally

developed payment processing applications that handle

online order entry by taking customer-entered

cardholder data, tokenizing it, communicating with the

payment processor, and completing the order

transaction.12

Because the scope of the Payment Card Industry

Data Security Standards (PCI DSS) cardholder data

environment (CDE) is “the people, processes and

technology that store, process or transmit cardholder

data or sensitive authentication data,” including any

connected system components, the ICHT application is

in scope for PCI DSS.13

To contain the PCI DSS scope, the ICHT application

is physically and logically separated from the rest of the

Etsy organization and is managed by a completely

separate application team of developers, database

engineers, networking engineers, and ops engineers.

Each team member is issued two laptops: one for ICHT

(which is configured differently to meet the DSS

requirements, and is locked in a safe when not in use)

and one for the rest of Etsy.

By doing this, they were able to decouple the CDE

environment from the rest of the Etsy organization,

limiting the scope of the PCI DSS regulations to one

segregated area. The systems that form the CDE are

separated (and managed differently) from the rest of

Etsy’s environments at the physical, network, source

code, and logical infrastructure levels. Furthermore, the

CDE is built and operated by a cross-functional team

that is solely responsible for the CDE.

The ICHT team had to modify their continuous

delivery practices in order to accommodate the need for

code approvals. According to Section 6.3.2 of the PCI

DSS v3.1, teams should review all custom code prior to

release to production or customers in order to identify

any potential coding vulnerability (using either manual

or automated processes) as follows:14

• Are code changes reviewed by individuals

other than the originating code author, and by

individuals knowledgeable about code-review

techniques and secure coding practices?

• Do code reviews ensure code is developed

according to secure coding guidelines?

• Are appropriate corrections implemented prior

to release?

• Are code review results reviewed and approved

by management prior to release?

To fulfill this requirement, the team initially decided

to designate Massie as the change approver responsible

for deploying any changes into production. Desired

deployments would be flagged in JIRA, and Massie

would mark them as reviewed and approved and

manually deploy them into the ICHT production.15

This has enabled Etsy to meet their PCI DSS

requirements and get their signed Report of Compliance

from their assessors. However, with regard to the team,

significant problems have resulted.

Massie observes that one troubling sideeffect “is a

level of ‘compartmentalization’ that is happening in the

ICHT team that no other group is having at Etsy. Ever

since we implemented separation of duty and other

controls required by the PCI DSS compliance, no one

can be a full-stack engineer in this environment.”16

As a result, while the rest of the Development and

Operations teams at Etsy work together closely and

deploy changes smoothly and with confidence, Massie

notes that:

within our PCI environment, there is fear and

reluctance around deployment and

maintenance because no one has visibility

outside their portion of the soware stack.

The seemingly minor changes we made to the

way we work seem to have created an

impenetrable wall between developers and

ops, and creates an undeniable tension that

no one at Etsy has had since 2008. Even if you

have confidence in your portion, it’s

impossible to get confidence that someone

else’s change isn’t going to break your part of

the stack.17

This case study shows that compliance is possible

in organizations using DevOps. However, the

potentially cautionary tale here is that all the

virtues that we associate with high-performing

DevOps teams are fragile—even a team that has

shared experiences with high trust and shared

goals can begin to struggle when low-trust

control mechanisms are put into place.

CASE STUDY: NEW TO THE

SECOND EDITION

Biz and Tech Partnership toward Ten “No Fear Releases”

Per Day at Capital One (2020)

Over the last seven years, Capital One has been

undergoing an Agile/DevOps transformation. In that

time, they’ve moved from waterfall to Agile, from

outsource to insource and open-sources, from

monolithic to microservices, from data centers to the

cloud.

But they were still facing a big problem: an aging

customer servicing platform. This platform serviced tens

of millions of Capital One credit card customers and

generated hundreds of millions of dollars in value to the

business.18 It was a critical platform, but it was showing

its age and was no longer meeting customer needs or

the internal strategic needs of the company. They

needed to not only solve the technology/cyber-risk

problem of the aging platform but also increase the NPV

(net present value) of the system.

“What we had was a mainframe-based vendor

product that had been bandaged to the point where the

systems and operational teams were as large as the

product itself… . We needed a modern system to deliver

on the business problem,” says Rakesh Goyal, Director,

Technology Engineering at Capital One.19

They started with a set of principles to work from.

First, they worked backwards from the customer’s

needs. Second, they were determined to deliver value

iteratively to maximize learnings and minimize risk. And

third, they wanted to avoid anchoring bias. That is, they

wanted to make sure they were not just building a faster

and stronger horse but actually solving a problem.20

With these guiding principles in place, they set

about making changes. First, they took a look at their

platform and the set of customers. Then they divided

them into segments based on what their needs were

and what functionalities they needed. Importantly, they

thought strategically about who their customers were,

because it wasn’t just credit card holders. Their

customers were regulators, business analysts, internal

employees who used the system, etc.

“We use very heavy human-centered design to

ensure that we are actually meeting the needs [of our

customers] and not just replicating what was there in

the old system,” says Biswanath Bosu, Senior Business

Director, Anti-Money Laundering-Machine Learning and

Fraud at Captial One.21

Next they graded these segments on the sequence

in which they would be deployed. Each segment

represented a thin slice that they could experiment with,

see what worked and what didn’t, and then iterate from

there.

“As much as we were looking for an MVP [minimum

viable product], we were not looking for the least

common denominator. We were looking for the

minimum viable experience that we could give to our

customers, not just any small product we could come up

with. Once we test that piece out and it works, the next

thing we will do is just essentially scale it up,” explained

Bosu.22

As part of the platform transformation, it was clear

they would need to move to the cloud. They would also

need to invest in and evolve the tools in their toolbox, as

well as invest in reskilling for their engineers to provide

them with the appropriate tooling to be agile during this

transformation.

They se�led on building an API-driven microservice-

based architecture system. The goal was to sustain and

build it incrementally, slowly expanding into various

business strategies.

“You can think of this as having a fleet of smart cars

built for specific workloads rather than one futuristic

car,” describes Goyal.23

They began by leveraging proven enterprise tools.

By standardizing, they could react faster to situations

where engineers needed to contribute to other teams or

move from one team to another.

Building out their CI/CD pipeline enabled

incremental releases and empowered teams by reducing

cycle time and risk. As a financial institution, they also

had to address regulatory and compliance controls.

Using the pipeline, they were able to block releases

when certain controls were not met.

The pipeline also allowed teams to focus on product

features, since the pipeline was a tool to leverage rather

than a required investment from each team. At the

height of their effort, they had twenty-five teams

working and contributing simultaneously.

Focusing on customer needs and building a CI/CD

pipeline helped Captial One not only meet

business needs but move faster.

Ensure Documentation and Proof for Auditors and

Compliance Officers

As technology organizations increasingly adopt DevOps

patterns, there is more tension than ever between IT and

Audit. ese new DevOps patterns challenge traditional

thinking about auditing, controls, and risk mitigation.

As Bill Shinn, a principal security solutions architect at

Amazon Web Services, observes,

DevOps is all about bridging the gap between Dev and

Ops. In some ways, the challenge of bridging the gap

between DevOps and auditors and compliance officers

is even larger. For instance, how many auditors can read

code and how many developers have read NIST 800-37

or the Gramm-Leach-Bliley Act? at creates a gap of

knowledge, and the DevOps community needs to help

bridge that gap.24

CASE

STUDY

Proving Compliance in Regulated Environments (2015)

Helping large enterprise customers show that they can

still comply with all relevant laws and regulations is

among Bill Shinn’s responsibilities as a principal security

solutions architect at Amazon Web Services. Over the

years, he has spent time with over one thousand

enterprise customers, including Hearst Media, GE,

Phillips, and Pacific Life, who have publicly referenced

their use of public clouds in highly regulated

environments.

Shinn notes, “One of the problems is that auditors

have been trained in methods that aren’t very suitable

for DevOps work pa�erns. For example, if an auditor

saw an environment with ten thousand productions

servers, they have been traditionally trained to ask for a

sample of one thousand servers, along with screenshot

evidence of asset management, access control se�ings,

agent installations, server logs, and so forth.”25

“That was fine with physical environments,” Shinn

continues. “But when infrastructure is code, and when

auto-scaling makes servers appear and disappear all the

time, how do you sample that? You run into the same

problems when you have a deployment pipeline, which

is very different than the traditional soware

development process, where one group writes the code

and another group deploys that code into production.”26

He explains, “In audit fieldwork, the most

commonplace methods of gathering evidence are still

screenshots and CSV files filled with configuration

se�ings and logs. Our goal is to create alternative

methods of presenting the data that clearly show

auditors that our controls are operating and effective.”27

To help bridge that gap, he has teams work with

auditors in the control design process. They use an

iterative approach, assigning a single control for each

sprint to determine what is needed in terms of audit

evidence. This has helped ensure that auditors get the

information they need when the service is in

production, entirely on demand.

Shinn states that the best way to accomplish this is

to “send all data into our telemetry systems, such as

Splunk or Kibana. This way auditors can get what they

need, completely self-serviced. They don’t need to

request a data sample—instead, they log into Kibana,

and then search for audit evidence they need for a given

time range. Ideally, they’ll see very quickly that there’s

evidence to support that our controls are working.”28

Shinn continues, “With modern audit logging, chat

rooms, and deployment pipelines, there’s

unprecedented visibility and transparency into what’s

happening in production, especially compared to how

Operations used to be done, with far lower probability

of errors and security flaws being introduced. So, the

challenge is to turn all that evidence into something an

auditor recognizes.”29

That requires deriving the engineering requirements

from the actual regulations. Shinn explains,

To discover what HIPAA requires from an

information security perspective, you have to

look into the forty-five CFR Part 160

legislation, go into Subparts A and C of Part

164. Even then, you need to keep reading until

you get into ‘technical safeguards and audit

controls.’ Only there will you see that what is

required is that we need to determine

activities that will be tracked and audited

relevant to Patient Healthcare Information,

document and implement those controls,

select tools, and then finally review and

capture the appropriate information.30

Shinn continues, “How to fulfill that requirement is

the discussion that needs to be happening between

compliance and regulatory officers, and the security and

DevOps teams, specifically around how to prevent,

detect, and correct problems. Sometimes they can be

fulfilled in a configuration se�ing in version control.

Other times, it’s a monitoring control.”31

Shinn gives an example: “We may choose to

implement one of those controls using AWS

CloudWatch, and we can test that the control is

operating with one command line. Furthermore, we

need to show where the logs are going—in the ideal, we

push all this into our logging framework, where we can

link the audit evidence with the actual control

requirement.”32

To help solve this problem, the DevOps Audit Defense

Toolkit describes the end-to-end narrative of the

compliance and audit process for a fictitious

organization (Parts Unlimited from The Phoenix Project).

It starts by describing the entity’s organizational goals,

business processes, top risks, and resulting control

environment, as well as how management could

successfully prove that controls exist and are effective. A

set of audit objections is also presented, as well as how

to overcome them.33

The toolkit describes how controls could be

designed in a deployment pipeline to mitigate the

stated risks, and provides examples of control

a�estations and control artifacts to demonstrate control

effectiveness. It was intended to be general to all control

objectives, including in support of accurate financial

reporting, regulatory compliance (e.g., SEC SOX-404,

HIPAA, FedRAMP, EU Model Contracts, and the proposed

SEC Reg-SCI regulations), contractual obligations (e.g.,

PCI DSS, DOD DISA), and effective and efficient

operations.

This case study shows how building

documentation helps bridge the gap between

Dev and Ops practices and auditor requirements,

showing DevOps can comply with requirements

and improve risk assessment and mitigation.

CASE

STUDY

Relying on Production Telemetry for ATM Systems

(2013)

Mary Smith (a pseudonym) heads up the DevOps

initiative for the consumer banking property of a large

US financial services organization. She made the

observation that Information Security, auditors, and

regulators oen put too much reliance on code reviews

to detect fraud. Instead, they should be relying on

production monitoring controls in addition to using

automated testing, code reviews, and approvals to

effectively mitigate the risks associated with errors and

fraud.34

She observed:

Many years ago, we had a developer who

planted a backdoor in the code that we

deploy to our ATM cash machines. They were

able to put the ATMs into maintenance mode

at certain times, allowing them to take cash

out of the machines. We were able to detect

the fraud very quickly, and it wasn’t through a

code review. These types of backdoors are

difficult, or even impossible, to detect when

the perpetrators have sufficient means,

motive, and opportunity.

However, we quickly detected the fraud

during our regular operations review meeting

when someone noticed that ATMs in a city

were being put into maintenance mode at

unscheduled times. We found the fraud even

before the scheduled cash audit process,

when they reconcile the amount of cash in

the ATMs with authorized transactions.35

In this case study, the fraud occurred despite

separation of duties between Development and

Operations and a change approval process, but it was

quickly detected and corrected through effective

production telemetry.

As this case study demonstrates, auditors’

overreliance on code reviews and separation of

duties between Dev and Ops can leave

vulnerabilities. Telemetry helps provide the

necessary visibility to detect and act upon errors

and fraud, mitigating the perceived need to

separate duties or create additional layers of

change review boards.

Conclusion

roughout this chapter, we have discussed practices that

make information security everyone’s job, where all of our

information security objectives are integrated into the daily

work of everyone in the value stream. By doing this, we

signi�cantly improve the effectiveness of our controls so that

we can better prevent security breaches, as well as detect and

recover from them faster. And we signi�cantly reduce the

work associated with preparing and passing compliance

audits.

* ITIL defines utility as “what the service does,” while warranty is defined as “how

the service is delivered and can be used to determine whether a service is ‘fit for

use.’”1

† To further manage risk changes, we may also have defined rules, such as certain

changes can only be implemented by a certain group or individual (e.g., only

DBAs can deploy database schema changes). Traditionally, the CAB meetings have

been held weekly, where the change requests are approved and scheduled. From

ITIL Version 3 onward, it is acceptable for changes to be approved electronically in

a just-in-time fashion through a change management tool. It also specifically

recommends that “standard changes should be identified early on when building

the Change Management process to promote efficiency. Otherwise, a Change

Management implementation can create unnecessarily high levels of

administration and resistance to the Change Management process.”2

‡e term ticket is used generically to indicate any uniquely identifiable work item.

§ e authors thank Bill Massie and John Allspaw for spending an entire day with

Gene Kim, sharing their compliance experience.

T
PART VI CONCLUSION

hroughout the previous chapters, we explored how to

take DevOps principles and apply them to Information

Security, helping us achieve our goals and making sure

security is a part of everyone’s job, every day. Better security

ensures that we are defensible and sensible with our data,

that we can recover from security problems before they

become catastrophic, and, most importantly, that we can

make the security of our systems and data better than ever.

Additional Resources

You can dive deeper into considerations of DevOps and audit

with this amazing auditor’s panel for the 2019 DevOps

Enterprise Summit. In it, representatives from each of the

four big auditing �rms took the time to talk about how

DevOps and audit can work together

(https://videolibrary.doesvirtual.com/?video=485153001).

Sooner Safer Happier: Antipatterns and Patterns for Business

Agility has an excellent chapter on building intelligent

control, outlining clear patterns and antipatterns for dealing

with highly regulated industries. e authors all come from

the banking industry and thus have a lot of hard-won

experience.

Safety Differently: Human Factors for a New Era by Sidney

Dekker addresses how to turn safety from bureaucratic

accountability back into an ethical responsibility, and it

embraces the human factor not as a problem to control but as

a solution to harness.

You can also view a lecture from Dekker on the subject here:

https://www.youtube.com/watch?v=oMtLS0FNDZs.

https://videolibrary.doesvirtual.com/?video=485153001
https://www.youtube.com/watch?v=oMtLS0FNDZs

W
A CALL TO ACTION:
CONCLUSION TO THE DEVOPS HANDBOOK

e have come to the end of a detailed exploration of

both the principles and technical practices of

DevOps. At a time when every technologist and technology

leader is challenged with enabling security, reliability, and

agility, and at a time when security breaches, time to market,

and massive technology transformation is taking place,

DevOps offers a solution. Hopefully, this book has provided

an in-depth understanding of the problem and a road map to

creating relevant solutions.

As we have explored throughout e DevOps Handbook,

we know that, left unmanaged, an inherent con�ict can exist

between Development and Operations that creates ever-

worsening problems, which result in slower time to market

for new products and features, poor quality, increased

outages and technical debt, reduced engineering productivity,

as well as increased employee dissatisfaction and burnout.

DevOps principles and patterns enable us to break this

core, chronic con�ict. After reading this book, we hope you

see how a DevOps transformation can enable the creation of

dynamic learning organizations, achieving the amazing

outcomes of fast �ow and world-class reliability and security,

as well as increased competitiveness and employee

satisfaction.

DevOps requires potentially new cultural and

management norms and changes in our technical practices

and architecture. is requires a coalition that spans business

leadership, Product Management, Development, QA, IT

Operations, Information Security, and even Marketing,

where many technology initiatives originate. When all these

teams work together, we can create a safe system of work,

enabling small teams to quickly and independently develop

and validate code that can be safely deployed to customers.

is results in maximizing developer productivity,

organizational learning, high employee satisfaction, and the

ability to win in the marketplace.

Our goal in writing this book was to sufficiently codify

DevOps principles and practices so that the amazing

outcomes achieved within the DevOps community could be

replicated by others. We hope to accelerate the adoption of

DevOps initiatives and support their successful

implementations while lowering the activation energy

required for them to be completed.

We know the dangers of postponing improvements and

settling for daily workarounds, as well as the difficulties of

changing how we prioritize and perform our daily work.

Furthermore, we understand the risks and effort required to

get organizations to embrace a different way of working, as

well as the perception that DevOps is another passing fad,

soon to be replaced by the next buzzword.

We assert that DevOps is transformational to how we

perform technology work, just as Lean forever transformed

how manufacturing work was performed in the 1980s. ose

that adopt DevOps will win in the marketplace at the expense

of those that do not. ey will create energized and

continually learning organizations that outperform and out-

innovate their competitors.

Because of this, DevOps is not just a technology

imperative but an organizational imperative. e bottom line

is, DevOps is applicable and relevant to any and all

organizations that must increase �ow of planned work

through the technology organization, while maintaining

quality, reliability, and security for our customers.

Our call to action is this: no matter what role you play in

your organization, start �nding people around you who want

to change how work is performed. Show this book to others

and create a coalition of like-minded thinkers to break out of

the downward spiral. Ask organizational leaders to support

these efforts or, better yet, sponsor and lead these efforts

yourself.

Finally, since you’ve made it this far, we have a dirty

secret to reveal. In many of our case studies, following the

achievement of the breakthrough results presented, many of

the change agents were promoted—but, in some cases, there

was later a change of leadership which resulted in many of

the people involved leaving, accompanied by a rolling back of

the organizational changes they had created.

We believe it’s important not to be cynical about this

possibility. e people involved in these transformations

knew up front that what they were doing had a high chance of

failure, and they did it anyway. In doing so, perhaps most

importantly, they inspired the rest of us by showing us what

can be done. Innovation is impossible without risk-taking,

and if you haven’t managed to upset at least some people in

management, you’re probably not trying hard enough. Don’t

let your organization’s immune system deter or distract you

from your vision. As Jesse Robbins, previously “master of

disaster” at Amazon, likes to say, “Don’t �ght stupid, make

more awesome.”1

DevOps bene�ts all of us in the technology value stream,

whether we are Dev, Ops, QA, Infosec, Product Owners, or

customers. It brings joy back to developing great products,

with fewer death marches. It enables humane work

conditions with fewer weekends worked and fewer missed

holidays with our loved ones. It enables teams to work

together to survive, learn, thrive, delight our customers, and

help our organization succeed.

We sincerely hope e DevOps Handbook helps you achieve

these goals.

AFTERWORD TO THE SECOND EDITION

Nicole Forsgren

e questions I am asked most often—by leaders and

developers alike—are about productivity and performance:

How can we help our teams develop and deliver software

more effectively? How can we improve developer

productivity? Are performance improvements sustainable, or

are we simply making tradeoffs? How should we measure and

track these improvements?

Data and experience have reinforced the importance of

using good automation, strategic process, and a culture that

prioritizes trust and information �ow to help teams achieve

high software delivery performance. Even during the COVID-

19 pandemic, teams and organizations with smart

automation, �exible processes, and good communication

were able to not only survive but grow and expand, with

some pivoting in just days or weeks to serve new customers

and markets.

GitHub’s 2020 State of the Octoverse report found that

developers spent more time at work, logging 4.2 to 4.7 more

hours per day across the four time zones studied compared to

the previous year.1* And developers weren’t just spreading out

their work to accommodate housework or childcare; using

push volume as a proxy for amount of work, the data showed

that developers were also doing more. Developers pushed ten

to seventeen more commits per day to their main branch

during the workweek compared to a year before. Just as the

data shows enterprise activity slowing on the weekend, open-

source activity picks up, suggesting that developers are

logging off of work and logging in to open source. Open-

source project creation is up 25% since April 2020 year over

year.

Figure AF.1: Average Development Window by Day of Week

per User

Source: Forsgren et. al., 2020 State of the Octoverse.

While these statistics are impressive, and our ability to

continue to innovate and deliver software in the face of a

pandemic admirable, we must also step back to consider

broader patterns. Simply pushing hard and delivering results

when the conditions don’t typically allow for it can mask

underlying issues.

A recent study from Microsoft reports that “high

productivity is masking an exhausted workforce.”2 ose of

us who have worked in technology for years may recognize

the patterns and know they aren’t sustainable; true

improvement and transformation requires both

improvement and balance. We need to ensure that the

lessons we learned from our old ways of work—long days,

brute force, adrenaline-fueled delivery schedules—aren’t

merely replicated now that we have better technology and

methods.

e data and patterns above also highlight another

important point: activity metrics like number of hours

worked or number of commits don’t tell the full story. Teams

and organizations that only measure productivity using these

shallow metrics risk missing the full picture, one that

experienced and expert technology leaders already know:

productivity is complex and must be measured holistically.

Based on decades of collected expertise and research, my

colleagues and I recently published the SPACE framework to

help developers, teams, and leaders think about and measure

productivity.3 It includes �ve dimensions: satisfaction and

well-being, performance, activity, communication and

collaboration, and efficiency and �ow. By including measures

across at least three dimensions in the framework, teams and

organizations can measure developer productivity in ways

that more accurately capture productivity, will have a better

understanding of how individuals and teams work, and will

have superior information to enable better decisions.

For example, if you’re already measuring commits (an

activity measure), don’t simply add the number of pull

requests to your metrics dashboard, as this is another activity

metric. To help capture productivity, add at least one metric

from two different dimensions: perhaps satisfaction with the

engineering system (a satisfaction measure and an important

measure of developer experience) and pull request merge

time (an efficiency and �ow measure). By adding these two

metrics, we can now see an indication of number of commits

per individual or team and pull request merge time per

individual or team—as well as how those balance with

development time to ensure that reviews aren’t interrupting

coding time—and gain insight into how the engineering

system is supporting the overall development and delivery

pipeline.

We can see how this gives us much more insight than

merely the number of commits and helps us make better

decisions to support our development team. ese metrics

can also ensure more sustainable development and well-being

for our developers by surfacing problems early and

highlighting sustainability of our tools and inherent trade-

offs our teams may be making.

As we look back over the past decade, it’s rewarding to

know that our improved processes, technology, and methods

of working and communicating have enabled our teams to

develop and deliver software at levels we probably never

imagined were possible—even in the face of daunting and

unforeseen change. At the same time, it’s humbling to realize

the continued (and perhaps even greater) responsibility we

have to ensure our improvement journey continues. e

opportunities are exciting, and we wish you well on the

journey.

Gene Kim

I continue to be so inspired by how technology leaders are

creating better ways of working, enabling the creation of

value sooner, safer, and happier, as framed so wonderfully by

Jon Smart. And I am so delighted by how the second edition

of this book contains so many new case studies (and so many

of them coming from the DevOps Enterprise community).

e fact that these case studies come from so many different

industry verticals is another testament to the universality of

the problem DevOps helps to solve.

One of the most wonderful things I’ve observed is how

more and more of these experience reports are given as joint

presentations between the technology leader and their

business-leader counterpart, clearly articulating how the

achievement of their goals, dreams, and aspirations are made

possible through creating a world-class technology

organization.

In one of the last pages in e Phoenix Project, the Yoda-

like Erik character predicts that technology capabilities not

only need to be a core competency in almost every

organization but that they also need to be embedded

throughout the organization, closest to where customer

problems are being solved.

It’s exhilarating to see evidence of these predictions

coming true, and I look forward to technology helping every

organization win, fully supported by the very highest levels in

the organization.

Jez Humble

I think of DevOps as a movement of people who are working

out how to build secure, rapidly changing, resilient

distributed systems at scale. is movement was born from

seeds planted by developers, testers, and sysadmins many

years before, but really took off with the enormous growth of

digital platforms. In the last �ve years, DevOps has become

ubiquitous.

While I think we’ve learned a lot as a community over

those years, I also see many of the same problems that have

dogged the technology industry repeat themselves, which can

basically be reduced to the fact that sustained process

improvement, architectural evolution, culture change, and

teamwork of the kind that produces a lasting impact is hard.

It’s easier to focus on tools and organizational structure—

and those things are important, but they’re not enough.

Since the book came out, I’ve used the practices we

describe in the US Federal Government, in a four-person

startup, and in Google. I’ve had discussions about them with

people all over the world, thanks to the wonderful DevOps

community. I’ve been part of a team, led by Dr. Nicole

Forsgren—who I’m delighted has contributed to this second

edition—that’s done world-leading research into how to build

high-performing teams.

If I’ve learned anything, it’s that high performance starts

with organizations whose leadership focuses on building an

environment where people from different backgrounds and

with different identities, experiences, and perspectives can

feel psychologically safe working together, and where teams

are given the necessary resources, capacity, and

encouragement to experiment and learn together in a safe

and systematic way.

e world is changing and evolving constantly. While

organizations and teams will come and go, we in our

community have the responsibility of taking care of and

supporting each other and sharing what we learn. at’s the

future of DevOps, and it’s also the challenge of DevOps. My

deepest gratitude goes to this community, especially those of

you who do the critical work of creating psychologically safe

environments and welcoming and encouraging new people of

all backgrounds. I can’t wait to see what you learn and share

with us.

Patrick Debois

Initially, I saw DevOps as a way to improve the bottleneck

between Development and Operations.

After running my own business, I understand there are

many other groups in a company in�uencing this

relationship. For example, when Marketing and Sales over-

promise, this puts a lot of stress on the whole relationship.

Or when HR keeps hiring the wrong people or bonuses are

misaligned. is made me look at DevOps as a way of �nding

bottlenecks even at a higher level within a company.

Since the term was �rst coined, I’ve settled on my own

de�nition of “DevOps”: everything you do to overcome the

friction between silos. All the rest is plain engineering.

is de�nition highlights that just building technology is

not enough; you need to have the intent to overcome a

friction point. And that friction point will move once you

have improved the blocker. is continuous evaluation of the

bottleneck is crucial.

Indeed, organizations keep optimizing the

pipeline/automation but don’t work on other friction points

that are causing bottlenecks. is is a key challenge today. It’s

interesting how concepts such as FinOps, for example, have

put more pressure on collaboration, or even improvements

on a personal level, to better understand and articulate what

people need and want. at broader view of improvement

and thinking beyond the pipeline/automation is where most

people/organizations get stuck.

As we move forward, I believe we’ll keep seeing other

bottlenecks being addressed under the umbrella of DevOps—

DevSecOps is a good example of this, the bottleneck just

moving somewhere else. I’ve seen people mention

DesignOps, AIOps, FrontendOps, DataOps, NetworkOps …

all labels to balance the attention points of things to keep in

mind.

At some point, it will not matter anymore if it’s called

DevOps or not. e idea that organizations must keep

optimizing will just happen naturally. So I actually hope the

future of DevOps is that nobody talks about the term

anymore and just keeps improving the practices, mainly

because we have reached peak in�ation of the term.

John Willis

I met Gene about ten years ago, and he told me about a book

he was writing based on Dr. Eliyahu Goldratt’s, e Goal. at

book was e Phoenix Project. At that time I knew very little

about operations management, supply chain, and Lean. Gene

had told me that he was working on another book as a follow

up to e Phoenix Project that was going to be a more

prescriptive work and that it was already in progress with my

good friend Patrick Debois. I immediately begged to join the

project, which ultimately became e DevOps Handbook. Early

on we were basically focused on best-practice stories and less

about the aforementioned meta concepts. Later on, Jez

Humble joined the team and really added signi�cant depth to

the project in those areas.

However, to be honest, it took me over ten years to

appreciate the real impact of operations management, supply

chain, and Lean on what we call DevOps. e more I

understand what happened in the Japanese manufacturing

economy from 1950 to 1980, the more I realize the root

impact on current knowledge economies. In fact, now there

seems to be an interesting möbius loop between

manufacturing and knowledge economy learnings. One

example is autonomous vehicle production. Movements like

Industrial DevOps are a great example of the loop between

what we learned from manufacturing to knowledge and back

to manufacturing economies.

One of the greatest challenges today is that most legacy

organizations straddle two worlds. eir �rst-world habits are

historical, systemic, and driven by calci�ed capital market

forces. eir second-world emerging habits, like DevOps, are

mostly counterintuitive to their �rst-world habits. Typically,

these organizations struggle between their two worlds like

two tectonic plates colliding, creating subduction between

one and the other. ese collisions tend to create temporal

successes with an organization, constantly bouncing between

second-world success and second-world subduction.

e good news is, the evolution of movements like Lean,

Agile, DevOps, and DevSecOps seem to trend favorably

toward second-world habits. Over time, organizations that

embrace these new habits as a true north tend to have more

successes than subductions.

One of the bright spots over the past few years has been a

reductionist approach to technology. Although technology is

only one of the three main principles of high performance

organization success (people, process, technology), it doesn’t

hurt when one of the three reduces enormous toil.

Over the past few years, we have seen less reliance on

older legacy infrastructure. More than just the cloud, there is

an increasing gravity to more atomic styles of computing. We

see large institutions moving rapidly into cluster-based and

function-style computing with an increasing emphasis on

event-driven architectures (EDA). ese reductionist-style

technological processes leave far less room for aggregate toil

across all three of the principles (people, process,

technology). is, combined with the aforementioned

evolutionary second-world habits, will accelerate more

success than losses for larger legacy organizations.

* e time zones studied were UK, US Eastern, US Pacific, and Japan Standard.

APPENDICES

Appendix 1: The Convergence of DevOps

We believe that DevOps is bene�ting from an incredible

convergence of management movements, which are all

mutually reinforcing and can help create a powerful coalition

to transform how organizations develop and deliver IT

products and services.

John Willis named this “the convergence of DevOps.” e

various elements of this convergence are described below in

approximate chronological order. (Note that these

descriptions are not intended to be exhaustive, but merely

enough to show the progression of thinking and the rather

improbable connections that led to DevOps.)

The Lean Movement

e Lean Movement started in the 1980s as an attempt to

codify the Toyota Production System with the popularization

of techniques such as value stream mapping, kanban boards,

and total productive maintenance.1

Two major tenets of Lean were the deeply held belief that

lead time (i.e., the time required to convert raw materials into

�nished goods) was the best predictor of quality, customer

satisfaction, and employee happiness; and that one of the

best predictors of short lead times was small batch sizes, with

the theoretical ideal being “single piece �ow” (i.e., “1x1” �ow:

inventory of 1, batch size of 1).

Lean principles focus on creating value for the customer

—thinking systematically, creating constancy of purpose,

embracing scienti�c thinking, creating �ow and pull (versus

push), assuring quality at the source, leading with humility,

and respecting every individual.

The Agile Movement

Started in 2001, the Agile Manifesto was created by

seventeen of the leading thinkers in software development,

with the goal of turning lightweight methods such as DP and

DSDM into a wider movement that could take on

heavyweight software development processes such as

waterfall development and methodologies such as the

rational uni�ed process.

A key principle was to “deliver working software

frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.”2 Two other

principles focus on the need for small, self-motivated teams,

working in a high-trust management model and an emphasis

on small batch sizes. Agile is also associated with a set of

tools and practices such as Scrum, Standups, and so on.

The Velocity Conference Movement

Started in 2007, the Velocity Conference was created by Steve

Souders, John Allspaw, and Jesse Robbins to provide a home

for the IT Operations and Web Performance tribe. At the

Velocity 2009 conference, John Allspaw and Paul Hammond

gave the seminal “10 Deploys per Day: Dev and Ops

Cooperation at Flickr,” presentation.

The Agile Infrastructure Movement

At the 2008 Agile Toronto conference, Patrick Debois and

Andrew Shafer held a “birds of a feather” session on applying

Agile principles to infrastructure as opposed to application

code. ey rapidly gained a following of like-minded thinkers,

including John Willis. Later, Debois was so excited by Allspaw

and Hammond’s “10 Deploys per Day: Dev and Ops

Cooperation at Flickr” presentation that he created the �rst

DevOpsDays in Ghent, Belgium, in 2009, coining the word

“DevOps.”

The Continuous Delivery Movement

Building upon the Development discipline of continuous

build, test, and integration, Jez Humble and David Farley

extended the concept of continuous delivery, which included

a “deployment pipeline” to ensure that code and

infrastructure are always in a deployable state and that all

code checked into truck is deployed into production.3 is

idea was �rst presented at Agile 2006 and was also

independently developed by Tim Fitz in a blog post titled

“Continuous Deployment.”4

The Toyota Kata Movement

In 2009, Mike Rother wrote Toyota Kata: Managing People for

Improvement, Adaptiveness and Superior Results, which

described learnings over his twenty-year journey to

understand and codify the causal mechanisms of the Toyota

Production System. Toyota Kata describes the “unseen

managerial routines and thinking that lie behind Toyota’s

success with continuous improvement and adaptation … and

how other companies develop similar routines and thinking

in their organizations.”5

His conclusion was that the Lean community missed the

most important practice of all, which he described as the

Improvement Kata. He explains that every organization has

work routines, and the critical factor in Toyota was making

improvement work habitual and building it into the daily

work of everyone in the organization. e Toyota Kata

institutes an iterative, incremental, scienti�c approach to

problem-solving in the pursuit of a shared organizational true

north.6

The Lean Startup Movement

In 2011, Eric Ries wrote e Lean Startup: How Today’s

Entrepreneurs Use Continuous Innovation to Create Radically

Successful Businesses, codifying the lessons he learned at

IMVU, a Silicon Valley startup, which built upon the work of

Steve Blank in e Four Steps to the Epiphany as well as

continuous deployment techniques. Eric Ries also codi�ed

related practices and terms including minimum viable

product, the build-measure-learn cycle, and many continuous

deployment technical patterns.7

The Lean UX Movement

In 2013, Jeff Gothelf wrote Lean UX: Applying Lean Principles

to Improve User Experience, which codi�ed how to improve the

“fuzzy front end” and explained how product owners can

frame business hypotheses, experiment, and gain con�dence

in those business hypotheses before investing time and

resources in the resulting features. By adding Lean UX, we

now have the tools to fully optimize the �ow between

business hypotheses, feature development, testing,

deployment, and service delivery to the customer.

The Rugged Computing Movement

In 2011, Joshua Corman, David Rice, and Jeff Williams

examined the apparent futility of securing applications and

environments late in the life cycle. In response, they created a

philosophy called “Rugged Computing,” which attempts to

frame the non-functional requirements of stability,

scalability, availability, survivability, sustainability, security,

supportability, manageability, and defensibility.

Because of the potential for high release rates, DevOps

can put incredible pressure on QA and Infosec, because when

deploy rates go from monthly or quarterly to hundreds or

thousands daily, no longer are two-week turnaround times

from Infosec or QA tenable. e Rugged Computing

movement posited that the current approach to �ghting the

vulnerable industrial complex being employed by most

information security programs is hopeless.

Appendix 2: Theory of Constraints and Core, Chronic

Conflicts

e eory of Constraints body of knowledge extensively

discusses the use of creating core con�ict clouds (often

referred to as “C3”). Figure A.1 shows the con�ict cloud for

IT:

Figure A.1: e Core, Chronic Con�ict Facing Every IT

Organization

During the 1980s, there was a very well-known core,

chronic con�ict in manufacturing. Every plant manager had

two valid business goals: protect sales and reduce costs. e

problem was that in order to protect sales, sales management

was incentivized to increase inventory to ensure that it was

always possible to ful�ll customer demand.

On the other hand, in order to reduce cost, production

management was incentivized to decrease inventory to

ensure that money was not tied up in work-in-progress that

wasn’t immediately shippable to the customer in the form of

ful�lled sales.

ey were able to break the con�ict by adopting Lean

principles, such as reducing batch sizes, reducing work in

process, and shortening and amplifying feedback loops. is

resulted in dramatic increases in plant productivity, product

quality, and customer satisfaction.

e principles behind DevOps work patterns are the same

as those that transformed manufacturing, allowing us to

optimize the IT value stream, converting business needs into

capabilities and services that provide value for our customers.

Appendix 3: Tabular Form of Downward Spiral

e tabular form of the downward spiral depicted in e

Phoenix Project is shown in Table A.1.

Table A.1: e Downward Spiral

IT Operations sees … Development sees …

Fragile applications are

prone to failure
Fragile applications are prone to failure

Long time required to

�gure out which bit got

�ipped

More urgent, date-driven projects put into the

queue

Detective control is a

salesperson

Even more fragile code (less secure) put into

production

Too much time required

to restore service

More releases have increasingly turbulent

installs

Too much �re�ghting and

unplanned work

Release cycles lengthen to amortize cost of

deployments

Urgent security rework

and remediation

Failing bigger deployments more difficult to

diagnose

Planned project work

cannot be completed

Most senior and constrained IT ops resources

have less time to �x underlying process

problems

Frustrated customers

leave

Ever increasing backlog of work that could help

the business win

Market share goes down
Ever increasing amount of tension between IT

Ops, Development, Design

Business misses Wall

Street commitments
—

Business makes even

larger promises to Wall

Street

—

Appendix 4: The Dangers of Handoffs and Queues

e problem with high amounts of queue time is exacerbated

when there are many handoffs, because that is where queues

are created. Figure A.2 shows wait time as a function of how

busy a resource at a work center is. e asymptotic curve

shows why a “simple thirty-minute change” often takes weeks

to complete—speci�c engineers and work centers often

become problematic bottlenecks when they operate at high

utilization. As a work center approaches 100% utilization,

any work required from it will languish in queues and won’t

be worked on without someone expediting/escalating.

Figure A.2: Queue Size and Wait Times as a Function of

Percent Utilization

Source: Kim, Behr, and Spafford, e Phoenix Project, ePub edition, 557.

In Figure A.2, the x-axis is the percent busy for a given

resource at a work center and the y-axis is the approximate

wait time (or, more precisely stated, the queue length). What

the shape of the line shows is that as resource utilization goes

past 80%, wait time goes through the roof.

In e Phoenix Project, Bill and his team realized the

devastating consequences of this property on lead times for

the commitments they were making to the project

management office:8

I tell them about what Erik told me at MRP-8, about

how wait times depend upon resource utilization. “e

wait time is the ‘percentage of time busy’ divided by the

‘percentage of time idle.’ In other words, if a resource is

fifty percent busy, then it’s fifty percent idle. e wait

time is fifty percent divided by fifty percent, so one unit

of time. Let’s call it one hour.

So, on average, our task would wait in the queue for

one hour before it gets worked.

“On the other hand, if a resource is ninety percent

busy, the wait time is ‘ninety percent divided by ten

percent or nine hours’. In other words, our task would

wait in queue nine times longer than if the resource

were fifty percent idle.”

I conclude, “So … For the Phoenix task, assuming we

have seven handoffs, and that each of those resources is

busy ninety percent of the time, the tasks would spend

in queue a total of nine hours times the seven steps …”

“What? Sixty-three hours, just in queue time?” Wes

says, incredulously. “at’s impossible!”

Patty says with a smirk, “Oh, of course. Because it’s

only thirty seconds of typing, right?”

Bill and team realize that their “simple thirty-minute

task” actually requires seven handoffs (e.g., server team,

networking team, database team, virtualization team, and, of

course, Brent, the “rockstar” engineer).

Assuming that all work centers were 90% busy, Figure A.2

shows us that the average wait time at each work center is

nine hours—and because the work had to go through seven

work centers, the total wait time is seven times that: sixty-

three hours.

In other words, the total % of value added time (sometimes

known as process time) was only 0.16% of the total lead time

(thirty minutes divided by sixty-three hours). at means

that for 99.8% of our total lead time, the work was simply

sitting in queue, waiting to be worked on.

Appendix 5: Myths of Industrial Safety

Decades of research into complex systems shows that

countermeasures are based on several myths. In “Some

Myths about Industrial Safety,” by Denis Besnard and Erik

Hollnagel, they are summarized as such:

Myth 1: “Human error is the largest single cause of

accidents and incidents.”9

Myth 2: “Systems will be safe if people comply with

the procedures they have been given.”10

Myth 3: “Safety can be improved by barriers and

protection; more layers of protection results in

higher safety.”11

Myth 4: “Accident analysis can identify the root cause

(the ‘truth’) of why the accident happened.”12

Myth 5: “Accident investigation is the logical and

rational identi�cation of causes based on facts.”13

Myth 6: “Safety always has the highest priority and

will never be compromised.”14

e differences between what is myth and what is true are

shown in Table A.2.

Table A.2: Two Stories

Myth Reality

Human error is seen as the

cause of failure.

Human error is seen as the effect of

systemic vulnerabilities deeper inside the

organization.

Saying what people should

have done is a satisfying way to

describe failure.

Saying what people should have done

doesn’t explain why it made sense for them

to do what they did.

Telling people to be more

careful will make the problem

go away.

Only by constantly seeking out their

vulnerabilities can organizations enhance

safety.

Appendix 6: The Toyota Andon Cord

Many ask, how can any work be completed if the Andon cord

is being pulled over �ve thousand times per day? To be

precise, not every Andon cord pull results in stopping the

entire assembly line. Rather, when the Andon cord is pulled,

the team leader overseeing the speci�ed work center has �fty

seconds to resolve the problem. If the problem has not been

resolved by the time the �fty seconds is up, the partially

assembled vehicle will cross a physically drawn line on the

�oor, and the assembly line will be stopped.15

Figure A.3: e Toyota Andon Cord

Appendix 7: COTS Soware

Currently, in order to get complex COTS (commercial off-the-

shelf) software (e.g., SAP, IBM WebSphere, Oracle WebLogic)

into version control, we may have to eliminate the use of

graphical point-and-click vendor installer tools. To do that,

we need to discover what the vendor installer is doing, and

we may need to do an install on a clean server image, diff the

�le system, and put those added �les into version control.

Files that don’t vary by environment are put into one place

(“base install”), while environment-speci�c �les are put into

their own directory (“test” or “production”). By doing this,

software install operations become merely a version control

operation, enabling better visibility, repeatability, and speed.

We may also have to transform any application

con�guration settings so that they are in version control. For

instance, we may transform application con�gurations that

are stored in a database into XML �les and vice versa.

Appendix 8: Post-Mortem Meetings (Retrospective)

A sample agenda of the post-mortem meeting is shown

below:16

• An initial statement will be made by the meeting

leader or facilitator to reinforce that this meeting is a

blameless post-mortem and that we will not focus on

past events or speculate on “would haves” or “could

haves.” Facilitators might read the “Retrospective

Prime Directive” from the website Retrospective.com.

• Furthermore, the facilitator will remind everyone that

any countermeasures must be assigned to someone,

and if the corrective action does not warrant being a

top priority when the meeting is over, then it is not a

corrective action. (is is to prevent the meeting from

generating a list of good ideas that are never

implemented.)

• ose at the meeting will reach an agreement on the

complete timeline of the incident, including when and

who detected the issue, how it was discovered (e.g.,

automated monitoring, manual detection, customer

noti�ed us), when service was satisfactorily restored,

and so forth. We will also integrate into the timeline

all external communications during the incident.

• When we use the word “timeline,” it may evoke the

image of a linear set of steps of how we gained an

understanding of the problem and eventually �xed it.

In reality, especially in complex systems, there will

likely be many events that contributed to the accident,

and many troubleshooting paths and actions will have

been taken in an effort to �x it. In this activity, we

seek to chronicle all of these events and the

http://retrospective.com/

perspectives of the actors and establish hypotheses

concerning cause and effect where possible.

• e team will create a list of all the factors that

contributed to the incident, both human and

technical. ey may then sort them into categories,

such as “design decision,” “remediation,” “discovering

there was a problem,” and so forth. e team will use

techniques such as brainstorming and the “in�nite

hows” to drill down on contributing factors they deem

particularly important to discover deeper levels of

contributing factors. All perspectives should be

included and respected—nobody should be permitted

to argue with or deny the reality of a contributing

factor somebody else has identi�ed. It’s important for

the post-mortem facilitator to ensure that sufficient

time is spent on this activity and that the team

doesn’t try and engage in convergent behavior such as

trying to identify one or more “root causes.”

• ose at the meeting will reach an agreement on the

list of corrective actions that will be made top

priorities after the meeting. Assembling this list will

require brainstorming and choosing the best potential

actions to either prevent the issue from occurring or

enable faster detection or recovery. Other ways to

improve the systems may also be included.

• Our goal is to identify the smallest number of

incremental steps to achieve the desired outcomes, as

opposed to “Big Bang” changes, which not only take

longer to implement, but delay the improvements we

need.

• We will also generate a separate list of lower-priority

ideas and assign an owner. If similar problems occur

in the future, these ideas may serve as the foundation

for crafting future countermeasures.

• ose at the meeting will reach an agreement on the

incident metrics and their organizational impact. For

example, we may choose to measure our incidents by

the following metrics:

∘ Event severity: How severe was this issue? is

directly relates to the impact on the service and our

customers.

∘ Total downtime: How long were customers unable

to use the service to any degree?

∘ Time to detect: How long did it take for us or our

systems to know there was a problem?

∘ Time to resolve: How long after we knew there was

a problem did it take for us to restore service?

Bethany Macri from Etsy observed, “Blamelessness in a

post-mortem does not mean that no one takes responsibility.

It means that we want to �nd out what the circumstances

were that allowed the person making the change or who

introduced the problem to do this. What was the larger

environment? … e idea is that by removing blame, you

remove fear, and by removing fear, you get honesty.”17

Appendix 9: The Simian Army

After the 2011 AWS US-East outage, Net�ix had numerous

discussions about engineering their systems to automatically

deal with failure. ese discussions have evolved into a

service called “Chaos Monkey.”18

Since then, Chaos Monkey has evolved into a whole

family of tools, known internally as the “Net�ix Simian

Army,” to simulate increasingly catastrophic levels of

failures:19

• Chaos Gorilla: simulates the failure of an entire AWS

availability zone.

• Chaos Kong: simulates failure of entire AWS regions,

such as North America or Europe.

Other member of the Simian Army now include:

• Latency Monkey: induces arti�cial delays or

downtime in their RESTful client-server

communication layer to simulate service degradation

and ensure that dependent services respond

appropriately.

• Conformity Monkey: �nds and shuts down AWS

instances that don’t adhere to best-practices (e.g.,

when instances don’t belong to an auto-scaling group

or when there is no escalation engineer email address

listed in the service catalog).

• Doctor Monkey: taps into health checks that run on

each instance and �nds unhealthy instances and

proactively shuts them down if owners don’t �x the

root cause in time.

• Janitor Monkey: ensures that their cloud

environment is running free of clutter and waste;

searches for unused resources and disposes of them.

• Security Monkey: an extension of Conformity

Monkey; �nds and terminates instances with security

violations or vulnerabilities, such as improperly

con�gured AWS security groups.

Appendix 10: Transparent Uptime

Lenny Rachitsky wrote about the bene�ts of what he called

“transparent uptime:”20

Your support costs go down as your users are able to

self-identify system wide problems without calling or

emailing your support department. Users will no longer

have to guess whether their issues are local or global

and can more quickly get to the root of the problem

before complaining to you.

You are better able to communicate with your users

during downtime events, taking advantage of the

broadcast nature of the internet versus the one-to-one

nature of email and the phone. You spend less time

communicating the same thing over and over and more

time resolving the issue.

You create a single and obvious place for your users

to come to when they are experiencing downtime. You

save your users’ time currently spent searching forums,

Twitter, or your blog.

Trust is the cornerstone of any successful SaaS

adoption. Your customers are betting their business and

their livelihoods on your service or platform. Both

current and prospective customers require confidence in

your service. Both need to know they won’t be left in

the dark, alone and uninformed, when you run into

trouble. Real time insight into unexpected events is the

best way to build this trust. Keeping them in the dark

and alone is no longer an option.

It’s only a matter of time before every serious SaaS

provider will be offering a public health dashboard. Your

users will demand it.

BIBLIOGRAPHY

“A Conversation with Werner Vogels.” ACM Queue 4, no. 4 (2006): 14–22.

https://queue.acm.org/detail.cfm?id=1142065.

Adler, Paul. “Time-and-Motion Regained.” Harvard Business Review, January–

February 1993. https://hbr.org/1993/01/time-and-motion-regained.

Agile Alliance. “Information Radiators.” Glossary. Accessed May 31, 2016.

https://www.agilealliance.org/glossary/information-radiators/.

ALICE. “Pair Programming.” Wiki page. Updated April 4, 2014.

http://euler.math.uga.edu/wiki/index.php?title=Pair_programming.

Allspaw, John. “Blameless PostMortems and a Just Culture.” Code as Craft (blog),

Etsy, May 22, 2012. http://codeascraft.com/2012/05/22/blameless-

postmortems/.

Allspaw, John. “Convincing Management that Cooperation and Collaboration Was

Worth It.” Kitchen Soap (blog), January 5, 2012.

http://www.kitchensoap.com/2012/01/05/convincing-management-that-

cooperation-and-collaboration-was-worth-it/.

Allspaw, John. “Counterfactual inking, Rules, and the Knight Capital Accident.”

Kitchen Soap (blog), October 29, 2013.

http://www.kitchensoap.com/2013/10/29/counterfactuals-knight-capital/.

Allspaw, John interviewed by Jenn Webb. “Post-Mortems, Sans Finger-Pointing.”

e O’Reilly Radar Podcast. Podcast audio, 30:34. August 21, 2014.

http://radar.oreilly.com/2014/08/postmortems-sans-�nger-pointing-the-

oreilly-radar-podcast.html

Amazon Web Services, “Summary of the Amazon DynamoDB Service Disruption

and Related Impacts in the US-East Region.” Amazon Web Services. Accessed

May 28, 2016. https://aws.amazon.com/message/5467D2/.

Anderson, David J. Kanban: Successful Evolutionary Change for Your Technology

Business. Sequim, WA: Blue Hole Press, 2010.

Anderson, David J., and Dragos Dumitriu. From Worst to Best in 9 Months:

Implementing a Drum-Buffer-Rope Solution in Microsoft’s IT Department.

Microsoft Corporation, 2005.

Antani, Snehal. “IBM Innovate DevOps Keynote.” Posted by IBM DevOps, June

12, 2014. YouTube video, 47:57. https://www.youtube.com/watch?

v=s0M1P05-6Io.

Arbuckle, Justin. “What Is ArchOps: Chef Executive Roundtable.” 2013.

Ashman, David. “DOES14—David Ashman—Blackboard Learn—Keep Your Head

in the Clouds.” Posted by DevOps Enterprise Summit 2014, October 28, 2014.

YouTube video, 30:43. https://www.youtube.com/watch?v=SSmixnMpsI4.

https://queue.acm.org/detail.cfm?id=1142065
https://hbr.org/1993/01/time-and-motion-regained
https://www.agilealliance.org/glossary/information-radiators/
http://euler.math.uga.edu/wiki/index.php?title=Pair_programming
http://codeascraft.com/2012/05/22/blameless-postmortems/
http://www.kitchensoap.com/2012/01/05/convincing-management-that-cooperation-and-collaboration-was-worth-it/
http://www.kitchensoap.com/2013/10/29/counterfactuals-knight-capital/
http://radar.oreilly.com/2014/08/postmortems-sans-finger-pointing-the-oreilly-radar-podcast.html
https://aws.amazon.com/message/5467D2/
https://www.youtube.com/watch?v=s0M1P05-6Io
https://www.youtube.com/watch?v=SSmixnMpsI4

Associated Press. “Number of Active Users at Facebook over the Years,” Yahoo!

News. May 1, 2013. https://www.yahoo.com/news/number-active-users-

facebook-over-230449748.html?ref=gs.

Atwood, Jeff. “Pair Programming vs. Code Reviews.” Coding Horror (blog),

November 18, 2013. http://blog.codinghorror.com/pair-programming-vs-

code-reviews/.

Atwood, Jeff. “Software Branching and Parallel Universes.” Coding Horror (blog),

October 2, 2007. http://blog.codinghorror.com/software-branching-and-

parallel-universes/.

Axelos. ITIL Service Transition. Belfast, Ireland: e Stationary Office, 2011.

Ayers, Zach, and Joshua Cohen. “Andon Cords in Development Teams—Driving

Continuous Learning.” Presentation at the DevOps Enterprise Summit, Las

Vegas, 2019. https://videolibrary.doesvirtual.com/?video=504281981.

Azzarello, Domenico, Frédéric Debruyne, and Ludovica Mottura. “e Chemisty of

Enthusiasm: How Engaged Employees Create Loyal Customers,” Bain &

Company, May 4, 2012. https://www.bain.com/insights/the-chemistry-of-

enthusiasm.

Bahri, Sami. “Few Patients-in-Process and Less Safety Scheduling; Incoming

Supplies Are Secondary.” e W. Edwards Deming Institute Blog, August 22,

2013. https://blog.deming.org/2013/08/fewer-patients-in-process-and-less-

safety-scheduling-incoming-supplies-are-secondary/.

Barr, Jeff. “EC2 Maintenance Update.” AWS News Blog. Amazon Web Services,

September 25, 2014. https://aws.amazon.com/blogs/aws/ec2-maintenance-

update/.

Basu, Biswanath, Rakesh Goyal, and Jennifer Hansen. “Biz & Tech Partnership

Towards 10 ‘No Fear Releases’ Per Day,” presenation at DevOps Enterprise

Summit, Las Vegas, 2020. https://videolibrary.doesvirtual.com/?

video=468711236.

Bazaarvoice, Inc. Announces Its Financial Results for the Fourth Fiscal Quarter

and Fiscal Year Ended April 30, 2012.” Bazaar Voice, June 6, 2012.

http://investors.bazaarvoice.com/releasedetail.cfm?ReleaseID=680964.

Beck, Kent. “Slow Deployment Causes Meetings.” Facebook, November 19, 2015.

https://www.facebook.com/notes/kent-beck/slow-deployment-causes-

meetings/1055427371156793?_rdr=p.

Beck, Kent, Mike Beedle, Arie van Bennekum, Alastair Cockburn, Ward

Cunnigham, Martin Fowler, James Grenning, et al. “Twelve Principles of Agile

Software.” Agile Manifesto, 2001. http://agilemanifesto.org/principles.html.

Besnard, Denis and Erik Hollnagel. “Some Myths about Industrial Safety.” Paris:

Centre De Recherche Sur Les Risques Et Les Crises Mines Working Paper

Series 2012. ParisTech, Paris, France, December 2012. http://gswong.com/?

wpfb_dl=31.

https://www.yahoo.com/news/number-active-users-facebook-over-230449748.html?ref=gs
http://blog.codinghorror.com/pair-programming-vs-code-reviews/
http://blog.codinghorror.com/software-branching-and-parallel-universes/
https://videolibrary.doesvirtual.com/?video=504281981
https://www.bain.com/insights/the-chemistry-of-enthusiasm
https://blog.deming.org/2013/08/fewer-patients-in-process-and-less-safety-scheduling-incoming-supplies-are-secondary/
https://aws.amazon.com/blogs/aws/ec2-maintenance-update/
https://videolibrary.doesvirtual.com/?video=468711236
http://investors.bazaarvoice.com/releasedetail.cfm?ReleaseID=680964
https://www.facebook.com/notes/kent-beck/slow-deployment-causes-meetings/1055427371156793?_rdr=p
http://agilemanifesto.org/principles.html
http://gswong.com/?wpfb_dl=31

Betz, Charles. Architecture and Patterns for IT Service Management, Resource

Planning, and Governance: Making Shoes for the Cobbler’s Children. Witham, MA:

Morgan Kaufmann, 2011.

Beyond Lean.“e 7 Wastes (Seven forms of Muda).” e 7 Wastes Explained.

Accessed July 28, 2016. http://www.beyondlean.com/7-wastes.html.

Big Fish Games. “Big Fish Celebrates 11th Consecutive Year of Record Growth.”

Pressroom. January 28, 2014. http://pressroom.big�shgames.com/2014-01-

28-Big-Fish-Celebrates-11th-Consecutive-Year-of-Record-Growth.

Bland, Mike. “DOES15—Mike Bland—Pain Is Over, If You Want It.” Posted by

Gene Kim to slideshare.net, November 18, 2015. Slideshow.

http://www.slideshare.net/ITRevolution/does15-mike-bland-pain-is-over-if-

you-want-it-55236521.

Bland, Mike. “Fixits, or I Am the Walrus,” Mike Bland (blog). Mike Bland, October

4, 2011. https://mike-bland.com/2011/10/04/�xits.html.

Bosworth, Andrew. “Building and Testing at Facebook.” Facebook, August 8, 2012.

https://www.facebook.com/notes/facebook-engineering/building-and-testing-

at-facebook/10151004157328920.

Boubez, Tou�c. “Simple Math for Anomaly Detection Tou�c Boubez—Metafor

Software—Monitorama PDX 2014-05-05,” Posted by tboubez to

slideshare.net, May 6, 2014. Slideshow.

http://www.slideshare.net/tboubez/simple-math-for-anomaly-detection-

tou�c-boubez-metafor-software-monitorama-pdx-20140505.

Brooks, Jr., Frederick P. e Mythical Man-Month: Essays on Software Engineering,

Anniversary Edition. Upper Saddle River, NJ: Addison-Wesley, 1995.

Buchanan, Leigh. “e Wisdom of Peter Drucker from A to Z.” Inc., November 19,

2009. http://www.inc.com/articles/2009/11/drucker.html.

Buhr, Sarah. “Etsy Closes Up 86 Percent on First Day of Trading.” Tech Crunch,

April 16, 2015. http://techcrunch.com/2015/04/16/etsy-stock-surges-86-

percent-at-close-of-�rst-day-of-trading-to-30-per-share/.

Burrows, Mike. “e Chubby Lock Service for Loosely-Coupled Distributed

Systems.” Paper presented at OSDI 2006: Seventh Symposium on Operating

System Design and Implementation, November 2006.

http://static.googleusercontent.com/media/research.google.com/en//archive/

chubby-osdi06.pdf.

Cagan, Marty. Inspired: How to Create Products Customers Love. Saratoga, CA: SVPG

Press, 2008.

Campbell-Pretty, Em. “DOES14—Em Campbell-Pretty—How a Business Exec Led

Agile, Lead, CI/CD.” Posted by DevOps Enterprise Summit, April 20, 2014.

YouTube video, 29:47. https://www.youtube.com/watch?v=-4pIMMTbtwE.

Canahuati, Pedro. “Growing from the Few to the Many: Scaling the Operations

Organization at Facebook.” Filmed December 16, 2013 for QCon. Video,

http://www.beyondlean.com/7-wastes.html
http://pressroom.bigfishgames.com/2014-01-28-Big-Fish-Celebrates-11th-Consecutive-Year-of-Record-Growth
http://slideshare.net/
http://www.slideshare.net/ITRevolution/does15-mike-bland-pain-is-over-if-you-want-it-55236521
https://mike-bland.com/2011/10/04/fixits.html
https://www.facebook.com/notes/facebook-engineering/building-and-testing-at-facebook/10151004157328920
http://slideshare.net/
http://www.slideshare.net/tboubez/simple-math-for-anomaly-detection-toufic-boubez-metafor-software-monitorama-pdx-20140505
http://www.inc.com/articles/2009/11/drucker.html
http://techcrunch.com/2015/04/16/etsy-stock-surges-86-percent-at-close-of-first-day-of-trading-to-30-per-share/
http://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf
https://www.youtube.com/watch?v=-4pIMMTbtwE

39:39. http://www.infoq.com/presentations/scaling-operations-facebook.

Chacon, Scott. “GitHub Flow.” Scott Chacon (blog), August 31, 2011.

http://scottchacon.com/2011/08/31/github-�ow.html.

Chakrabarti, Arup. “Common Ops Mistakes.” Filmed presentation at Heavy Bit

Industries, June 3, 2014. Video, 36:12.

http://www.heavybit.com/library/video/common-ops-mistakes/.

Chan, Jason. “OWASP AppSecUSA 2012: Real World Cloud Application Security.”

Posted by Christiaan008, December 10, 2012. Youtube video, 37:45.

https://www.youtube.com/watch?v=daNA0jXDvYk.

Chandola, Varun , Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A

Survey.” ACM Computing Surveys 41, no. 3 (July 2009): 15.

http://doi.acm.org/10.1145/1541880.1541882.

Chapman, Janet, and Patrick Eltridge. “On A Mission: Nationwide Building

Society,” presentation at DevOps Enterprise Summit, London, 2020.

https://videolibrary.doesvirtual.com/?video=432109857.

Chuvakin, Anton. “LogLogic/Chuvakin Log Checklist,” republished with

permission, 2008, http://juliusdavies.ca/logging/llclc.html.

Clanton, Ross, and Michael Ducy interviewed by Courtney Kissler and Jason

Josephy. “Continuous Improvement at Nordstrom.” e Goat Farm, season 1,

episode 17. Podcast audio, 53:18. June 25, 2015.

http://goatcan.do/2015/06/25/the-goat-farm-episode-7-continuous-

improvement-at-nordstrom/.

Clanton, Ross and Heather Mickman. “DOES14—Ross Clanton and Heather

Mickman—DevOps at Target.” Posted by DevOps Enterprise Summit 2014,

October 29, 2014. YouTube video, 29:20. https://www.youtube.com/watch?

v=exrjV9V9vhY.

Claudius, Jonathan. “Attacking Cloud Services with Source Code.” Posted by

Jonathan Claudius to speakerdeck.com, April 16, 2013. Slideshow.

https://speakerdeck.com/claudijd/attacking-cloud-services-with-source-code.

Clemm, Josh. “LinkedIn Started Back in 2003—Scaling LinkedIn—A Brief

History.” Posted by Josh Clemm to slideshare.net, November 9, 2015.

Slideshow. http://www.slideshare.net/joshclemm/how-linkedin-scaled-a-brief-

history/3-LinkedIn_started_back_in_2003.

Cockcroft, Adrian, Cory Hicks, and Greg Orzell. “Lessons Net�ix Learned from the

AWS Outage.” e Net�ix Tech Blog, April 29, 2011.

http://techblog.net�ix.com/2011/04/lessons-net�ix-learned-from-aws-

outage.html.

Cockcroft, Adrian, interviewed by Michael Ducy and Ross Clanton. “Adrian

Cockcroft of Battery Ventures.” e Goat Farm season 1, episode 8. Podcast

audio, July 31, 2015. http://goatcan.do/2015/07/31/adrian-cockcroft-of-

battery-ventures-the-goat-farm-episode-8/.

http://www.infoq.com/presentations/scaling-operations-facebook
http://scottchacon.com/2011/08/31/github-flow.html
http://www.heavybit.com/library/video/common-ops-mistakes/
https://www.youtube.com/watch?v=daNA0jXDvYk
http://doi.acm.org/10.1145/1541880.1541882
https://videolibrary.doesvirtual.com/?video=432109857
http://juliusdavies.ca/logging/llclc.html
http://goatcan.do/2015/06/25/the-goat-farm-episode-7-continuous-improvement-at-nordstrom/
https://www.youtube.com/watch?v=exrjV9V9vhY
http://speakerdeck.com/
https://speakerdeck.com/claudijd/attacking-cloud-services-with-source-code
http://slideshare.net/
http://www.slideshare.net/joshclemm/how-linkedin-scaled-a-brief-history/3-LinkedIn_started_back_in_2003
http://techblog.netflix.com/2011/04/lessons-netflix-learned-from-aws-outage.html
http://goatcan.do/2015/07/31/adrian-cockcroft-of-battery-ventures-the-goat-farm-episode-8/

Cockcroft, Adrian. “Monitorama—Please, No More Minutes, Milliseconds,

Monoliths or Monitoring Tools.” Posted by Adrian Cockroft to slideshare.net,

May 5, 2014. Slideshow.

http://www.slideshare.net/adriancockcroft/monitorama-please-no-more.

Collins, Justin, Alex Smolen, and Neil Matatall. “Putting to your Robots to Work

V1.1.” Posted by Neil Matatall to slideshare.net, April 24, 2012. Slideshow.

http://www.slideshare.net/xplodersuv/sf-2013-robots/.

Conrad, Ben, and Matt Hyatt. “Saving the Economy from Ruin (with a Hyperscale

Paas),” presentation at the 2021 DevOps Enterprise Summit-Europe Virtual.

https://videolibrary.doesvirtual.com/?video=550704128.

Conway, Melvin E. “How Do Committees Invent?” Mel Conway. Originally

published in Datamation magazine, April 1968.

http://www.melconway.com/research/committees.html.

Cook, Scott. “Leadership in an Agile Age: An Interview with Scott Cook.” By Cassie

Divine. Intuit, April 20, 2011.

https://web.archive.org/web/20160205050418/http://network.intuit.com/20

11/04/20/leadership-in-the-agile-age/.

Corman, Josh and John Willis. “Immutable Awesomeness—Josh Corman and

John Willis at DevOps Enterprise Summit 2015.” Posted by Sonatype, October

21, 2015. YouTube video, 34:25. https://www.youtube.com/watch?v=-S8-

lrm3iV4.

Cornago, Fernando, Vikalp Yadav, and Andreia Otto. “From 6-Eye Principle to

Release at Scale - adidas Digital Tech 2021,” presentation at DevOps

Enterprise Summit-Eurpoe, 2021. https://videolibrary.doesvirtual.com/?

video=524020857.

Cox, Jason. “Disney DevOps: To In�nity and Beyond.” Presentated at DevOps

Enterprise Summit, San Francisco, 2014.

Cundiff, Dan, Levi Geinert, Lucas Rettif. “Crowdsourcing Technology

Governance,” presentation at DevOps Enterprise Summit, San Francisco,

2018. https://videolibrary.doesvirtual.com/?video=524020857.

Cunningham, Ward. “Ward Explains Debt Metaphor,” c2. Last updated January

22, 2011. http://c2.com/cgi/wiki?WardExplainsDebtMetaphor.

Daniels, Katherine. “Devopsdays Minneapolis 2015—Katherine Daniels—

DevOps: e Missing Pieces.” Posted by DevOps Minneapolis, July 13, 2015.

YouTube video, 33:26. https://www.youtube.com/watch?v=LNJkVw93yTU.

Davis, Jennifer and Katherine Daniels. Effective DevOps: Building a Culture of

Collaboration, Affinity, and Tooling at Scale. Sebastopol, CA: O’Reilly Media,

2016.

“Decreasing False Positives in Automated Testing.” Posted by Sauce Labs to

slideshare.net, March 24, 2015. Slideshow.

http://www.slideshare.net/saucelabs/decreasing-false-positives-in-automated-

testing.

http://slideshare.net/
http://www.slideshare.net/adriancockcroft/monitorama-please-no-more
http://slideshare.net/
http://www.slideshare.net/xplodersuv/sf-2013-robots/
https://videolibrary.doesvirtual.com/?video=550704128
http://www.melconway.com/research/committees.html
https://web.archive.org/web/20160205050418/http://network.intuit.com/2011/04/20/leadership-in-the-agile-age/
https://www.youtube.com/watch?v=-S8-lrm3iV4
https://videolibrary.doesvirtual.com/?video=524020857
https://videolibrary.doesvirtual.com/?video=524020857
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
https://www.youtube.com/watch?v=LNJkVw93yTU
http://slideshare.net/
http://www.slideshare.net/saucelabs/decreasing-false-positives-in-automated-testing

DeGrandis, Dominica. “DOES15—Dominica DeGrandis—e Shape of

Uncertainty.” Posted by DevOps Enterprise Summit, November 5, 2015.

Youtube video, 22:54. https://www.youtube.com/watch?v=Gp05i0d34gg.

Dekker, Sidney. “DevOpsDays Brisbane 2014—Sidney Decker—System Failure,

Human Error: Who’s to Blame?” Posted by info@devopsdays.org, 2014. Vimeo

video, 1:07:38. https://vimeo.com/102167635.

Dekker, Sidney. Just Culture: Balancing Safety and Accountability. Lund University,

Sweden: Ashgate Publishing, 2007.

Dekker, Sidney. e Field Guide to Understanding Human Error. Lund University,

Sweden: Ashgate Publishing, 2006.

DeLuccia, James, Jeff Gallimore, Gene Kim, and Byron Miller. DevOps Audit

Defense Toolkit. Portland, OR: IT Revolution, 2015.

http://itrevolution.com/devops-and-auditors-the-devops-audit-defense-

toolkit.

“DevOps Culture: How to Transform,” Cloud.Google.com, accessed August 26,

2021. https://cloud.google.com/architecture/devops/devops-culture-

transform.

Dickerson, Chad. “Optimizing for Developer Happiness.” Code As Craft (blog),

Etsy, June 6, 2011. https://codeascraft.com/2011/06/06/optimizing-for-

developer-happiness/.

Dignan, Larry. “Little ings Add Up.” Baseline, October 19, 2005.

http://www.baselinemag.com/c/a/Projects-Management/Pro�les-Lessons-

From-the-Leaders-in-the-iBaselinei500/3.

Douglas, Jake. “Deploying at Github.” e GitHub Blog. GitHub, August 29, 2012.

https://github.com/blog/1241-deploying-at-github.

Dweck, Carol. “Carol Dweck Revisits the ‘Growth Mindset.’” Education Week,

September 22, 2015.

http://www.edweek.org/ew/articles/2015/09/23-/caroldweck-revisits-the-

growth-mindset.html.

Edmondson, Amy C. “Strategies for Learning from Failure.” Harvard Business

Review, April 2011. https://hbr.org/2011/04/strategies-for-learning-from-

failure.

Edwards, Damon. “DevOps Kaizen: Find and Fix What Is Really Behind Your

Problems.” Posted by dev2ops to slideshare.net. Slideshow., May 4, 2015.

http://www.slideshare.net/dev2ops/dev-ops-kaizen-damon-edwards.

Exner, Ken. “Transforming Software Development.” Posted by Amazon Web

Services, April 10, 2015. YouTube video, 40:57.

https://www.youtube.com/watch?v=YCrhemssYuI.

Figureau, Brice. “e 10 Commandments of Logging.” Masterzen’s Blog, January

13, 2013. http://www.masterzen.fr/2013/01/13/the-10-commandments-of-

logging/.

https://www.youtube.com/watch?v=Gp05i0d34gg
mailto:info@devopsdays.org
https://vimeo.com/102167635
http://itrevolution.com/devops-and-auditors-the-devops-audit-defense-toolkit
http://cloud.google.com/
https://cloud.google.com/architecture/devops/devops-culture-transform
https://codeascraft.com/2011/06/06/optimizing-for-developer-happiness/
http://www.baselinemag.com/c/a/Projects-Management/Profiles-Lessons-From-the-Leaders-in-the-iBaselinei500/3
https://github.com/blog/1241-deploying-at-github
http://www.edweek.org/ew/articles/2015/09/23-/caroldweck-revisits-the-growth-mindset.html
https://hbr.org/2011/04/strategies-for-learning-from-failure
http://slideshare.net/
http://www.slideshare.net/dev2ops/dev-ops-kaizen-damon-edwards
https://www.youtube.com/watch?v=YCrhemssYuI
http://www.masterzen.fr/2013/01/13/the-10-commandments-of-logging/

Fitz, Timothy. “Continuous Deployment at IMVU: Doing the Impossible Fifty

Times a Day.” Timothy Fitz (blog), February 10, 2009.

http://timothy�tz.com/2009/02/10/continuous-deployment-at-imvu-doing-

the-impossible-�fty-times-a-day/.

Forsgren, Nicole, Bas Alberts, Kevin Backhouse, and Grey Baker. e 2020 State of

the Octoverse. GitHub, 2020. https://octoverse.github.com/static/github-

octoverse-2020-security-report.pdf.

Forsgren, Nicole, Jez Humble, and Gene Kim. Accelerate: State of DevOps 2018.

DORA and Google Cloud, 2018. https://lp.google-mkto.com/rs/248-TPC-

286/images/DORA-State%20of%20DevOps.pdf.

Forsgren, Nicole, Jez Humble, Nigel Kersten, and Gene Kim. “2014 State Of

DevOps Findings! Velocity Conference.” Posted by Gene Kim to slideshare.net,

June 30, 2014. Slideshow. http://www.slideshare.net/realgenekim/2014-state-

of-devops-�ndings-velocity-conference.

Forsgren, Nicole, Dustin Smith, Jez Humble, and Jessie Frazelle. Accelerate State of

DevOps 2019. DORA and Google Cloud, 2019.

https://services.google.com/fh/�les/misc/state-of-devops-2019.pdf.

Forsgren, Nicole, Margaret-Anne Storey, Chandra Maddila, omas Zimmermann,

Brain Houck, and Jenna Butler. “e SPACE of Developer Productivity.” ACM

Queue 19, no. 1 (2021): 1–29. https://queue.acm.org/detail.cfm?id=3454124.

Fowler, Chad. “Trash Your Servers and Burn Your Code: Immutable Infrastructure

and Disposable Components.” Chad Fowler (blog), June 23, 2013.

http://chadfowler.com/2013/06/23/immutable-deployments.html.

Fowler, Martin. “Continuous Integration.” Martin Fowler (blog), May 1, 2006.

http://www.martinfowler.com/articles/continuousIntegration.html.

Fowler, Martin. “Eradicating Non-Determinism in Tests.” Martin Fowler (blog),

April 14, 2011. http://martinfowler.com/articles/nonDeterminism.html.

Fowler, Martin. “StranglerFigApplication.” Martin Fowler (blog), June 29, 2004.

http://www.martinfowler.com/bliki/StranglerApplication.html.

Fowler, Martin. “TestDrivenDevelopment.” Martin Fowler (blog), March 5, 2005.

http://martinfowler.com/bliki/TestDrivenDevelopment.html.

Fowler, Martin. “TestPyramid.” Martin Fowler (blog), May 1, 2012.

http://martinfowler.com/bliki/TestPyramid.html.

Freakonomics. “Fighting Poverty With Actual Evidence: Full Transcript.”

Freakonomics blog, November 27, 2013.

http://freakonomics.com/2013/11/27/�ghting-poverty-with-actual-evidence-

full-transcript/.

Furtado, Adam, and Lauren Knausenberger. “e Air Force’s Digital Journey in 12

Parsecs or Less.” Presentation at DevOps Enterprise Summit, London, 2020.

https://videolibrary.doesvirtual.com/?video=467489046.

http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
https://octoverse.github.com/static/github-octoverse-2020-security-report.pdf
https://lp.google-mkto.com/rs/248-TPC-286/images/DORA-State%20of%20DevOps.pdf
http://slideshare.net/
http://www.slideshare.net/realgenekim/2014-state-of-devops-findings-velocity-conference
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://queue.acm.org/detail.cfm?id=3454124
http://chadfowler.com/2013/06/23/immutable-deployments.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/nonDeterminism.html
http://www.martinfowler.com/bliki/StranglerApplication.html
http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://martinfowler.com/bliki/TestPyramid.html
http://freakonomics.com/2013/11/27/fighting-poverty-with-actual-evidence-full-transcript/
https://videolibrary.doesvirtual.com/?video=467489046

Gaekwad, Karthik. “Agile 2013 Talk: How DevOps Change Everything.” Posted by

Karthik Gaekwad to slideshare.net, August 7, 2013. Slideshow.

http://www.slideshare.net/karthequian/howdevopschangeseverything

agile2013karthikgaekwad/.

Galbreath, Nick. “Continuous Deployment—e New #1 Security Feature, from

BSildesLA 2012.” Posted by Nick Galbreath to slideshare.net, August 16, 2012.

Slideshow. http://www.slideshare.net/nickgsuperstar/continuous-

deployment-the-new-1-security-feature.

Galbreath, Nick. “DevOpsSec: Applying DevOps Principles to Security,

DevOpsDays Austin 2012.” Posted by Nick Galbreath to slideshare.net, April

12, 2012. Slideshow. http://www.slideshare.net/nickgsuperstar/devopssec-

apply-devops-principles-to-security.

Galbreath, Nick. “Fraud Engineering, from Merchant Risk Council Annual

Meeting 2012.” Posted by Nick Galbreath to slideshare.net, May 3, 2012.

Slideshow. http://www.slideshare.net/nickgsuperstar/fraud-engineering.

Gallagher, Sean. “When ‘Clever’ Goes Wrong: How Etsy Overcame Poor

Architectural Choices.” Arstechnica, October 3, 2011.

http:/arstechnica.com/business/2011/10/when-clever-goes-wrong-how-etsy-

overcame-poor-architectural-choices/.

Gardner, Tom. “Barnes & Noble, Blockbuster, Borders: e Killer B’s Are Dying.”

e Motley Fool, July 21, 2010.

http://www.fool.com/investing/general/2010/07/21/barnes-noble-

blockbuster-borders-the-killer-bs-are.aspx.

Geer, Dan and Joshua Corman. “Almost Too Big to Fail.” ;login: e Usenix

Magazine 39, no. 4 (August 2014): 66–68.

https://www.usenix.org/system/�les/login/articles/15_geer_0.pdf.

Gertner, Jon. e Idea Factory: Bell Labs and the Great Age of American Innovation.

New York: Penguin Books, 2012.

GitHub. “Etsy’s Feature Flagging API Used for Operational Rampups and A/B

testing.” Etsy/feature. Last updated January 4, 2017.

https://github.com/etsy/feature.

GitHub.“Library for Con�guration Management API.” Net�ix/archaius. Last

updated December 4, 2019. https://github.com/Net�ix/archaius.

Golden, Bernard. “What Gartner’s Bimodal IT Model Means to Enterprise CIOs.”

CIO Magazine, January 27, 2015. http://www.cio.com/article/2875803/cio-

role/what-gartner-s-bimodal-it-model-means-to-enterprise-cios.html.

Goldratt, Eliyahu M. Beyond the Goal: Eliyahu Goldratt Speaks on the eory of

Constraints (Your Coach in a Box). Prince Frederick, MD: Gildan Media, 2005.

Google App Engine Team. “Post-Mortem for February 24, 2010 Outage.” Google

App Engine website, March 4, 2010.

https://groups.google.com/forum/#!topic/google-appengine/p2QKJ0OSLc8.

http://slideshare.net/
http://www.slideshare.net/karthequian/howdevopschangeseverything%20agile2013karthikgaekwad/
http://slideshare.net/
http://www.slideshare.net/nickgsuperstar/continuous-deployment-the-new-1-security-feature
http://slideshare.net/
http://www.slideshare.net/nickgsuperstar/devopssec-apply-devops-principles-to-security
http://slideshare.net/
http://www.slideshare.net/nickgsuperstar/fraud-engineering
http://arstechnica.com/business/2011/10/when-clever-goes-wrong-how-etsy-overcame-poor-architectural-choices/
http://www.fool.com/investing/general/2010/07/21/barnes-noble-blockbuster-borders-the-killer-bs-are.aspx
https://www.usenix.org/system/files/login/articles/15_geer_0.pdf
https://github.com/etsy/feature
https://github.com/Netflix/archaius
http://www.cio.com/article/2875803/cio-role/what-gartner-s-bimodal-it-model-means-to-enterprise-cios.html
https://groups.google.com/forum/#!topic/google-appengine/p2QKJ0OSLc8

Govindarajan, Vijay, and Chris Trimble. e Other Side of Innovation: Solving the

Execution Challenge. Boston, MA: Harvard Business Review, 2010, Kindle.

Gruver, Gary. “DOES14—Gary Gruver—Macy’s—Transforming Traditional

Enterprise Software Development Processes.” Posted by DevOps Enterprise

Summit 2014, October 29, 2014. YouTube video, 27:24.

https://www.youtube.com/watch?v=-HSSGiYXA7U.

Gruver, Gary, and Tommy Mouser. Leading the Transformation: Applying Agile and

DevOps Principles at Scale. Portland, OR: IT Revolution Press, 2015.

Gupta, Prachi. “Visualizing LinkedIn’s Site Performance.” LinkedIn Engineering

blog, June 13, 2011. https://engineering.linkedin.com/25/visualizing-

linkedins-site-performance.

Hammant, Paul. “Introducing Branch by Abstraction.” Paul Hammant’s Blog, April

26, 2007. http://paulhammant.com/blog/branch_by_abstraction.html.

Hastings, Reed. “Net�ix Culture: Freedom and Responsibility.” Posted by Reed

Hastings to slideshare.net, August 1, 2009. Slideshow.

http://www.slideshare.net/reed2001/culture-1798664.

Hendrickson, Elisabeth. “DOES15—Elisabeth Hendrickson—Its All About

Feedback.” Posted by DevOps Enterprise Summit, November 5, 2015. YouTube

video, 34:47. https://www.youtube.com/watch?v=r2BFTXBundQ.

Hendrickson, Elisabeth. “On the Care and Feeding of Feedback Cycles.” Posted by

Elisabeth Hendrickson to slideshare.net, November 1, 2013. Slidshow.

http://www.slideshare.net/ehendrickson/care-and-feeding-of-feedback-cycles.

Hodge, Victoria, and Jim Austin. “A Survey of Outlier Detection Methodologies.”

Arti�cial Intelligence Review 22, no. 2 (October 2004): 85–126.

http://www.geo.upm.es/postgrado/CarlosLopez/papers/Hodge+Austin_Outlie

rDetection_AIRE381.pdf.

Holmes, Dwayne. “How A Hotel Company Ran $30B of Revenue in Containers,“

presentation at DevOps Enterprise Summit, Las Vegas, 2020.

https://videolibrary.doesvirtual.com/?video=524020857.

“How I Structured Engineering Teams at LinkedIn and AdMob for Success.” First

Round Review, 2015. http://�rstround.com/review/how-i-structured-

engineering-teams-at-linkedin-and-admob-for-success/.

Hrenko, Michael. “DOES15—Michael Hrenko—DevOps Insured By Blue Shield of

California.” Posted by DevOps Enterprise Summit, November 5, 2015.

YouTube video, 42:24. https://www.youtube.com/watch?v=NlgrOT24UDw.

Huang, Gregory T. “Blackboard CEO Jay Bhatt on the Global Future of Edtech.”

Xconomy, June 2, 2014.

http://www.xconomy.com/boston/2014/06/02/blackboard-ceo-jay-bhatt-on-

the-global-future-of-edtech/.

Humble, Jez. “What is Continuous Delivery?” Continuous Delivery (website),

accessed May 28, 2016, https://continuousdelivery.com/.

https://www.youtube.com/watch?v=-HSSGiYXA7U
https://engineering.linkedin.com/25/visualizing-linkedins-site-performance
http://paulhammant.com/blog/branch_by_abstraction.html
http://slideshare.net/
http://www.slideshare.net/reed2001/culture-1798664
https://www.youtube.com/watch?v=r2BFTXBundQ
http://slideshare.net/
http://www.slideshare.net/ehendrickson/care-and-feeding-of-feedback-cycles
http://www.geo.upm.es/postgrado/CarlosLopez/papers/Hodge+Austin_OutlierDetection_AIRE381.pdf
https://videolibrary.doesvirtual.com/?video=524020857
http://firstround.com/review/how-i-structured-engineering-teams-at-linkedin-and-admob-for-success/
https://www.youtube.com/watch?v=NlgrOT24UDw
http://www.xconomy.com/boston/2014/06/02/blackboard-ceo-jay-bhatt-on-the-global-future-of-edtech/
https://continuousdelivery.com/

Humble, Jez, and David Farley. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Upper Saddle River, NJ:

Addison-Wesley, 2011.

Humble, Jez, Joanne Molesky, and Barry O’Reilly. Lean Enterprise: How High

Performance Organizations Innovate at Scale. Sebastopol, CA: O’Reilly Media,

2015.

“IDC Forecasts Worldwide IT Spending to Grow 6% in 2012, Despite Economic

Uncertainty.” Business Wire, September 10, 2012.

http://www.businesswire.com/news/home/20120910005280/en/IDC-

Forecasts-Worldwide-Spending-Grow-6-2012.

Immelt, Jeff. “GE CEO Jeff Immelt: Let’s Finally End the Debate over Whether We

Are in a Tech Bubble.” Business Insider, December 9, 2015.

http://www.businessinsider.com/ceo-of-ge-lets-�nally-end-the-debate-over-

whether-we-are-in-a-tech-bubble-2015-12.

Intuit, Inc. “2012 Annual Report: Form 10-K.” July 31, 2012.

http://s1.q4cdn.com/018592547/�les/doc_�nancials/2012/INTU_2012_7_3

1_10K_r230_at_09_13_12_FINAL_and_Camera_Ready.pdf.

Jacobson, Daniel, Danny Yuan, and Neeraj Joshi. “Scryer: Net�ix’s Predictive Auto

Scaling Engine.” e Net�ix Tech Blog, November 5, 2013.

http://techblog.net�ix.com/2013/11/scryer-net�ixs-predictive-auto-

scaling.html.

Jenkins, Jon. “Velocity 2011: Jon Jenkins, ‘Velocity Culture.” Posted by O’Reilly,

June 20, 2011. YouTube video, 15:13. https://www.youtube.com/watch?

v=dxk8b9rSKOo.

“Jeremy Long: e (Application) Patching Manifesto,” YouTube video, 41:17,

posted by LocoMocoSec: Hawaii Product Security Conference, May 17, 2018.

https://www.youtube.com/watch?v=qVVZrTRJ290.

JGFLL. Review of e Phoenix Project: A Novel About IT, DevOps, and Helping Your

Business Win, by Gene Kim, Kevin Behr, and George Spafford. Amazon review,

March 4, 2013. http://www.amazon.com/review/R1KSSPTEGLWJ23.

Johnson, Kimberly H., Tim Judge, Christopher Porter, and Ramon Richards. “How

Fannie Mae Uses Agility to Support Homeowners and Renters,” presentation

at DevOps Enterprise Summit, Las Vegas, 2020.

https://videolibrary.doesvirtual.com/?video=467488997.

Jones, Angie. “3 Ways to Get Test Automation Done Within Your Sprints.”

TechBeacon. Accessed February 15, 2021. https://techbeacon.com/app-dev-

testing/3-ways-get-test-automation-done-within-your-sprints.

Kash, Wyatt. “New Details Released on Proposed 2016 IT Spending.” FedScoop,

February 4, 2015. http://fedscoop.com/what-top-agencies-would-spend-on-it-

projects-in-2016.

Kastner, Erik. “Quantum of Deployment.” Code as Craft (blog). Etsy, May 20, 2010.

https://codeascraft.com/2010/05/20/quantum-of-deployment/.

http://www.businesswire.com/news/home/20120910005280/en/IDC-Forecasts-Worldwide-Spending-Grow-6-2012
http://www.businessinsider.com/ceo-of-ge-lets-finally-end-the-debate-over-whether-we-are-in-a-tech-bubble-2015-12
http://s1.q4cdn.com/018592547/files/doc_financials/2012/INTU_2012_7_31_10K_r230_at_09_13_12_FINAL_and_Camera_Ready.pdf
http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html
https://www.youtube.com/watch?v=dxk8b9rSKOo
https://www.youtube.com/watch?v=qVVZrTRJ290
http://www.amazon.com/review/R1KSSPTEGLWJ23
https://videolibrary.doesvirtual.com/?video=467488997
https://techbeacon.com/app-dev-testing/3-ways-get-test-automation-done-within-your-sprints
http://fedscoop.com/what-top-agencies-would-spend-on-it-projects-in-2016
https://codeascraft.com/2010/05/20/quantum-of-deployment/

Kersten, Mik. “Project to Product: From Stories to Scenius,” Tasktop blog,

November 21, 2018, https://www.tasktop.com/blog/project-product-stories-

scenius/.

Kersten, Mik. Project to Product: How to Survive and rive in the Age of Digital

Disruption with the Flow Framework. Portland, Oregon: IT Revolution Press,

2018.

Kersten, Nigel, IT Revolution, and PwC. 2015 State of DevOps Report. Portland,

OR: Puppet Labs, 2015. https://puppet.com/resources/white-paper/2015-

state-of-devops-report?_ga=1.6612658.168869.1464412647&link=blog.

Kim, Gene. “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team (Gary Gruver).” IT Revolution blog, February 13, 2014.

http://itrevolution.com/the-amazing-devops-transformation-of-the-hp-

laserjet-�rmware-team-gary-gruver/.

Kim, Gene. “Organizational Learning and Competitiveness: Revisiting the

‘Allspaw/Hammond 10 Deploys Per Day at Flickr’ Story.” IT Revolution blog,

December 13, 2014. http://itrevolution.com/organizational-learning-and-

competitiveness-a-different-view-of-the-allspawhammond-10-deploys-per-

day-at-�ickr-story/.

Kim, Gene. “State of DevOps: 2020 and Beyond,” IT Revolution blog, March 1,

2021. https://itrevolution.com/state-of-devops-2020-and-beyond/.

Kim, Gene. “e ree Ways: e Principles Underpinning DevOps.” IT Revolution

blog, August 22, 2012. http://itrevolution.com/the-three-ways-principles-

underpinning-devops/.

Kim, Gene, Kevin Behr, and George Spafford. e Visible Ops Handbook:

Implementing ITIL in 4 Practical and Auditable Steps. Eugene, OR: IT Process

Institute, 2004.

Kim, Gene, Gary Gruver, Randy Shoup, and Andrew Phillips. “Exploring the

Uncharted Territory of Microservices.” Xebia Labs. Webinar, February 20,

2015. https://xebialabs.com/community/webinars/exploring-the-uncharted-

territory-of-microservices/.

Kissler, Courtney. “DOES14—Courtney Kissler—Nordstrom—Transforming to a

Culture of Continuous Improvement.” Posted by DevOps Enterprise Summit

2014, October 29, 2014. YouTube video, 29:59.

https://www.youtube.com/watch?v=0ZAcsrZBSlo.

Kohavi, Ron, omas Crook, and Roger Longbotham. “Online Experimentation at

Microsoft.” Paper presented at the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Paris, France, 2009.

http://www.exp-platform.com/documents/exp_dmcasestudies.pdf.

Krishnan, Kripa. “Kripa Krishnan: ‘Learning Continuously From Failures’ at

Google.’” Posted by Flowcon, November 11, 2014. YouTube video, 21:35.

https://www.youtube.com/watch?v=KqqS3wgQum0.

https://www.tasktop.com/blog/project-product-stories-scenius/
https://puppet.com/resources/white-paper/2015-state-of-devops-report?_ga=1.6612658.168869.1464412647&link=blog
http://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-firmware-team-gary-gruver/
http://itrevolution.com/organizational-learning-and-competitiveness-a-different-view-of-the-allspawhammond-10-deploys-per-day-at-flickr-story/
https://itrevolution.com/state-of-devops-2020-and-beyond/
http://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://xebialabs.com/community/webinars/exploring-the-uncharted-territory-of-microservices/
https://www.youtube.com/watch?v=0ZAcsrZBSlo
http://www.exp-platform.com/documents/exp_dmcasestudies.pdf
https://www.youtube.com/watch?v=KqqS3wgQum0

Krishnan, Kripa. “Weathering the Unexpected.” Communications of the ACM 55, no.

11 (November 2012): 48–52.

http://cacm.acm.org/magazines/2012/11/156583-weathering-the-

unexpected/abstract.

Kumar, Ashish. “Development at the Speed and Scale of Google.” PowerPoint

presented at QCon, San Francisco, CA, 2010.

https://qconsf.com/sf2010/dl/qcon-sanfran-

2010/slides/AshishKumar_DevelopingProductsattheSpeedandScaleofGoogle.

pdf.

Leibman, Maya, and Ross Clanton. “DevOps: Approaching Cruising Altitude.”

Presentation at DevOps Enterprise Summit, Las Vegas, 2020,

https://videolibrary.doesvirtual.com/?video=550704282.

Letuchy, Eugene. “Facebook Chat.” Facebook, May 3, 2008.

http://www.facebook.com/note.php?note_id=14218138919&id=944554719.

Lightbody, Patrick. “Velocity 2011: Patrick Lightbody, ‘From Inception to

Acquisition.’” Posted by O’Reilly, June 17, 2011. YouTube video, 15:28.

https://www.youtube.com/watch?v=ShmPod8JecQ.

Limoncelli, Tom. “Python Is Better than Perl6.” Everything SysAdmin blog,

January 10, 2011. http://everythingsysadmin.com/2011/01/python-is-better-

than-perl6.html.

Limoncelli, Tom. “SRE@Google: ousands Of DevOps Since 2004.” USENIX

Association Talk, NYC. Posted by USENIX, January 12, 2012.Youtube video,

45:57. http://www.youtube.com/watch?v=iIuTnhdTzK0.

Limoncelli, Tom. “Stop Monitoring Whether or Not Your Service Is Up!”

Everything SysAdmin blog, November 27, 2013.

http://everythingsysadmin.com/2013/11/stop-monitoring-if-service-is-

up.html.

Limoncelli, Tom. “Yes, You Can Really Work from HEAD.” Everything SysAdmin

blog, March 15, 2014. http://everythingsysadmin.com/2014/03/yes-you-

really-can-work-from-head.html.

Lindsay, Jeff. “Consul Service Discovery with Docker.” Progrium blog, August 20,

2014. http://progrium.com/blog/2014/08/20/consul-service-discovery-with-

docker.

Loura, Ralph, Olivier Jacques, and Rafael Garcia. “DOES15—Ralph Loura, Olivier

Jacques, & Rafael Garcia—Breaking Traditional IT Paradigms to … ” Posted by

DevOps Enterprise Summit, November 16, 2015. YouTube video, 31:07.

https://www.youtube.com/watch?v=q9nNqqie_sM.

Lublinsky, Boris. “Versioning in SOA.” e Architecture Journal, April 2007.

https://msdn.microsoft.com/en-us/library/bb491124.aspx.

Lund University. “Just Culture: Balancing Safety and Accountability.” Human

Factors & System Safety website, November 6, 2015.

http://www.humanfactors.lth.se/sidney-dekker/books/just-culture/.

http://cacm.acm.org/magazines/2012/11/156583-weathering-the-unexpected/abstract
https://qconsf.com/sf2010/dl/qcon-sanfran-2010/slides/AshishKumar_DevelopingProductsattheSpeedandScaleofGoogle.pdf
https://videolibrary.doesvirtual.com/?video=550704282
http://www.facebook.com/note.php?note_id=14218138919&id=944554719
https://www.youtube.com/watch?v=ShmPod8JecQ
http://everythingsysadmin.com/2011/01/python-is-better-than-perl6.html
http://www.youtube.com/watch?v=iIuTnhdTzK0
http://everythingsysadmin.com/2013/11/stop-monitoring-if-service-is-up.html
http://everythingsysadmin.com/2014/03/yes-you-really-can-work-from-head.html
http://progrium.com/blog/2014/08/20/consul-service-discovery-with-docker
https://www.youtube.com/watch?v=q9nNqqie_sM
https://msdn.microsoft.com/en-us/library/bb491124.aspx
http://www.humanfactors.lth.se/sidney-dekker/books/just-culture/

Luyten, Stefan. “Single Piece Flow: Why Mass Production Isn’t the Most Efficient

Way of Doing ‘Stuff.’” Medium (blog), August 8, 2014.

https://medium.com/@stefanluyten/single-piece-�ow-

5d2c2bec845b#.9o7sn74ns.

Macri, Bethany. “Morgue: Helping Better Understand Events by Building a Post

Mortem Tool—Bethany Macri.” Posted by info@devopsdays.org, October 18,

2013. Vimeo video, 33:34. http://vimeo.com/77206751.

Malpass, Ian. “DevOpsDays Minneapolis 2014—Ian Malpass, Fallible Humans.”

Posted by DevOps Minneapolis, July 20, 2014. YouTube video, 35:48.

https://www.youtube.com/watch?v=5NY-SrQFrBU.

Malpass, Ian. “Measure Anything, Measure Everything.” Code as Craft (blog). Etsy,

February 15, 2011. http://codeascraft.com/2011/02/15/measure-anything-

measure-everything/.

Mangot, Dave, and Karthik Rajan.

“Agile.2013.effecting.a.devops.transformation.at.salesforce.” Posted by Dave

Mangot to slideshare.net, August 12, 2013. Slideshow.

http://www.slideshare.net/dmangot/agile2013effectingadev-

opstransformationatsalesforce.

Marsh, Dianne. “Dianne Marsh: ‘Introducing Change while Preserving

Engineering Velocity.’” Posted by Flowcon, November 11, 2014. YouTube

video, 17:37. https://www.youtube.com/watch?v=eW3ZxY67fnc.

Martin, Karen, and Mike Osterling. Value Stream Mapping: How to Visualize Work

and Align Leadership for Organizational Transformation. New York: McGraw Hill,

2013.

Maskell, Brian. “What Does is Guy Do? Role of Value Stream Manager.” Maskell

(blog), July 3, 2015. http://blog.maskell.com/?

p=2106http://www.lean.org/common/display/?o=221.

Masli, Adi., Vernon J. Richardson, Marcia Widenmier Watson, and Robert W.

Zmud. “Senior Executives’ IT Management Responsibilities: Serious IT-Related

De�ciencies and CEO/CFO Turnover.” MIS Quarterly 40, no. 3 (2016): 687–

708. https://doi.org/10.25300/misq/2016/40.3.08.

Massachusetts Institute of Technology. “Creating High Velocity Organizations.”

Course Descriptions. Accessed May 30, 2016.

http://executive.mit.edu/openenrollment/program/organizational-

development-high-velocity-organizations.

Mathew, Reena, and Dave Mangot. “DOES14—Reena Mathew and Dave Mangot

—Salesforce.” Posted by ITRevolution to slideshare.net, October 29, 2014.

Slideshow. http://www.slideshare.net/ITRevolution/does14-reena-matthew-

and-dave-mangot-salesforce.

Mauro, Tony. “Adopting Microservices at Net�ix: Lessons for Architectural

Design.” NGINX (blog), February 19, 2015.

https://medium.com/@stefanluyten/single-piece-flow-5d2c2bec845b#.9o7sn74ns
mailto:info@devopsdays.org
http://vimeo.com/77206751
https://www.youtube.com/watch?v=5NY-SrQFrBU
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://slideshare.net/
http://www.slideshare.net/dmangot/agile2013effectingadev-opstransformationatsalesforce
https://www.youtube.com/watch?v=eW3ZxY67fnc
http://blog.maskell.com/?p=2106http://www.lean.org/common/display/?o=221
https://doi.org/10.25300/misq/2016/40.3.08
http://executive.mit.edu/openenrollment/program/organizational-development-high-velocity-organizations
http://slideshare.net/
http://www.slideshare.net/ITRevolution/does14-reena-matthew-and-dave-mangot-salesforce

https://www.nginx.com/blog/microservices-at-net�ix-architectural-best-

practices/.

McDonnell, Patrick. “Continuously Deploying Culture: Scaling Culture at Etsy—

Velocity Europe 2012.” Posted by Patrick McDonnell to slideshare.net, October

4, 2012. Slideshow. http://www.slideshare.net/mcdonnps/continuously-

deploying-culture-scaling-culture-at-etsy-14588485.

McKinley, Dan. “Why MongoDB Never Worked Out at Etsy.” Dan McKinley (blog),

December 26, 2012. http://mcfunley.com/why-mongodb-never-worked-out-

at-etsy.

Mell, Peter, and Timothy Grance. e NIST De�nition of Cloud Computing:

Recommendations of the National Institute of Standards and Technology.

Washington, DC>: National Institute of Standards and Technology, 2011.

Messeri, Eran. “What Goes Wrong When ousands of Engineers Share the Same

Continuous Build?” Presented at the GOTO Conference, Aarhus, Denmark,

October 2, 2013.

Metz, Cade. “Google Is 2 Billion Lines of Code—and It’s All in One Place.” Wired,

September 16, 2015. http://www.wired.com/2015/09/google-2-billion-lines-

codeand-one-place/.

Metz, Cade. “How ree Guys Rebuilt the Foundation of Facebook.” Wired, June

10, 2013. http://www.wired.com/wiredenterprise/2013/06/facebook-hhvm-

saga/all/.

Mickman, Heather, and Ross Clanton. “DOES15—Heather Mickman & Ross

Clanton—(Re)building an Engineering Culture: DevOps at Target.” Posted by

DevOps Enterprise Summit, November 5, 2015. YouTube video, 33:39.

https://www.youtube.com/watch?v=7s-VbB1fG5o.

Milstein, Dan. “Post-Mortems at HubSpot: What I Learned from 250 Whys.”

HubSpot (blog), June 1, 2011.

http://product.hubspot.com/blog/bid/64771/Post-Mortems-at-HubSpot-

What-I-Learned-From-250-Whys.

Morgan, Timothy Prickett. “A Rare Peek Into e Massive Scale of AWS.”

Enterprise AI, November 14, 2014.

http://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale.

Morrison, Erica. “How We Turned Our Company’s Worst Outage into a Powerful

Learning Opportunity.” Presentation at DevOps Enterprise Summit, London,

2020. https://videolibrary.doesvirtual.com/?video=431872263.

Moore, Geoffrey A., and Regis McKenna. Crossing the Chasm: Marketing and Selling

High-Tech Products to Mainstream Customers. New York: HarperCollins, 2009.

Mueller, Ernest. “2012—A Release Odyssey.” Posted by Ernest Mueller to

slideshare.net, March 12, 2014. Slideshow.

http://www.slideshare.net/mxyzplk/2012-a-release-odyssey.

https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
http://slideshare.net/
http://www.slideshare.net/mcdonnps/continuously-deploying-culture-scaling-culture-at-etsy-14588485
http://mcfunley.com/why-mongodb-never-worked-out-at-etsy
http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
http://www.wired.com/wiredenterprise/2013/06/facebook-hhvm-saga/all/
https://www.youtube.com/watch?v=7s-VbB1fG5o
http://product.hubspot.com/blog/bid/64771/Post-Mortems-at-HubSpot-What-I-Learned-From-250-Whys
http://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale
https://videolibrary.doesvirtual.com/?video=431872263
http://slideshare.net/
http://www.slideshare.net/mxyzplk/2012-a-release-odyssey

Mueller, Ernest. “Business Model Driven Cloud Adoption: What NI Is Doing in the

Cloud.” posted by Ernest Mueller to slideshare.net, June 28, 2011. Slideshow.

http://www.slideshare.net/mxyzplk/business-model-driven-cloud-adoption-

what-ni-is-doing-in-the-cloud.

Mueller, Ernest. “DOES15—Ernest Mueller—DevOps Transformations at

National Instruments and … ” Posted by DevOps Enterprise Summit,

November 5, 2015. YouTube video, 34:14. https://www.youtube.com/watch?

v=6Ry40h1UAyE.

Mulkey, Jody. “DOES15—Jody Mulkey—DevOps in the Enterprise: A

Transformation Journey.” Posted by DevOps Enterprise Summit, November 5,

2015. YouTube video, 28:22. https://www.youtube.com/watch?

v=USYrDaPEFtM.

Nagappan, Nachiappan, E. Michael Maximilien, irumalesh Bhat, and Laurie

Williams. “Realizing Quality Improvement through Test Driven Development:

Results and Experiences of Four Industrial Teams.” Empire Software

Engineering 13 (2008): 289–302. http://research.microsoft.com/en-

us/groups/ese/nagappan_tdd.pdf.

Naraine, Ryan. “Twilio, HashiCorp Among Codecov Supply Chain Hack Victims,”

SecurityWeek, May 10, 2021. https://www.securityweek.com/twilio-

hashicorp-among-codecov-supply-chain-hack-victims.

Nationwide. 2014 Annual Report. 2014 https://www.nationwide.com/about-

us/nationwide-annual-report-2014.jsp.

Nielsen, Jonas Klit. “8 Years with LinkedIn—Looking at the Growth.” Mind

Jumpers blog, May 10, 2011.

http://www.mindjumpers.com/blog/2011/05/linkedin-growth-infographic/.

Net�ix. Letter to Shareholders, January 19, 2016.

http://�les.shareholder.com/downloads/NFLX/2432188684x0x870685/C621

3FF9-5498-4084-A0FF-74363CEE35A1/Q4_15_Letter_to_Shareholders_-

_COMBINED.pdf.

Newland, Jesse. “ChatOps at GitHub.” Posted on speakerdeck.com, February 7,

2013. Slideshow. https://speakerdeck.com/jnewland/chatops-at-github.

North, Dan. “Ops and Operability.” Posted to speakerdeck.com, February 25,

2016. Slideshow. https://speakerdeck.com/tastapod/ops-and-operability.

“NUMMI.” is American Life episode 403, March 26, 2010. Radio.

http://www.thisamericanlife.org/radio-archives/episode/403/transcript.

Nygard, Michael T. Release It!: Design and Deploy Production-Ready Software.

Raleigh, NC: Pragmatic Bookshelf, 2007, Kindle.

O’Donnell, Glenn. “DOES14—Glenn O’Donnell—Forrester—Modern Services

Demand a DevOps Culture Beyond Apps.” Posted by DevOps Enterprise

Summit 2014, November 5, 2014. YouTube video, 12:20.

https://www.youtube.com/watch?v=pvPWKuO4_48.

http://slideshare.net/
http://www.slideshare.net/mxyzplk/business-model-driven-cloud-adoption-what-ni-is-doing-in-the-cloud
https://www.youtube.com/watch?v=6Ry40h1UAyE
https://www.youtube.com/watch?v=USYrDaPEFtM
http://research.microsoft.com/en-us/groups/ese/nagappan_tdd.pdf
https://www.securityweek.com/twilio-hashicorp-among-codecov-supply-chain-hack-victims
https://www.nationwide.com/about-us/nationwide-annual-report-2014.jsp
http://www.mindjumpers.com/blog/2011/05/linkedin-growth-infographic/
http://files.shareholder.com/downloads/NFLX/2432188684x0x870685/C6213FF9-5498-4084-A0FF-74363CEE35A1/Q4_15_Letter_to_Shareholders_-_COMBINED.pdf
http://speakerdeck.com/
https://speakerdeck.com/jnewland/chatops-at-github
http://speakerdeck.com/
https://speakerdeck.com/tastapod/ops-and-operability
http://www.thisamericanlife.org/radio-archives/episode/403/transcript
https://www.youtube.com/watch?v=pvPWKuO4_48

O’Reilly, Barry. “How to Implement Hypothesis-Driven Development.” Barry

O’Reilly blog, October 21, 2013. http://barryoreilly.com/explore/blog/how-to-

implement-hypothesis-driven-development/.

Osterweil, Leon. “Software Processes Are Software Too.” Paper presented at

International Conference on Software Engineering, Monterey, CA, 1987.

http://www.cs.unibo.it/cianca/wwwpages/ids/letture/Osterweil.pdf.

OWASP. “OWASP Cheat Sheet Series.” Updated March 2, 2016.

https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series.

Özil, Giray. “Ask a programmer to review 10 lines of code.” Twitter, February 27,

2013. https://twitter.com/girayozil/status/306836785739210752.

Pal, Tapabrata. “DOES15—Tapabrata Pal—Banking on Innovation & DevOps.”

Posted by DevOps Enterprise Summit, January 4, 2016. YouTube video, 32:57.

https://www.youtube.com/watch?v=bbWFCKGhxOs.

Parikh, Karan. “From a Monolith to Microservices + REST: e Evolution of

LinkedIn’s Architecture.” Posted by Karan Parikh to slideshare.net, November

6, 2014. Slideshow. http://www.slideshare.net/parikhk/restli-and-deco.

“Paul O’Neill.” Forbes, October 11, 2001.

http://www.forbes.com/2001/10/16/poneill.html.

Paul, Ryan. “Exclusive: A Behind-the-Scenes Look at Facebook Release

Engineering.” Ars Technica, April 5, 2012.

http://arstechnica.com/business/2012/04/exclusive-a-behind-the-scenes-

look-at-facebook-release-engineering/1/.

PCI Security Standards Council. “Glossary.” Glossary of terms (website). Accessed

May 30, 2016. https://www.pcisecuritystandards.org/pci_security/glossary.

PCI Security Standards Council. Payment Card Industry (PCI) Data Security Stands:

Requirements and Security Assessment Procedures, Version 3.1. PCI Security

Standards Council, 2015, Section 6.3.2.

https://webcache.googleusercontent.com/search?

q=cache:hpRe2COzzdAJ:https://www.cisecuritystandards.org/documents/PCI

_DSS_v3-1_SAQ_D_Merchant_rev1-1.docx+&cd=2&hl=en&ct=clnk&gl=us.

Pepitone, Julianne. “Amazon EC2 Outage Downs Reddit, Quora.” CNN Money,

April 22, 2011.

http://money.cnn.com/2011/04/21/technology/amazon_server_outage/inde

x.htm.

Perrow, Charles. Normal Accidents: Living with High-Risk Technologies. Princeton,

NJ: Princeton University Press, 1999.

Plastic SCM. “Version Control History.” History of version control. Accessed May

31, 2016. https://www.plasticscm.com/version-control-history.

Pomeranz, Hal. “Queue Inversion Week.” Righteous IT, February 12, 2009.

https://righteousit.wordpress.com/2009/02/12/queue-inversion-week/.

http://barryoreilly.com/explore/blog/how-to-implement-hypothesis-driven-development/
http://www.cs.unibo.it/cianca/wwwpages/ids/letture/Osterweil.pdf
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://twitter.com/girayozil/status/306836785739210752
https://www.youtube.com/watch?v=bbWFCKGhxOs
http://slideshare.net/
http://www.slideshare.net/parikhk/restli-and-deco
http://www.forbes.com/2001/10/16/poneill.html
http://arstechnica.com/business/2012/04/exclusive-a-behind-the-scenes-look-at-facebook-release-engineering/1/
https://www.pcisecuritystandards.org/pci_security/glossary
https://webcache.googleusercontent.com/search?q=cache:hpRe2COzzdAJ:https://www.cisecuritystandards.org/documents/PCI_DSS_v3-1_SAQ_D_Merchant_rev1-1.docx+&cd=2&hl=en&ct=clnk&gl=us
http://money.cnn.com/2011/04/21/technology/amazon_server_outage/index.htm
https://www.plasticscm.com/version-control-history
https://righteousit.wordpress.com/2009/02/12/queue-inversion-week/

Poppendieck, Mary, and Tom Poppendieck. Implementing Lean Software: From

Concept to Cash. Upper Saddle River, NJ: Addison-Wesley, 2007.

Potvin, Rachel, and Josh Levenber. “Why Google Stores Billions of Lines of Code

in a Single Repository.” Communications of the ACM 59, no.7 (July 2016): 78–

87. https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-

billions-of-lines-of-code-in-a-single-repository/fulltext.

“Post Event Retrospective—Part 1.” Rally Blogs, accessed May 31, 2016.

https://www.rallydev.com/blog/engineering/post-event-retrospective-part-i.

Protalinski, Emil. “Facebook Passes 1.55B Monthly Active Users and 1.01B Daily

Active Users.” Venture Beat, November 4, 2015.

http://venturebeat.com/2015/11/04/facebook-passes-1-55b-monthly-active-

users-and-1-01-billion-daily-active-users/.

Prugh, Scott. “Continuous Delivery.” Scaled Agile Framework. Updated February

14, 2013, http://www.scaledagileframework.com/continuous-delivery/.

Prugh, Scott. “DOES14: Scott Prugh, CSG—DevOps and Lean in Legacy

Environments.” Posted by DevOps Enterprise Summit to slideshare.net,

November 14, 2014. Slideshow. http://www.slideshare.net/DevOps

EnterpriseSummit/scott-prugh.

Prugh, Scott, and Erica Morrison. “DOES15—Scott Prugh & Erica Morrison—

Conway & Taylor Meet the Strangler (v2.0).” Posted by DevOps Enterprise

Summit, November 5, 2015. YouTube video, 29:39.

https://www.youtube.com/watch?v=tKdIHCL0DUg.

Prugh, Scott, and Erica Morrison. “When Ops Swallows Dev,” presentation at

DevOps Enteprise Summit 2016. https://videolibrary.doesvirtual.com/?

video=524430639.

Puppet Labs and IT Revolution Press. 2013 State of DevOps Report. Portland, OR:

Puppet Labs, 2013. http://www.exin-library.com/Player/eKnowledge/2013-

state-of-devops-report.pdf.

Ratchitsky, Lenny. “7 Keys to a Successful Public Health Dashboard.” Transparent

Uptime, December 1, 2008.

http://www.transparentuptime.com/2008/11/rules-for-successful-public-

health.html.

Raymond, Eric S. “Conway’s Law.” Eric Raymond. Accessed May 31, 2016.

http://catb.org/~esr/jargon/.

Rembetsy, Michael, and Patrick McDonnell. “Continuously Deploying Culture:

Scaling Culture at Etsy.” Posted by Patrick McDonnel.bl to slideshare.net,

October 4, 2012. Slideshow.

http://www.slideshare.net/mcdonnps/continuously-deploying-culture-scaling-

culture-at-etsy-14588485.

Ries, Eric. e Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to

Create Radically Successful Businesses. New York: Random House, 2011.

Audiobook.

https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
https://www.rallydev.com/blog/engineering/post-event-retrospective-part-i
http://venturebeat.com/2015/11/04/facebook-passes-1-55b-monthly-active-users-and-1-01-billion-daily-active-users/
http://www.scaledagileframework.com/continuous-delivery/
http://slideshare.net/
http://www.slideshare.net/DevOpsEnterpriseSummit/scott-prugh
https://www.youtube.com/watch?v=tKdIHCL0DUg
https://videolibrary.doesvirtual.com/?video=524430639
http://www.exin-library.com/Player/eKnowledge/2013-state-of-devops-report.pdf
http://www.transparentuptime.com/2008/11/rules-for-successful-public-health.html
http://catb.org/~esr/jargon/
http://slideshare.net/
http://www.slideshare.net/mcdonnps/continuously-deploying-culture-scaling-culture-at-etsy-14588485

Ries, Eric. “Work in Small Batches.” Startup Lessons Learned (blog), February 20,

2009. http://www.startuplessonslearned.com/2009/02/work-in-small-

batches.html.

Robbins, Jesse. “GameDay: Creating Resiliency rough Destruction—LISA11.”

Posted by Jesse Robbins to slideshare.net, December 7, 2011. Slideshow.

http://www.slideshare.net/jesserobbins/ameday-creating-resiliency-through-

destruction.

Robbins, Jesse. “Hacking Culture at VelocityConf.” posted by Jesse Robbins to

slideshare.net, June 28, 2012. Slideshow.

http://www.slideshare.net/jesserobbins/hacking-culture-at-velocityconf.

Robbins, Jesse, Kripa Krishnan, John Allspaw, and Tom Limoncelli. “Resilience

Engineering: Learning to Embrace Failure.” ACM Queue 10, no. 9 (September

13, 2012). https://queue.acm.org/detail.cfm?id=2371297.

Roberto, Michael, Richard M. J. Bohmer, and Amy C. Edmondson. “Facing

Ambiguous reats.” Harvard Business Review, November 2006.

https://hbr.org/2006/11/facing-ambiguous-threats.

Rossi, Chuck. “Release Engineering and Push Karma: Chuck Rossi.” Facebook,

April 5, 2012. https://www.facebook.com/notes/facebook-

engineering/release-engineering-and-push-karma-chuck-

rossi/10150660826788920.

Rossi, Chuck. “Ship early and ship twice as often.” Facebook, August 3, 2012.

https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-

twice-as-often/10150985860363920.

Rother, Mike. Toyota Kata: Managing People for Improvement, Adaptiveness and

Superior Results. New York: McGraw Hill, 2010. Kindle.

Rubinstein, Joshua S., David E. Meyer, and Jeffrey E. Evans. “Executive Control of

Cognitive Processes in Task Switching.” Journal of Experimental Psychology:

Human Perception and Performance 27, no. 4 (2001): 763–797.

http://www.umich.edu/~bcalab/documents/RubinsteinMeyerEvans2001.pdf.

Senge, Peter M. e Fifth Discipline: e Art & Practice of the Learning Organization.

New York: Doubleday, 2006.

Sharwood, Simon. “Are Your Servers PETS or CATTLE?” e Register, March 18

2013. http://www.theregister.com/2013/03/18/servers_pets_or_cattle

_cern/.

Shingo, Shigeo. A Study of the Toyota Production System: From an Industrial

Engineering Viewpoint. London: Productivity Press, 1989.

Shinn, Bill. “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.” Posted by Gene Kim to slideshare.net, November

20, 2015. Slideshow. http://www.slideshare.net/ITRevolution/does15-bill-

shinn-prove-it-the-last-mile-for-devops-in-regulated-organizations.

http://www.startuplessonslearned.com/2009/02/work-in-small-batches.html
http://slideshare.net/
http://www.slideshare.net/jesserobbins/ameday-creating-resiliency-through-destruction
http://slideshare.net/
http://www.slideshare.net/jesserobbins/hacking-culture-at-velocityconf
https://queue.acm.org/detail.cfm?id=2371297
https://hbr.org/2006/11/facing-ambiguous-threats
https://www.facebook.com/notes/facebook-engineering/release-engineering-and-push-karma-chuck-rossi/10150660826788920
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
http://www.umich.edu/~bcalab/documents/RubinsteinMeyerEvans2001.pdf
http://www.theregister.com/2013/03/18/servers_pets_or_cattle_cern/
http://slideshare.net/
http://www.slideshare.net/ITRevolution/does15-bill-shinn-prove-it-the-last-mile-for-devops-in-regulated-organizations

Shook, John. “Five Missing Pieces in Your Standardized Work (Part 3 of 3).” Lean

Enterprise Institute, October 27, 2009.

http://www.lean.org/shook/DisplayObject.cfm?o=1321.

Shoup, Randy. “Exploring the Uncharted Territory of Microservices.” Posted by

XebiaLabs, Inc., February 20, 2015. YouTube video, 56:50.

https://www.youtube.com/watch?v=MRa21icSIQk.

Shoup, Randy. “e Virtuous Cycle of Velocity: What I Learned About Going Fast

at eBay and Google by Randy Shoup.” Posted by Flowcon, December 26, 2013.

YouTube video, 30:05. https://www.youtube.com/watch?v=EwLBoRyXTOI.

Skinner, Chris. “Banks Have Bigger Development Shops than Microsoft.” Chris

Skinner’s Blog, September 9, 2011. http://the�nanser.com/2011/09/banks-

have-bigger-development-shops-than-microsoft.html/.

Smart, Jonathan, Zsolt Berend, Myles Ogilvie, and Simon Rohrer. Sooner Safer

Happier: Antipatterns and Patterns for Business Agility. Portland, OR: IT

Revolution, 2020.

Snyder, Ross. “Scaling Etsy: What Went Wrong, What Went Right.” Posted by Ross

Snyder to slideshare.net, October 5, 2011. Slideshow.

http://www.slideshare.net/beamrider9/scaling-etsy-what-went-wrong-what-

went-right.

Snyder, Ross. “Surge 2011—Scaling Etsy: What Went Wrong, What Went Right.”

Posted by OmniTiSurge Conference, December 23, 2011. YouTube video,

37:17. https://www.youtube.com/watch?v=eenrfm50mXw.

Sonatype. 2015 State of the Software Supply Chain Report: Hidden Speed Bumps on

the Way to “Continuous.” Fulton, MD: Sonatype, Inc., 2015.

http://cdn2.hubspot.net/hubfs/1958393/White_Papers/2015_State_of_the_

Software_Supply_Chain_Report-.pdf?t=1466775053631.

Sonatype. 2019 Stae of the Software Supply Chain Report. 2019.

https://www.sonatype.com/resources/white-paper-state-of-software-supply-

chain-report-2019.

Sonatype. 2020 State of the Software Supply Chain Report. 2020.

https://www.sonatype.com/resources/white-paper-state-of-the-software-

supply-chain-2020.

Sowell, omas. Basic Economics, Fifth Edition. New York: Basic Books, 2014.

Sowell, omas. Knowledge and Decisions. New York: Basic Books, 1980.

Spear, Steven J. e High-Velocity Edge: How Market Leaders Leverage Operational

Excellence to Beat the Competition. New York: McGraw Hill Education, 2009.

Srivastava, Shivam, Kartik Trehan, Dilip Wagle, and Jane Wang. “Developer

Velocity: How Software Excellence Fuels Business Performance.” McKinsey,

April 20, 2020. https://www.mckinsey.com/industries/technology-media-and-

telecommunications/our-insights/developer-velocity-how-software-

excellence-fuels-business-performance.

http://www.lean.org/shook/DisplayObject.cfm?o=1321
https://www.youtube.com/watch?v=MRa21icSIQk
https://www.youtube.com/watch?v=EwLBoRyXTOI
http://thefinanser.com/2011/09/banks-have-bigger-development-shops-than-microsoft.html/
http://slideshare.net/
http://www.slideshare.net/beamrider9/scaling-etsy-what-went-wrong-what-went-right
https://www.youtube.com/watch?v=eenrfm50mXw
http://cdn2.hubspot.net/hubfs/1958393/White_Papers/2015_State_of_the_Software_Supply_Chain_Report-.pdf?t=1466775053631
https://www.sonatype.com/resources/white-paper-state-of-software-supply-chain-report-2019
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance

Staats, Bradley, and David M. Upton. “Lean Knowledge Work.” Harvard Business

Review, October 2011. https://hbr.org/2011/10/lean-knowledge-work.

Strear, Chris. “Leadership Lessons Learned from Improving Flow in Hospital

Settings using eory of Constraints.” Presentation at DevOps Enterprise

Summit, Europe, 2021. https://videolibrary.doesvirtual.com/?

video=550704199.

Stehr, Nico, and Reiner Grundmann. Knowledge: Critical Concepts, vol. 3. London:

Routledge, 2005.

Sterling, Bruce. “Scenius, or Communal Genius.” Wired, June 16, 2008.

https://www.wired.com/2008/06/scenius-or-

comm/#:~:text=His%20actual%20de�nition%20is%3A%20%22Scenius,sceniu

s%2C%20you%20act%20like%20genius.

Stillman, Jessica. “Hack Days: Not Just for Facebookers.” Inc., February 3, 2012.

http://www.inc.com/jessica-stillman/hack-days-not-just-for-facebookers.html.

Sussman, Noahand and Laura Beth Denker. “Divide and Conquer.” Code as Craft

(blog). Etsy, April 20, 2011. https://codeascraft.com/2011/04/20/divide-and-

concur/.

Sussna, Jeff. ”From Design inking to DevOps and Back Again: Unifying Design

& Operations.” Posted by William Evans, June 5, 2015. Vimeo video, 21:19.

https://vimeo.com/129939230.

Takeuchi, Hirotaka, and Ikujiro Nonaka. “New Product Development Game.”

Harvard Business Review (January 1986): 137-146.

Taleb, Nicholas. Antifragile: ings at Gain from Disorder (Incerto). New York:

Random House, 2012.

Target. “All About Target.” A Bullseye View. Accessed June 9, 2016.

https://corporate.target.com.

Temple-Raston, Dina. “A ‘Worst Nightmare’ Cyberattack: e Untold Story of the

SolarWinds Hack,” NPR, April 16, 2021.

https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-

cyberattack-the-untold-story-of-the-solarwinds-hack.

omas, John and Ashish Kumar. “Welcome to the Google Engineering Tools

Blog.” Google Engineering Tools blog, posted May 3, 2011. http://google-

engtools.blogspot.com/2011/05/welcome-to-google-engineering-tools.html.

Townsend, Mark L. Review of e Phoenix Project: A Novel About IT, DevOps, and

Helping Your Business Win, by Gene Kim, Kevin Behr, and George Spafford.

Amazon review, March 2, 2013. http://uedata.amazon.com/gp/customer-

reviews/R1097DFODM12VD/ref=cm_cr_getr_d_rvw_ttl?

ie=UTF8&ASIN=B00VATFAMI.

Treynor, Ben. “Keys to SRE.” Presented at Usenix SREcon14, Santa Clara, CA, May

30, 2014. https://www.usenix.org/conference/srecon14/technical-

sessions/presentation/keys-sre.

https://hbr.org/2011/10/lean-knowledge-work
https://videolibrary.doesvirtual.com/?video=550704199
https://www.wired.com/2008/06/scenius-or-comm/#:~:text=His%20actual%20definition%20is%3A%20%22Scenius,scenius%2C%20you%20act%20like%20genius
http://www.inc.com/jessica-stillman/hack-days-not-just-for-facebookers.html
https://codeascraft.com/2011/04/20/divide-and-concur/
https://vimeo.com/129939230
https://corporate.target.com/
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
http://google-engtools.blogspot.com/2011/05/welcome-to-google-engineering-tools.html
http://uedata.amazon.com/gp/customer-reviews/R1097DFODM12VD/ref=cm_cr_getr_d_rvw_ttl?ie=UTF8&ASIN=B00VATFAMI
https://www.usenix.org/conference/srecon14/technical-sessions/presentation/keys-sre

Tucci, Linda. “Four Pillars of PayPal’s ‘Big Bang’ Agile Transformation.” TechTarget,

August 2014. http://searchcio.techtarget.com/feature/Four-pillars-of-PayPals-

big-bang-Agile-transformation.

Turnbull, James. e Art of Monitoring. Seattle, WA: Amazon Digital Services,

2016. Kindle.

Twitter Engineering. “Hack Week @ Twitter.” Twitter blog, January 25, 2012.

https://blog.twitter.com/2012/hack-week-twitter.

Van Den Elzen, Scott. Review of e Phoenix Project: A Novel About IT, DevOps, and

Helping Your Business Win, by Gene Kim, Kevin Behr, and George Spafford.

Amazon review, March 13, 2013. http://uedata.amazon.com/gp/customer-

reviews/R2K95XEH5OL3Q5/ref=cm_cr_getr_d_rvw_ttl?

ie=UTF8&ASIN=B00VATFAMI.

Van Leeuwen, Evelijn and Kris Buytaert. “DOES15—Evelijn Van Leeuwen and

Kris Buytaert—Turning Around the Containership.” Posted by DevOps

Enterprise Summit, December 21, 2015. YouTube video, 30:28.

https://www.youtube.com/watch?v=0GId4AMKvPc.

Van Kemande, Ron. “Nothing Beats Engineering Talent: e Agile Transformation

at ING.” Presented at the DevOps Enterprise Summit, London, UK, June 30–

July 1, 2016.

Vance, Ashlee. “Inside Operation InVersion, the Code Freeze that Saved LinkedIn.”

Bloomberg, April 11, 2013. http://www.bloomberg.com/news/articles/2013-

04-10/inside-operation-inversion-the-code-freeze-that-saved-linkedin.

Vance, Ashlee. “LinkedIn: A Story About Silicon Valley’s Possibly Unhealthy Need

for Speed.” Bloomberg, April 30, 2013.

http://www.bloomberg.com/articles/2013-04-29/linkedin-a-story-about-

silicon-valleys-possibly-unhealthy-need-for-speed.

Vault. “Nordstrom, Inc.” Company Pro�le. Accessed March 30, 2021.

http://www.vault.com/company-pro�les/retail/nordstrom,-inc/company-

overview.aspx.

Velasquez, Nicole Forsgren, Gene Kim, Nigel Kersten, and Jez Humble. 2014 State

of DevOps Report. Portland, OR: Puppet Labs, IT Revolution Press, and

oughtWorks, 2014. https://services.google.com/fh/�les/misc/state-of-

devops-2014.pdf.

Verizon Wireless. 2014 Data Breach Investigations Report. Verizon Enterprise

Solutions, 2014. https://dti.delaware.gov/pdfs/rp_Verizon-DBIR-

2014_en_xg.pdf.

Verizon Wireless. 2021 Data Breach Investigations Report. Verizon, 2021.

https://enterprise.verizon.com/resources/reports/2021-data-breach-

investigations-report.pdf.

“VPC Best Con�guration Practices.” Flux7 blog, January 23, 2014.

http://blog.�ux7.com/blogs/aws/vpc-best-con�guration-practices.

http://searchcio.techtarget.com/feature/Four-pillars-of-PayPals-big-bang-Agile-transformation
https://blog.twitter.com/2012/hack-week-twitter
http://uedata.amazon.com/gp/customer-reviews/R2K95XEH5OL3Q5/ref=cm_cr_getr_d_rvw_ttl?ie=UTF8&ASIN=B00VATFAMI
https://www.youtube.com/watch?v=0GId4AMKvPc
http://www.bloomberg.com/news/articles/2013-04-10/inside-operation-inversion-the-code-freeze-that-saved-linkedin
http://www.bloomberg.com/articles/2013-04-29/linkedin-a-story-about-silicon-valleys-possibly-unhealthy-need-for-speed
http://www.vault.com/company-profiles/retail/nordstrom,-inc/company-overview.aspx
https://services.google.com/fh/files/misc/state-of-devops-2014.pdf
https://dti.delaware.gov/pdfs/rp_Verizon-DBIR-2014_en_xg.pdf
https://enterprise.verizon.com/resources/reports/2021-data-breach-investigations-report.pdf
http://blog.flux7.com/blogs/aws/vpc-best-configuration-practices

Walsh, Mark. “Ad Firms Right Media, AdInterax Sell to Yahoo.” MediaPost, October

18, 2006. http://www.mediapost.com/publications/article/49779/ad-�rms-

right-media-adinterax-sell-to-yahoo.html.

Wang, Kendrick. “Etsy’s Culture Of Continuous Experimentation and A/B Testing

Spurs Mobile Innovation.” Apptimize blog, January 30, 2014.

http://apptimize.com/blog/2014/01/etsy-continuous-innovation-ab-testing/.

“Weekly Top 10: Your DevOps Flavor.” Electric Cloud, April 1, 2016.

http://electric-cloud.com/blog/2016/04/weekly-top-10-devops-�avor/.

West, David. “Water scrum-fall is-reality_of_agile_for_most.” Posted by harsoft to

slideshare.net, April 22, 2013. Slideshow.

http://www.slideshare.net/harsoft/water-scrumfall-isrealityofagileformost.

Westrum, Ron. “A Typology of Organisation Culture.” BMJ Quality & Safety 13, no.

2 (2004): ii22–ii27. doi:10.1136/qshc.2003.009522.

Westrum, Ron. “e Study of Information Flow: A Personal Journey.” Proceedings

of Safety Science 67 (August 2014): 58–63.

https://www.researchgate.net/publication/261186680_e_study_of_inform

ation_�ow_A_personal_journey.

“What Happens to Companies at Get Hacked? FTC Cases.” Posted by

SuicidalSnowman to Giant Bomb forum, July 2012.

http://www.giantbomb.com/forums/off-topic-31/what-happens-to-

companies-that-get-hacked-ftc-case-540466/.

“When will Google permit languages other than Python, C++, Java and Go to be

used for internal projects?” Quora forum. Accessed May 29, 2016.

https://www.quora.com/When-will-Google-permit-languages-other-than-

Python-C-Java-and-Go-to-be-used-for-internal-projects/answer/Neil-

Kandalgaonkar.

“Which programming languages does Google use internally?” Quora forum.

Accessed May 29, 2016. https://www.quora.com/Which-programming-

languages-does-Google-use-internally.

Wickett, James. “Attacking Pipelines—Security Meets Continuous Delivery.”

Posted by James Wickett to slideshare.net, June 11, 2014. Slideshow.

http://www.slideshare.net/wickett/attacking-pipelinessecurity-meets-

continuous-delivery.

Wiggins, Adams. “e Twelve-Factor App.” 12Factor, January 30, 2012.

http://12factor.net/.

Wikipedia. “Direct Marketing.” Wikipedia. Updated May 28, 2016.

https://en.wikipedia.org/wiki/Direct_marketing.

Wikipedia. “Imposter Syndrome.” Wikipedia. Updated November 17, 2020.

https://en.wikipedia.org/wiki/Impostor_syndrome#:~:text=Impostor%20synd

rome%20(also%20known%20as,exposed%20as%20a%20%22fraud%22.

http://www.mediapost.com/publications/article/49779/ad-firms-right-media-adinterax-sell-to-yahoo.html?edition=
http://apptimize.com/blog/2014/01/etsy-continuous-innovation-ab-testing/
http://electric-cloud.com/blog/2016/04/weekly-top-10-devops-flavor/
http://slideshare.net/
http://www.slideshare.net/harsoft/water-scrumfall-isrealityofagileformost
https://www.researchgate.net/publication/261186680_The_study_of_information_flow_A_personal_journey
http://www.giantbomb.com/forums/off-topic-31/what-happens-to-companies-that-get-hacked-ftc-case-540466/
https://www.quora.com/When-will-Google-permit-languages-other-than-Python-C-Java-and-Go-to-be-used-for-internal-projects/answer/Neil-Kandalgaonkar
https://www.quora.com/Which-programming-languages-does-Google-use-internally
http://slideshare.net/
http://www.slideshare.net/wickett/attacking-pipelinessecurity-meets-continuous-delivery
http://12factor.net/
https://en.wikipedia.org/wiki/Direct_marketing
https://en.wikipedia.org/wiki/Impostor_syndrome#:~:text=Impostor%20syndrome%20(also%20known%20as,exposed%20as%20a%20%22fraud%22

Wikipedia. “Kaizen.” Wikipedia. Updated May 12, 2016.

https://en.wikipedia.org/wiki/Kaizen.

Wikipedia. “Kolmogorov–Smirnov Test.” Wikipedia. Updated May 19, 2016.

http://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test.

Wikipedia. “Telemetry.” Wikipedia. Updated May 5, 2016.

https://en.wikipedia.org/wiki/Telemetry.

Willis, John. “Docker and the ree Ways of DevOps Part 1: e First Way—

Systems inking.” Docker blog, May 26, 2015.

https://blog.docker.com/2015/05/docker-three-ways-devops/.

Winslow, Michael, Tamara Ledbetter, Adam Zimman, John Esser, Tim Judge,

Carmen DeArdo. Change in a Successful Organization: Avoid Complacency by

Making a Case for Continuous Improvemen. Portland, OR: IT Revolution, 2020.

https://myresources.itrevolution.com/id006657108/Change-in-a-Successful-

Organization.

Wiseman, Ben. 2021 Work Trend Index: Annual Report: e Next Great Disruption Is

Hybrid Work—Are We Ready? Microsoft, March 22, 2021. https://ms-

worklab.azureedge.net/�les/reports/hybridWork/pdf/2021_Microsoft_WTI_

Report_March.pdf

Womack, Jim. Gemba Walks. Cambridge, MA: Lean Enterprise Institute, 2011).

Kindle.

Wong, Bruce, and Christos Kalantzis. “A State of Xen—Chaos Monkey &

Cassandra.” e Net�ix Tech Blog, October 2, 2014.

http://techblog.net�ix.com/2014/10/a-state-of-xen-chaos-monkey-

cassandra.html.

Wong, Eric. “Eric the Intern: e Origin of InGraphs.” LinkedIn Engineering blog,

June 30, 2011. http://engineering.linkedin.com/32/eric-intern-origin-

ingraphs.

Womack, James P., and Daniel T. Jones. Lean inking: Banish Waste and Create

Wealth in Your Corporation. New York: Free Press, 2010.

Zhao, Haiping. “HipHop for PHP: Move Fast.” Facebook, February 2, 2010.

https://www.facebook.com/notes/facebook-engineering/hiphop-for-php-

move-fast/280583813919.

Zia, Mossadeq, Gabriel Ramírez, and Noah Kunin. “Compliance Masonry: Building

a Risk Management Platform, Brick by Brick.” 18F blog, April 15, 2016.

https://18f.gsa.gov/2016/04/15/compliance-masonry-buildling-a-risk-

management-platform/.

https://en.wikipedia.org/wiki/Kaizen
http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Telemetry
https://blog.docker.com/2015/05/docker-three-ways-devops/
https://myresources.itrevolution.com/id006657108/Change-in-a-Successful-Organization?_ga=2.257997450.1033225937.1623701479-1037911749.1592589043
https://ms-worklab.azureedge.net/files/reports/hybridWork/pdf/2021_Microsoft_WTI_Report_March.pdf
http://techblog.netflix.com/2014/10/a-state-of-xen-chaos-monkey-cassandra.html
http://engineering.linkedin.com/32/eric-intern-origin-ingraphs
https://www.facebook.com/notes/facebook-engineering/hiphop-for-php-move-fast/280583813919
https://18f.gsa.gov/2016/04/15/compliance-masonry-buildling-a-risk-management-platform/

NOTES

Note from the Publisher

1. Kim, “State of DevOps: 2020 and Beyond.”

Preface

1. Branden Williams, personal corresponence with the authors, 2015.

2. Christopher Little, personal correspondence with Gene Kim, 2010.

Introduction

1. Goldratt, Beyond the Goal.

2. Immelt, “Let’s Finally End the Debate.”

3. “Weekly Top 10: Your DevOps Flavor,” Electric Cloud.

4. Goldratt, Beyond the Goal.

5. Spear, e High-Velocity Edge, Chapter 3.

6. Christopher Little, personal correspondence with Gene Kim, 2010.

7. Skinner, “Banks Have Bigger Development Shops than Microsoft.”

8. Stehr and Grundmann, Knowledge, 139.

9. Masli et al., “Senior Executive’s IT Management Responsibilities.”

10. “IDC Forecasts Worldwide IT Spending to Grow 6%,” Business Wire.

11. Kersten, IT Revolution, and PwC, 2015 State of DevOps Report.

12. Azzarello, Debruyne, and Mottura, “e Chemistry of Enthusiasm.”

13. Brooks, e Mythical Man-Month.

14. Kim et al., “Exploring the Uncharted Territory of Microservices.”

15. Kersten, IT Revolution, and PwC, 2015 State of DevOps Report.

16. Jenkins, “Velocity Culture”; Exner, “Transforming Software Development.”

17. Goldratt, Beyond the Goal.

18. JGFLL, review of e Phoenix Project; Townsend, review of e Phoenix Project;

Van Den Elzen, review of e Phoenix Project.

Part I Introduction

1. Beck, et al., “Twelve Principles of Agile Software.”

2. Rother, Toyota Kata, Part III.

Chapter 1

1. Martin and Osterling, Value Stream Mapping, Chapter 1.

2. Martin and Osterling, Value Stream Mapping, Chapter 3.

3. Martin and Osterling, Value Stream Mapping, Chapter 3.

4. Kersten, Project to Product.

5. Forsgren, Humble, and Kim, Accelerate 2018.

6. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

7. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

8. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

9. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

10. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

11. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

12. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

13. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

14. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

Chapter 2

1. Rubinstein, Meyer, and Evans, “Executive Control of Cognitive Processes in

Task Switching.”

2. DeGrandis, “DOES15—Dominica DeGrandis—e Shape of Uncertainty.”

3. Bahri, “Few Patients-In-Process and Less Safety Scheduling.”

4. Meeting between David J. Andersen and team at Motorola with Daniel S.

Vacanti, February 24, 2004; story retold at USC CSSE Research Review with

Barry Boehm in March 2004.

5. Womack and Jones, Lean inking. Chapter 1.

6. Ries, “Work in Small Batches.”

7. Goldratt, Beyond the Goal.

8. Goldratt, e Goal, “Five Focusing Steps.”

9. Shingo, A Study of the Toyota Production System.

10. Poppendieck and Poppendieck, Implementing Lean Software, 74.

11. Poppendieck and Poppendieck, Implementing Lean Software, Chapter 4.

12. Edwards, “DevOps Kaizen.”

13. Strear, “Leadership Lessons Learned From Improving Flow.”

14. Strear, “Leadership Lessons Learned From Improving Flow.”

15. Strear, “Leadership Lessons Learned From Improving Flow.”

Chapter 3

1. Perrow, Normal Accidents.

2. Dekker, e Field Guide to Understanding Human Error.

3. Spear, e High-Velocity Edge, Chapter 8.

4. Spear, e High-Velocity Edge, Chapter 8.

5. Senge, e Fifth Discipline, Chapter 5.

6. “NUMMI,” is American Life.

7. Hendrickson, “DOES15—Elisabeth Hendrickson—Its All About Feedback.”

8. Hendrickson, “DOES15—Elisabeth Hendrickson—Its All About Feedback.”

9. Spear, e High-Velocity Edge, Chapter 1.

10. Spear, e High-Velocity Edge, Chapter 4.

11. Ayers and Cohen, “Andon Cords in Development Teams.”

12. Ayers and Cohen, “Andon Cords in Development Teams.”

13. Ayers and Cohen, “Andon Cords in Development Teams.”

14. Jeff Gallimore, personal correspondence with the authors, 2021.

15. Sowell, Knowledge and Decisions, 222.

16. Sowell, Basic Economics.

17. Gary Gruver, personal correspondence with Gene Kim, 2014.

Chapter 4

1. Adler, “Time-and-Motion Regained.”

2. Dekker, e Field Guide to Understanding Human Error, Chapter 1.

3. Dekker, “Just Culture: Balancing Safety and Accountability.”

4. Westrum, “e Study of Information Flow.”

5. Westrum, “A Typology of Organisation Culture.”

6. Velasquez et al., 2014 State of DevOps Report.

7. Macri, “Morgue.”

8. Spear, e High-Velocity Edge, Chapter 1.

9. Senge, e Fifth Discipline, Chapter 1.

10. Rother, Toyota Kata, 12.

11. Mike Orzen, personal correspondence with Gene Kim, 2012.

12. “Paul O’Neill,” Forbes.

13. Spear, e High-Velocity Edge, Chapter 4.

14. Spear, e High-Velocity Edge, Chapter 4.

15. Spear, e High-Velocity Edge, Chapter 4.

16. Spear, e High-Velocity Edge, Chapter 4.

17. Taleb, Antifragile.

18. Womack, Gemba Walks, Kindle location 4113.

19. Rother, Toyota Kata, Part IV.

20. Rother, Toyota Kata, Conclusion.

21. Winslow et al., Change in a Successful Organization.

22. Gertner, e Idea Factory.

23. Kersten, Project to Product; Kersten, “Project to Product: From Stories to

Scenius.”

24. Brian Eno, as quoted in Sterling, “Scenius, or Communal Genius.”

25. Gertner, e Idea Factory.

26. Gertner, e Idea Factory.

Chapter 5

1. Rembetsy and McDonnell, “Continuously Deploying Culture.”

2. “Nordstrom, Inc.,” Vault (website).

3. Kissler, “DOES14—Courtney Kissler—Nordstrom.”

4. Gardner, “Barnes & Noble, Blockbuster, Borders.”

5. Kissler, “DOES14—Courtney Kissler—Nordstrom.”

6. Kissler, “DOES14—Courtney Kissler—Nordstrom” [Alterations to quote made

by Courtney Kissler via personal correspondence with Gene Kim, 2016.]

7. Kissler, “DOES14—Courtney Kissler—Nordstrom” [Alterations to quote made

by Courtney Kissler via personal correspondence with Gene Kim, 2016.]

8. Kissler, “DOES14—Courtney Kissler—Nordstrom” [Alterations to quote made

by Courtney Kissler via personal correspondence with Gene Kim, 2016.]

9. Kissler, “DOES14—Courtney Kissler—Nordstrom” [Alterations to quote made

by Courtney Kissler via personal correspondence with Gene Kim, 2016.]

10. Kissler, “DOES14—Courtney Kissler—Nordstrom” [Alterations to quote made

by Courtney Kissler via personal correspondence with Gene Kim, 2016.]

11. Mueller, “Business Model Driven Cloud Adoption.”

12. Unpublished calculation by Gene Kim after the 2014 DevOps Enterprise

Summit.

13. Kersten, IT Revolution, and PwC, 2015 State of DevOps Report.

14. Prugh, “DOES14: Scott Prugh, CSG.”

15. Rembetsy and McDonnell, “Continuously Deploying Culture.”

16. Golden, “What Gartner’s Bimodal IT Model Means to Enterprise CIOs.”

17. Furtado and Knausenberger, “e Air Force’s Digital Journey in 12 Parsecs or

Less.”

18. Furtado and Knausenberger, “e Air Force’s Digital Journey in 12 Parsecs or

Less.”

19. Furtado and Knausenberger, “e Air Force’s Digital Journey in 12 Parsecs or

Less.”

20. Furtado and Knausenberger, “e Air Force’s Digital Journey in 12 Parsecs or

Less.”

21. Furtado and Knausenberger, “e Air Force’s Digital Journey in 12 Parsecs or

Less.”

22. Furtado and Knausenberger, “e Air Force’s Digital Journey in 12 Parsecs or

Less.”

23. Furtado and Knausenberger, “e Air Force’s Digital Journey in 12 Parsecs or

Less.”

24. Golden, “What Gartner’s Bimodal IT Model Means to Enterprise CIOs.”

25. Golden, “What Gartner’s Bimodal IT Model Means to Enterprise CIOs.”

26. Kersten, IT Revolution, and PwC, 2015 State of DevOps Report.

27. Scott Prugh, personal correspondence with Gene Kim, 2014.

28. Moore and McKenna, Crossing the Chasm, 11.

29. Tucci, “Four Pillars of PayPal’s ‘Big Bang’ Agile Transformation.”

30. Fernandez and Spear, “Creating High Velocity Organizations.”

31. Van Kemande, “Nothing Beats Engineering Talent.”

32. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

33. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

34. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

35. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

36. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

37. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

38. Leibman and Clanton, “DevOps: Approaching Cruising Altitude.”

39. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

40. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

41. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

42. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

43. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

44. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

45. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

46. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

47. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

48. Conrad and Hyatt, “Saving the Economy from Ruin (with a Hyperscale PaaS).”

49. Buchanan, “e Wisdom of Peter Drucker from A to Z.”

Chapter 6

1. Kissler, “DOES14—Courtney Kissler—Nordstrom.”

2. Clanton and Ducy, interview of Courtney Kissler and Jason Josephy,

“Continuous Improvement at Nordstrom.”

3. Clanton and Ducy, interview of Courtney Kissler and Jason Josephy,

“Continuous Improvement at Nordstrom.”

4. Clanton and Ducy, interview of Courtney Kissler and Jason Josephy,

“Continuous Improvement at Nordstrom.”

5. Maskell, “What Does is Guy Do? Role of Value Stream Manager.”

6. Edwards, “DevOps Kaizen.”

7. Govindarajan and Trimble, e Other Side of Innovation.

8. Govindarajan and Trimble, e Other Side of Innovation, Part I.

9. Cagan, Inspired, 12

10. Cagan, Inspired, 12.

11. Vance, “LinkedIn.”

12. Clemm, “LinkedIn Started Back in 2003.”

13. Nielsen, “8 Years with LinkedIn.”

14. Clemm, “LinkedIn Started Back in 2003.”

15. Parikh, “From a Monolith to Microservices + REST.”

16. Clemm, “LinkedIn Started back in 2003.”

17. Vance, “LinkedIn.”

18. “How I Structured Engineering Teams at LinkedIn and AdMob for Success,”

First Round Review.

19. Vance, “Inside Operation InVersion.”

20. Vance, “LinkedIn.”

21. Clemm, “LinkedIn Started Back in 2003.”

22. “How I Structured Engineering Teams,” First Round Review.

23. Christopher Little, personal correspondence with Gene Kim, 2011.

24. Ryan Martens, personal correspondence with Gene Kim, 2013.

Chapter 7

1. Conway, “How Do Committees Invent?”

2. Conway, “How Do Committees Invent?”

3. Raymond, “Conway’s Law.”

4. Buhr, “Etsy Closes Up 86 Percent on First Day of Trading.”

5. Snyder, “Scaling Etsy.”

6. Snyder, “Scaling Etsy.”

7. Gallagher, “When ‘Clever’ Goes Wrong.”

8. Snyder, “Scaling Etsy.”

9. Snyder, “Scaling Etsy.”

10. Forsgren et al., Accelerate State of DevOps 2019.

11. Snyder, “Scaling Etsy.”

12. Snyder, “Surge 2011.”

13. Snyder, “Surge 2011.”

14. Snyder, “Surge 2011.”

15. McDonnell, “Continuously Deploying Culture.”

16. Fernandez and Spear, “Creating High Velocity Organizations.”

17. Adrian Cockcroft, personal correspondence with Gene Kim, 2014.

18. “A Conversation with Werner Vogels.”

19. Forsgren, Humble, and Kim, Accelerate State of DevOps 2018; Forsgren et al.,

Accelerate State of DevOps 2019..

20. Spear, e High-Velocity Edge, Chapter 8.

21. Rother, Toyota Kata, 250.

22. Mulkey, “DOES15—Jody Mulkey.”

23. Mulkey, “DOES15—Jody Mulkey.”

24. Canahuati, “Growing from the Few to the Many.”

25. Spear, e High-Velocity Edge, Chapter 1.

26. Prugh, “Continuous Delivery.”

27. Prugh, “Continuous Delivery.”

28. Prugh, “Continuous Delivery.”

29. Dweck, “Carol Dweck Revisits the ‘Growth Mindset.’”

30. Cox, “Disney DevOps.”

31. John Lauderbach, personal conversation with Gene Kim, 2001.

32. Mauro, “Adopting Microservices at Net�ix”; Wiggins, “e Twelve-Factor

App.”

33. Shoup, “Exploring the Uncharted Territory of Microservices.”

34. Humble, O’Reilly, and Molesky, Lean Enterprise, Part III.

35. Hastings, “Net�ix Culture.”

36. Dignan, “Little ings Add Up.”

37. Mickman and Clanton, “DOES15—Heather Mickman & Ross Clanton.”

38. Mickman and Clanton, “DOES15—Heather Mickman & Ross Clanton.”

39. Mickman and Clanton, “DOES15—Heather Mickman & Ross Clanton.”

40. Mickman and Clanton, “DOES15—Heather Mickman & Ross Clanton.”

41. Mickman and Clanton, “DOES15—Heather Mickman & Ross Clanton.”

42. Mickman and Clanton, “DOES15—Heather Mickman & Ross Clanton.”

43. Mickman and Clanton, “DOES15—Heather Mickman & Ross Clanton.”

44. Mickman and Clanton, “DOES15—Heather Mickman & Ross Clanton.”

Chapter 8

1. “Big Fish Celebrates 11th Consecutive Year of Record Growth,” Big Fish Games

(website).

2. Paul Farrall, personal correspondence with Gene Kim, January 2015.

3. Paul Farrall, personal correspondence with Gene Kim, 2014.

4. Paul Farrall, personal correspondence with Gene Kim, 2014.

5. Ernest Mueller, personal correspondence with Gene Kim, 2014.

6. Edwards, “DevOps Kaizen.”

7. Marsh, “Dianne Marsh ‘Introducing Change while Preserving Engineering

Velocity.’”

8. Cox, “Disney DevOps.”

9. Daniels, “Devopsdays Minneapolis 2015—Katherine Daniels—DevOps: e

Missing Pieces.”

10. Ernest Mueller, personal correspondence with Gene Kim, 2015.

11. Takeuchi and Nonaka, “New Product Development Game.”

12. Chapman and Eltridge. “On A Mission: Nationwide Building Society.”

13. Chapman and Eltridge. “On A Mission: Nationwide Building Society.”

14. Chapman and Eltridge. “On A Mission: Nationwide Building Society.”

15. Chapman and Eltridge. “On A Mission: Nationwide Building Society.”

16. Chapman and Eltridge. “On A Mission: Nationwide Building Society.”

17. Chapman and Eltridge. “On A Mission: Nationwide Building Society.”

18. Chapman and Eltridge. “On A Mission: Nationwide Building Society.”

Chapter 9

1. Campbell-Pretty, “DOES14—Em Campbell-Pretty—How a Business Exec Led

Agile, Lead, CI/CD.”

2. Campbell-Pretty, “DOES14—Em Campbell-Pretty—How a Business Exec Led

Agile, Lead, CI/CD.”

3. Campbell-Pretty, “DOES14—Em Campbell-Pretty—How a Business Exec Led

Agile, Lead, CI/CD.”

4. Campbell-Pretty, “DOES14—Em Campbell-Pretty—How a Business Exec Led

Agile, Lead, CI/CD.”

5. Campbell-Pretty, “DOES14—Em Campbell-Pretty—How a Business Exec Led

Agile, Lead, CI/CD.”

6. Campbell-Pretty, “DOES14—Em Campbell-Pretty—How a Business Exec Led

Agile, Lead, CI/CD.”

7. Campbell-Pretty, “DOES14—Em Campbell-Pretty—How a Business Exec Led

Agile, Lead, CI/CD.”

8. “Version Control History,” Plastic SCM (website).

9. Davis and Daniels, Effective DevOps, 37.

10. Velasquez et al., 2014 State of DevOps Report.

11. Sharwood, “Are Your Servers PETS or CATTLE?”

12. Chan, “OWASP AppSecUSA 2012.”

13. Fowler, “Trash Your Servers and Burn Your Code.”

14. Willis, “Docker and the ree Ways of DevOps Part 1.”

15. Forsgren et al., 2020 State of the Octoverse.

16. Holmes, ” How A Hotel Company Ran $30B of Revenue in Containers.”

17. Holmes, ” How A Hotel Company Ran $30B of Revenue in Containers.”

18. Holmes, ” How A Hotel Company Ran $30B of Revenue in Containers.”

19. Holmes, ” How A Hotel Company Ran $30B of Revenue in Containers.”

20. Holmes, ” How A Hotel Company Ran $30B of Revenue in Containers.”

21. Holmes, ” How A Hotel Company Ran $30B of Revenue in Containers.”

22. Holmes, ” How A Hotel Company Ran $30B of Revenue in Containers.”

Chapter 10

1. Gary Gruver, personal correspondence with Gene Kim, 2014.

2. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

3. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

4. “Imposter Syndrome,” Wikipedia.”

5. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

6. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

7. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

8. Potvin and Levenber, “Why Google Stores Billions of Lines of Codes in a Single

Repository.”

9. Messeri, “What Goes Wrong When ousands of Engineers Share the Same

Continuous Build?”

10. Messeri, “What Goes Wrong When ousands of Engineers Share the Same

Continuous Build?”

11. Potvin and Levenber, “Why Google Stores Billions of Lines of Codes in a Single

Repository.”

12. Potvin and Levenber, “Why Google Stores Billions of Lines of Codes in a Single

Repository”; Messeri, “What Goes Wrong When ousands of Engineers Share

the Same Continuous Build?”

13. Jez Humble and David Farley, personal correspondence with Gene Kim, 2012.

14. Humble and Farley, Continuous Delivery, 3.

15. Humble and Farley, Continuous Delivery, 188.

16. Humble and Farley, Continuous Delivery, 258.

17. Fowler, “Continuous Integration.”

18. Fowler, “Test Pyramid.”

19. Fowler, “Test Driven Development.”

20. Nagappan et al.,“Realizing Quality Improvement through Test Driven

Development.”

21. Hendrickson, “On the Care and Feeding of Feedback Cycles.”

22. “Decreasing False Positives in Automated Testing.”; Fowler, “Eradicating Non-

determinism in Tests.”

23. Gruver, “DOES14—Gary Gruver—Macy’s—Transforming Traditional

Enterprise Software Development Processes.”

24. Jones, “3 Ways to Get Test Automation Done Within Your Sprints.”

25. Shoup, “e Virtuous Cycle of Velocity.”

26. West, “Water scrum-fall is-reality_of_agile_for_most.”

27. Forsgren et al., Accelerate: State of DevOps 2019.

28. Forsgren, Humble, and Kim, Accelerate: State of DevOps 2018.

Chapter 11

1. Kim, “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team.”

2. Kim, “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team.”

3. Kim, “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team.”

4. Kim, “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team.”

5. Kim, “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team.”

6. Gruver and Mouser, Leading the Transformation, 60.

7. Gary Gruver, personal communication with the authors, 2016.

8. Kim, “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team.”

9. Kim, “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team.”

10. Kim, “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team.”

11. Kim, “e Amazing DevOps Transformation of the HP LaserJet Firmware

Team.”

12. Atwood, “Software Branching and Parallel Universes.”

13. Cunningham, “Ward Explains Debt Metaphor.”

14. Mueller, “2012: A Release Odyssey.”

15. “Bazaarvoice, Inc. Announces Its Financial Results,” Bazaar Voice (website).

16. Mueller, “DOES15—Ernest Mueller—DevOps Transformations At National

Instruments.”

17. Mueller, “DOES15—Ernest Mueller—DevOps Transformations At National

Instruments.”

18. Mueller, “DOES15—Ernest Mueller—DevOps Transformations At National

Instruments.”

19. Mueller, “DOES15—Ernest Mueller—DevOps Transformations At National

Instruments.”

20. Mueller, “DOES15—Ernest Mueller—DevOps Transformations At National

Instruments”

21. Kersten, IT Revolution, and PwC, 2015 State of DevOps Report.

22. Brown, et al., State of DevOps Report; Forsgren et al., State of DevOps Report

2017.

Chapter 12

1. Rossi, “Release Engineering and Push Karma.”

2. Paul, “Exclusive: A Behind-the-Scenes Look at Facebook Release Engineering.”

3. Rossi, “Release Engineering and Push Karma.”

4. Paul, “Exclusive: a Behind-the-Scenes Look at Facebook Release Engineering.”

5. Rossi, “Ship early and ship twice as often.”

6. Beck, “Slow Deployment Causes Meetings.”

7. Prugh, “DOES14: Scott Prugh, CSG—DevOps and Lean in Legacy

Environments.”

8. Prugh, “DOES14: Scott Prugh, CSG—DevOps and Lean in Legacy

Environments.”

9. Prugh, “DOES14: Scott Prugh, CSG—DevOps and Lean in Legacy

Environments.”

10. Prugh, “DOES14: Scott Prugh, CSG—DevOps and Lean in Legacy

Environments.”

11. Prugh, “DOES14: Scott Prugh, CSG—DevOps and Lean in Legacy

Environments.”

12. Prugh, “DOES14: Scott Prugh, CSG—DevOps and Lean in Legacy

Environments.”

13. Puppet Labs and IT Revolution Press, 2013 State of DevOps Report.

14. Prugh and Morrison, “DOES15—Scott Prugh & Erica Morrison—Conway &

Taylor Meet the Strangler (v2.0).”

15. Prugh and Morrison, “DOES15—Scott Prugh & Erica Morrison—Conway &

Taylor Meet the Strangler (v2.0).”

16. Prugh and Morrison, “DOES15—Scott Prugh & Erica Morrison—Conway &

Taylor Meet the Strangler (v2.0).”

17. Tim Tischler, personal conversation with Gene Kim, FlowCon 2013.

18. Puppet Labs and IT Revolution Press, 2013 State of DevOps Report.

19. Forsgren et al. Accelerate: State of DevOps 2019.

20. Dickerson, “Optimizing for Developer Happiness.”

21. Sussman and Denker, “Divide and Conquer.”

22. Sussman and Denker, “Divide and Conquer.”

23. Sussman and Denker, “Divide and Conquer.”

24. Sussman and Denker, “Divide and Conquer.”

25. Sussman and Denker, “Divide and Conquer.”

26. Kastner, “Quantum of Deployment.”

27. Fitz, “Continuous Deployment at IMVU.”

28. Fitz, “Continuous Deployment at IMVU”; Hrenko, “DOES15—Michael Hrenko

—DevOps Insured By Blue Shield of California.”

29. Humble and Farley, Continuous Delivery, 265.

30. Ries, e Lean Startup.

31. Bosworth, “Building and testing at Facebook”; “Etsy’s Feature Flagging,”

GitHub (website).

32. Allspaw, “Convincing Management.”

33. Rossi, “Release Engineering and Push Karma.”

34. Protalinski, “Facebook Passes 1.55B Monthly Active Asers.”

35. Protalinski, “Facebook Passes 1.55B Monthly Active Users.”

36. Letuchy, “Facebook Chat.”

37. Letuchy, “Facebook Chat.”

38. Letuchy, “Facebook Chat.”

39. Jez Humble, personal correspondence with Gene Kim, 2014.

40. Jez Humble, personal correspondence with Gene Kim, 2014.

41. Jez Humble, personal correspondence with Gene Kim, 2014.

42. Forsgren, Humble, and Kim, Accelerate State of DevOps 2018; Forsgren et al.,

Accelerate State of DevOps 2019.

43. Prugh and Morrison, “When Ops Swallows Dev.”

44. Prugh and Morrison, “When Ops Swallows Dev.”

45. Prugh and Morrison, “When Ops Swallows Dev.”

46. Prugh and Morrison, “When Ops Swallows Dev.”

47. Prugh and Morrison, “When Ops Swallows Dev.”

48. Prugh and Morrison, “When Ops Swallows Dev.”

Chapter 13

1. Humble, “What is Continuous Delivery?”

2. Kim et al., “Exploring the Uncharted Territory of Microservices.”

3. Kim et al., “Exploring the Uncharted Territory of Microservices.”

4. Kim et al., “Exploring the Uncharted Territory of Microservices.”

5. Shoup, “From Monolith to Microservices.”

6. Betz, Architecture and Patterns for IT Service Management, 300.

7. Shoup, “From Monolith to Micro-services.”

8. Shoup, “From Monolith to Micro-services.”

9. Shoup, “From Monolith to Micro-services.”

10. Vogels, “A Conversation with Werner Vogels.”

11. Vogels, “A Conversation with Werner Vogels.”

12. Vogels, “A Conversation with Werner Vogels.”

13. Vogels, “A Conversation with Werner Vogels.”

14. Jenkins, “Velocity Culture.”

15. Exner, “Transforming Software Development.”

16. Fowler, “Strangler Fig Application.”

17. Lublinsky, “Versioning in SOA.”

18. Hammant, “Introducing Branch by Abstraction.”

19. Fowler, “Strangler Fig Application.”

20. Huang, “Blackboard CEO Jay Bhatt on the Global Future of Edtech.”

21. Ashman, “DOES14—David Ashman—Blackboard Learn—Keep Your Head in

the Clouds.”

22. Ashman, “DOES14—David Ashman—Blackboard Learn—Keep Your Head in

the Clouds.”

23. Ashman, “DOES14—David Ashman—Blackboard Learn—Keep Your Head in

the Clouds.”

24. Ashman, “DOES14—David Ashman—Blackboard Learn—Keep Your Head in

the Clouds.”

25. Ashman, “DOES14—David Ashman—Blackboard Learn—Keep Your Head in

the Clouds.”

26. Forsgren et al., State of DevOps Report 2017.

27. Forsgren, Humble, and Kim, Accelerate: State of DevOps 2018; Forsgren et al.,

Accelerate State of DevOps 2019.

Chapter 14

1. Kim, Behr, and Spafford, e Visible Ops Handbook, Introduction.

2. Kim, Behr, and Spafford, e Visible Ops Handbook, Introduction.

3. Kim, Behr, and Spafford, e Visible Ops Handbook, Introduction.

4. “Telemetry,” Wikipedia.

5. Rembetsy and McDonnell, “Continuously Deploying Culture.”

6. Rembetsy and McDonnell, “Continuously Deploying Culture.”

7. John Allspaw, personal conversation with Gene Kim, 2014.

8. Malpass, “Measure Anything, Measure Everything.”

9. Kersten, IT Revolution, and PwC, 2015 State of DevOps Report.

10. Forsgren et al., Accelerate: State of DevOps 2019.

11. Turnbull, e Art of Monitoring, Introduction.

12. Cockcroft, “Monitorama.”

13. Prugh, “DOES14: Scott Prugh, CSG—DevOps and Lean in Legacy

Environments.”

14. Figureau, “e 10 Commandments of Logging.”

15. Dan North, personal correspondence with Gene Kim, 2016.

16. Chuvakin, “LogLogic/Chuvakin Log Checklist.”

17. Kim, Behr, and Spafford, e Visible Ops Handbook, Introduction.

18. North, “Ops and Operability.”

19. John Allspaw, personal correspondence with Gene Kim, 2011.

20. Agile Alliance, “Information Radiators.”

21. Ernest Mueller, personal correspondence with Gene Kim, 2014.

22. Gupta, “Visualizing LinkedIn’s Site Performance.”

23. Wong, “Eric the Intern.”

24. Wong, “Eric the Intern.”

25. Wong, “Eric the Intern.”

26. Ed Blankenship, personal correspondence with Gene Kim, 2016.

27. Burrows, “e Chubby Lock Service for Loosely-Coupled Distributed Systems.”

28. Lindsay, “Consul Service Discovery with Docker.”

29. Mulkey, “DOES15—Jody Mulkey—DevOps in the Enterprise: A

Transformation Journey.”

30. Forsgren et al., Accelerate: State of DevOps 2019.

Chapter 15

1. Net�ix Letter to Shareholders.

2. Roy Rapoport, personal correspondence with Gene Kim, 2014.

3. Hodge and Austin, “A Survey of Outlier Detection Methodologies.”

4. Roy Rapoport, personal correspondence with Gene Kim, 2014.

5. Roy Rapoport, personal correspondence with Gene Kim, 2014.

6. Roy Rapoport, personal correspondence with Gene Kim, 2014.

7. Boubez, “Simple Math for Anomaly Detection.”

8. Limoncelli, “Stop Monitoring Whether or Not Your Service Is Up!.”

9. Boubez, “Simple Math for Anomaly Detection.”

10. Dr. Nicole Forsgren, personal correspondence with Gene Kim, 2015.

11. Jacobson, Yuan, and Joshi, “Scryer: Net�ix’s Predictive Auto Scaling Engine.”

12. Jacobson, Yuan, and Joshi, “Scryer: Net�ix’s Predictive Auto Scaling Engine.”

13. Jacobson, Yuan, and Joshi, “Scryer: Net�ix’s Predictive Auto Scaling Engine.”

14. Chandola, Banerjee, and Kumar, “Anomaly Detection: A Survey.”

15. Tarun Reddy, personal interview with Gene Kim, Rally headquarters, Boulder,

CO, 2014.

16. “Kolmogorov-Smirnov Test,” Wikipedia.

17. Boubez, “Simple Math for Anomaly Detection.”

18. Boubez, “Simple Math for Anomaly Detection.”

Chapter 16

1. Walsh, “Ad Firms Right Media.”

2. Nick Galbreath, personal conversation with Gene, 2013.

3. Galbreath, “Continuous Deployment.”

4. Galbreath, “Continuous Deployment.”

5. Galbreath, “Continuous Deployment.”

6. Canahuati, “Growing from the Few to the Many.”

7. Lightbody, “From Inception to Acquisition.”

8. Chakrabarti, “Common Ops Mistakes.”

9. Sussna, “From Design inking to DevOps and Back Again.”

10. Anonymous, personal conversation with Gene Kim, 2005.

11. Limoncelli, “SRE@Google.”

12. Treynor, “Keys to SRE.”

13. Limoncelli, “SRE@Google.”

14. Limoncelli, “SRE@Google.”

15. Limoncelli, “SRE@Google.”

16. Tom Limoncelli, personal correspondence with Gene Kim, 2016.

17. Tom Limoncelli, personal correspondence with Gene Kim, 2016.

Chapter 17

1. Humble, O’Reilly and Molesky, Lean Enterprise, Part II.

2. Intuit, Inc., “2012 Annual Report.”

3. Cook, “Leadership in an Agile Age.”

4. Cook, “Leadership in an Agile Age.”

5. Cook, “Leadership in an Agile Age.”

6. “Direct Marketing,” Wikipedia.

7. “Fighting Poverty With Actual Evidence: Full Transcript,” Freakonomics

(blog).

8. Kohavi, Crook, and Longbotham, “Online Experimentation at Microsoft.”

9. Kohavi, Crook, and Longbotham, “Online Experimentation at Microsoft.”

10. Jez Humble, personal correspondence with Gene Kim, 2015.

11. Wang, “Etsy’s Culture Of Continuous Experimentation.”

12. O’Reilly, “How to Implement Hypothesis-Driven Development.”

13. Kim, “Organizational Learning and Competitiveness.”

14. Kim, “Organizational Learning and Competitiveness.”

15. Kim, “Organizational Learning and Competitiveness.”

16. Kim, “Organizational Learning and Competitiveness.”

17. Kim, “Organizational Learning and Competitiveness.”

18. Kim, “Organizational Learning and Competitiveness.”

19. Kim, “Organizational Learning and Competitiveness.”

Chapter 18

1. Chacon, “GitHub Flow.”

2. Douglas, “Deploying at GitHub.”

3. Allspaw, “Counterfactual inking, Rules, and the Knight Capital Accident.”

4. Allspaw, “Counterfactual inking, Rules, and the Knight Capital Accident.”

5. Staats and Upton, “Lean Knowledge Work.”

6. Forsgren et al., Accelerate State of DevOps 2019.

7. Forsgren et al., Accelerate State of DevOps 2019.

8. Velasquez et al., 2014 State of DevOps Report.

9. Randy Shoup, personal interview with Gene Kim, 2015.

10. Özil, “Ask a programmer.”

11. Cornago, Yadav, and Otto, “From 6-Eye Principle to Release at Scale - adidas

Digital Tech 2021.”

12. Cornago, Yadav, and Otto, “From 6-Eye Principle to Release at Scale - adidas

Digital Tech 2021.”

13. Cornago, Yadav, and Otto, “From 6-Eye Principle to Release at Scale - adidas

Digital Tech 2021.”

14. Cornago, Yadav, and Otto, “From 6-Eye Principle to Release at Scale - adidas

Digital Tech 2021.”

15. Cornago, Yadav, and Otto, “From 6-Eye Principle to Release at Scale - adidas

Digital Tech 2021.”

16. Cornago, Yadav, and Otto, “From 6-Eye Principle to Release at Scale - adidas

Digital Tech 2021.”

17. Cornago, Yadav, and Otto, “From 6-Eye Principle to Release at Scale - adidas

Digital Tech 2021.”

18. Cornago, Yadav, and Otto, “From 6-Eye Principle to Release at Scale - adidas

Digital Tech 2021.”

19. Cornago, Yadav, and Otto, “From 6-Eye Principle to Release at Scale - adidas

Digital Tech 2021.”

20. Özil, “Ask a programmer to review 10 lines of code.”.

21. Messeri, “What Goes Wrong When ousands of Engineers Share the Same

Continuous Build?”

22. omas and Kumar, “Welcome to the Google Engineering Tools Blog.”

23. Kumar, “Development at the Speed and Scale of Google.”

24. Randy Shoup, personal correspondence with Gene Kim, 2014.

25. Atwood, “Pair Programming vs. Code Reviews.”

26. Atwood, “Pair Programming vs. Code Reviews.”

27. “Pair Programming,” ALICE Wiki page.

28. “Pair Programming,” ALICE Wiki page.

29. Hendrickson, “DOES15—Elisabeth Hendrickson—Its All About Feedback.”

30. Hendrickson, “DOES15—Elisabeth Hendrickson—Its All About Feedback.”

31. Hendrickson, “DOES15—Elisabeth Hendrickson—Its All About Feedback.”

32. Hendrickson, “DOES15—Elisabeth Hendrickson—Its All About Feedback.”

33. Hendrickson, “DOES15—Elisabeth Hendrickson—Its All About Feedback.”

34. Ryan Tomayko, personal correspondence with Gene Kim, 2014.

35. Ryan Tomayko, personal correspondence with Gene Kim, 2014.

36. Ryan Tomayko, personal correspondence with Gene Kim, 2014.

37. Ryan Tomayko, personal correspondence with Gene Kim, 2014.

38. Ryan Tomayko, personal correspondence with Gene Kim, 2014.

39. Cockcroft, Ducy, and Clanton, “Adrian Cockcroft of Battery Ventures.”

40. Pal, “DOES15—Tapabrata Pal—Banking on Innovation & DevOps.”

41. Cox, “Disney DevOps.”

42. Clanton and Mickman, “DOES14—Ross Clanton and Heather Mickman—

DevOps at Target.”

43. Clanton and Mickman, “DOES14—Ross Clanton and Heather Mickman—

DevOps at Target.”

44. Clanton and Mickman, “DOES14—Ross Clanton and Heather Mickman—

DevOps at Target.”

45. Clanton and Mickman, “DOES14—Ross Clanton and Heather Mickman—

DevOps at Target.”

46. Clanton and Mickman, “DOES14—Ross Clanton and Heather Mickman—

DevOps at Target.”

47. John Allspaw and Jez Humble, personal correspondence with Gene Kim,

2014.

Chapter 19

1. Spear, e High-Velocity Edge, Chapter 1.

2. Spear, e High-Velocity Edge, Chapter 1.

3. Pepitone, “Amazon EC2 Outage Downs Reddit, Quora.”

4. Morgan, “A Rare Peek into the Massive Scale of AWS.”

5. Cockcroft, Hicks, and Orzell, “Lessons Net�ix Learned from the AWS Outage.”

6. Cockcroft, Hicks, and Orzell, “Lessons Net�ix Learned from the AWS Outage.”

7. Cockcroft, Hicks, and Orzell, “Lessons Net�ix Learned from the AWS Outage.”

8. Dekker, “Just Culture,” 152.

9. Dekker, “DevOpsDays Brisbane 2014—Sidney Decker—System Failure,

Human Error: Who’s to Blame?”

10. Allspaw, “Post-Mortems, Sans Finger-Pointing.”

11. Allspaw, “Blameless PostMortems and a Just Culture.”

12. Malpass, “DevOpsDays Minneapolis 2014—Ian Malpass, Fallible Humans.”

13. Milstein, “Post-Mortems at HubSpot: What I Learned from 250 Whys.”

14. Randy Shoup, personal correspondence with Gene Kim, 2014.

15. Google, “Post-Mortem for February 24, 2010 Outage”; Amazon Web Services,

“Summary of the Amazon DynamoDB Service Disruption and Related Impacts

in the US-East Region.”

16. Macri, “Morgue.”

17. Macri, “Morgue.”

18. Forsgren, Humble, and Kim, Accelerate: State of DevOps 2018.

19. Edmondson, “Strategies for Learning from Failure.”

20. Spear, e High-Velocity Edge, Chapter 4.

21. Spear, e High-Velocity Edge, Chapter 4.

22. Spear, e High-Velocity Edge, Chapter 3.

23. Roberto, Bohmer, and Edmondson, “Facing Ambiguous reats.”

24. Roberto, Bohmer, and Edmondson, “Facing Ambiguous reats.”

25. Roberto, Bohmer, and Edmondson, “Facing Ambiguous reats.”

26. Roy Rapoport, personal correspondence with Gene Kim, 2012.

27. Roy Rapoport, personal correspondence with Gene Kim, 2012.

28. Roy Rapoport, personal correspondence with Gene Kim, 2012.

29. Nygard, Release It!, Part I.

30. Barr, “EC2 Maintenance Update.”

31. Wong and Kalantzis, “A State of Xen—Chaos Monkey & Cassandra.”

32. Wong and Kalantzis, “A State of Xen—Chaos Monkey & Cassandra.”

33. Wong and Kalantzis, “A State of Xen—Chaos Monkey & Cassandra.”

34. Roy Rapoport, personal correspondence with Gene Kim, 2015.

35. Adrian Cockcroft, personal correspondence with Gene Kim, 2012.

36. Robbins, “GameDay.”

37. Robbins et al., “Resilience Engineering.”

38. Robbins et al., “Resilience Engineering.”

39. Robbins et al., “Resilience Engineering.”

40. Robbins et al., “Resilience Engineering.”

41. Robbins et al., “Resilience Engineering.”

42. Krishman, “‘Learning Continuously From Failures’ at Google.”

43. Krishnan, “Weathering the Unexpected.”

44. Krishnan, “Weathering the Unexpected.”

45. Morrison, “How We Turned Our Company’s Worst Outage into a Powerful

Learning Opportunity.”

46. Widely attributed to Peter Senge.

Chapter 20

1. Newland, “ChatOps at GitHub.”

2. Newland, “ChatOps at GitHub.”

3. Mark Imbriaco, personal correspondence with Gene Kim, 2015.

4. Newland, “ChatOps at GitHub.”

5. Newland, “ChatOps at GitHub.”

6. Newland, “ChatOps at GitHub.”

7. Newland, “ChatOps at GitHub.”

8. Osterweil, “Software Processes are Software Too.”

9. Arbuckle, “What Is ArchOps: Chef Executive Roundtable.”

10. Arbuckle, “What Is ArchOps: Chef Executive Roundtable.”

11. Arbuckle, “What Is ArchOps: Chef Executive Roundtable.”

12. Metz, “Google Is 2 Billion Lines of Code—and It’s All in One Place.”

13. Metz, “Google Is 2 Billion Lines of Code—and It’s All in One Place.”

14. Metz, “Google Is 2 Billion Lines of Code—and It’s All in One Place.”

15. Messeri, “What Goes Wrong When ousands of Engineers Share the Same

Continuous Build?”

16. Randy Shoup, personal correspondence with Gene Kim, 2014.

17. Limoncelli, “Yes, You Can Really Work from HEAD.”

18. Forsgren et al., Accelerate: State of DevOps 2019.

19. Forsgren et al., Accelerate: State of DevOps 2019.

20. Mell and Grance, e NIST De�nition of Cloud Computing, 6.

21. Forsgren et al., Accelerate: State of DevOps 2019.

22. Loura, Jacques, and Garcia, “DOES15—Ralph Loura, Olivier Jacques, & Rafael

Garcia—Breaking Traditional IT Paradigms.”

23. Rembetsy and McDonnell, “Continuously Deploying Culture.”

24. Rembetsy and McDonnell, “Continuously Deploying Culture.”

25. McKinley, “Why MongoDB Never Worked Out at Etsy.”

26. Cundiff, Geinert, and Rettig, “Crowdsourcing Technology Governance.”

27. Cundiff, Geinert, and Rettig, “Crowdsourcing Technology Governance.”

28. Cundiff, Geinert, and Rettig, “Crowdsourcing Technology Governance.”

29. Cundiff, Geinert, and Rettig, “Crowdsourcing Technology Governance.”

30. Cundiff, Geinert, and Rettig, “Crowdsourcing Technology Governance.”

31. Cundiff, Geinert, and Rettig, “Crowdsourcing Technology Governance.”

Chapter 21

1. “Kaizen,” Wikipedia.

2. Spear, e High-Velocity Edge, Chapter 8.

3. Spear, e High-Velocity Edge, Chapter 8.

4. Mickman and Clanton, “(Re)building an Engineering Culture.”

5. Ravi Pandey, personal correspondence with Gene Kim, 2015.

6. Mickman and Clanton, “(Re)building an Engineering Culture.”

7. Pomeranz, “Queue Inversion Week.”

8. Spear, e High-Velocity Edge, Chapter 3.

9. Stillman, “Hack Days.”

10. Associated Press, “Number of Active Users at Facebook over the Years.”

11. Zhao, “HipHop for PHP.”

12. Metz, “How ree Guys Rebuilt the Foundation of Facebook.”

13. Metz, “How ree Guys Rebuilt the Foundation of Facebook.”

14. Steve Farley, personal correspondence with Gene Kim, January 5, 2016.

15. Gaekwad, “Agile 2013 Talk.”

16. O’Donnell, “DOES14—Glenn O’Donnell—Forrester—Modern Services

Demand a DevOps Culture Beyond Apps.”

17. Smart et al., Sooner Safer Happier, 314.

18. Nationwide, 2014 Annual Report.

19. Steve Farley, personal correspondence with Gene Kim, 2016.

20. Pal, “DOES15—Tapabrata Pal—Banking on Innovation & DevOps.”

21. Pal, “DOES15—Tapabrata Pal—Banking on Innovation & DevOps.”

22. Tapabrata Pal, personal correspondence with Gene Kim, 2015.

23. “All About Target,” Target (website).

24. Mickman and Clanton, “(Re)building an Engineering Culture.”

25. Van Leeuwen and Buytaert, “DOES15—Evelijn Van Leeuwen and Kris

Buytaert—Turning Around the Containership.”

26. Mickman and Clanton, “(Re)building an Engineering Culture.”

27. “DevOps Culture: How to Transform.”

28. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

29. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

30. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

31. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

32. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

33. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

34. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

35. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

36. Bland, “Fixits, or I Am the Walrus.”

37. Bland, “Fixits, or I Am the Walrus.”

38. Bland, “Fixits, or I Am the Walrus.”

Chapter 22

1. Wickett, “Attacking Pipelines–Security Meets Continuous Delivery.”

2. Wickett, “Attacking Pipelines—Security Meets Continuous Delivery.”

3. Pal, “DOES15—Tapabrata Pal—Banking on Innovation & DevOps.”

4. Justin Arbuckle, personal interview with Gene Kim, 2015.

5. Justin Arbuckle, personal interview with Gene Kim, 2015.

6. Antani, “IBM Innovate DevOps Keynote.”

7. Galbreath, “DevOpsSec: Applying DevOps Principles to Security, DevOpsDays

Austin 2012.”

8. Galbreath, “DevOpsSec: Applying DevOps Principles to Security, DevOpsDays

Austin 2012.”

9. “OWASP Cheat Sheet Series,” OWASP (website).

10. Collins, Smolen, and Matatall, “Putting to your Robots to Work V1.1.”

11. “What Happens to Companies at Get Hacked? FTC Cases,” Giant Bomb

forum.

12. “What Happens to Companies at Get Hacked? FTC Cases,” Giant Bomb

forum.

13. Collins, Smolen, and Matatall, “Putting to your Robots to Work V1.1.”

14. Twitter Engineering, “Hack Week @ Twitter.”

15. Twitter Engineering, “Hack Week @ Twitter.”

16. Corman and Willis, “Immutable Awesomeness—Josh Corman and John Willis

at DevOps Enterprise Summit 2015.”

17. Forsgren et al., 2020 State of the Octoverse.

18. Forsgren et al., 2020 State of the Octoverse.

19. Verison, 2014 Data Breach Investigations Report.

20. Verizon, 2021 Data Breach Investigations Report, 20.

21. Sonatype, 2019 State of the Software Supply Chain Report.

22. Sonatype, 2019 State of the Software Supply Chain Report.

23. Sonatype, 2019 State of the Software Supply Chain Report.

24. “Jeremy Long: e (Application)Patching Manifesto.”

25. “Jeremy Long: e (Application)Patching Manifesto.”

26. Sonatype, 2019 State of the Software Supply Chain Report.

27. Sonatype, 2019 State of the Software Supply Chain Report.

28. Sonatype, 2019 State of the Software Supply Chain Report.

29. Sonatype, 2019 State of the Software Supply Chain Report.

30. Sonatype, 2020 State of the Software Supply Chain Report.

31. Sonatype, 2020 State of the Software Supply Chain Report.

32. Geer and Corman, “Almost Too Big to Fail.”

33. Forsgren et al., 2020 State of the Octoverse.

34. Temple-Raston, “A ‘Worst Nightmare’ Cyberattack.”

35. Naraine, “Twilio, HashiCorp Among Codecov Supply Chain Hack Victims.”

36. Kash, “New Details Released on Proposed 2016 IT Spending.”

37. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

38. Bland, “DOES15—Mike Bland—Pain Is Over, If You Want It.”

39. Zia, Ramírez, and Kunin, “Compliance Masonry.”

40. Marcus Sachs, personal correspondence with Gene Kim, 2010.

41. “VPC Best Con�guration Practices,” Flux7 blog.

42. Galbreath, “Fraud Engineering, from Merchant Risk Council Annual Meeting

2012.”

43. Galbreath, “DevOpsSec.”

44. Galbreath, “DevOpsSec.”

45. Galbreath, “DevOpsSec.”

46. Galbreath, “DevOpsSec.”

47. Galbreath, “DevOpsSec.”

48. Galbreath, “DevOpsSec.”

49. Claudius, “Attacking Cloud Services with Source Code.”

50. Johnson, et. al., “How Fannie Mae Uses Agility to Support Homeowners and

Renters.”

51. Johnson, et. al., “How Fannie Mae Uses Agility to Support Homeowners and

Renters.”

52. Johnson, et. al., “How Fannie Mae Uses Agility to Support Homeowners and

Renters.”

53. Johnson, et. al., “How Fannie Mae Uses Agility to Support Homeowners and

Renters.”

54. Johnson, et. al., “How Fannie Mae Uses Agility to Support Homeowners and

Renters.”

55. Johnson, et. al., “How Fannie Mae Uses Agility to Support Homeowners and

Renters.”

56. Kimberly Johnson, personal correspondence with the authors, 2021.

Chapter 23

1. Axelos, ITIL Service Transition, 48.

2. Axelos, ITIL Service Transition, 48 and 68.

3. Matthew and Mangot, “DOES14—Reena Mathew and Dave Mangot—

Salesforce.”

4. Mangot and Rajan, “Agile.2013.effecting.a.dev

ops.transformation.at.salesforce.”

5. Mangot and Rajan, “Agile.2013.effecting.a.dev

ops.transformation.at.salesforce.”

6. Mangot and Rajan, “Agile.2013.effecting.a.dev

ops.transformation.at.salesforce.”

7. Matthew and Mangot, “DOES14—Reena Mathew and Dave Mangot—

Salesforce.”

8. Matthew and Mangot, “DOES14—Reena Mathew and Dave Mangot—

Salesforce.”

9. Matthew and Mangot, “DOES14—Reena Mathew and Dave Mangot—

Salesforce.”

10. Matthew and Mangot, “DOES14—Reena Mathew and Dave Mangot—

Salesforce.”

11. Matthew and Mangot, “DOES14—Reena Mathew and Dave Mangot—

Salesforce.”

12. Bill Massie, personal correspondence with Gene Kim, 2014.

13. “Glossary,” PCI Security Standards Council website.

14. PCI Security Standards Council, Payment Card Industry (PCI) Data Security

Stands.

15. Bill Massie, personal correspondence with Gene Kim, 2014.

16. Bill Massie, personal correspondence with Gene Kim, 2014.

17. Bill Massie, personal correspondence with Gene Kim, 2014.

18. Basu, Goyal, and Hansen, “Biz & Tech Partnership Towards 10 'No Fear

Releases' Per Day.”

19. Basu, Goyal, and Hansen, “Biz & Tech Partnership Towards 10 'No Fear

Releases' Per Day.”

20. Basu, Goyal, and Hansen, “Biz & Tech Partnership Towards 10 'No Fear

Releases' Per Day.”

21. Basu, Goyal, and Hansen, “Biz & Tech Partnership Towards 10 'No Fear

Releases' Per Day.”

22. Basu, Goyal, and Hansen, “Biz & Tech Partnership Towards 10 'No Fear

Releases' Per Day.”

23. Basu, Goyal, and Hansen, “Biz & Tech Partnership Towards 10 'No Fear

Releases' Per Day.”

24. Shinn, “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.”

25. Shinn, “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.”

26. Shinn, “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.”

27. Shinn, “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.”

28. Shinn, “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.”

29. Shinn, “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.”

30. Shinn, “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.”

31. Shinn, “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.”

32. Shinn, “DOES15—Bill Shinn—Prove it! e Last Mile for DevOps in

Regulated Organizations.”

33. DeLuccia, Gallimore, Kim, and Miller, DevOps Audit Defense Toolkit.

34. Mary Smith (a pseudonym), personal correspondence with Gene Kim, 2013.

35. Mary Smith (a pseudonym), personal correspondence with Gene Kim, 2013

Conclusion

1. Robbins, “Hacking Culture at VelocityConf.”

Aerword

1. Forsgren et al., 2020 State of the Octoverse.

2. Wiseman, 2021 Work Trend Index: Annual Report.

3. Forsgren et al., “e SPACE of Developer Productivity.”

Appendix

1. Ries, e Lean Startup.

2. Beck et al., “Twelve Principles of Agile Software.”

3. Humble and Farley, Continuous Delivery.

4. Fitz, “Continuous Deployment at IMVU.”

5. Rother, Toyota Kata, Introduction.

6. Rother, Toyota Kata, Introduction.

7. Ries, e Lean Startup.

8. Kim, Behr, and Spafford, e Phoenix Project, 365.

9. Besnard and Hollnagel, Some Myths about Industrial Safety, 3.

10. Besnard and Hollnagel, Some Myths about Industrial Safety, 4.

11. Besnard and Hollnagel, Some Myths about Industrial Safety, 6.

12. Besnard and Hollnagel, Some Myths about Industrial Safety, 8.

13. Besnard and Hollnagel, Some Myths about Industrial Safety, 9.

14. Besnard and Hollnagel, Some Myths about Industrial Safety, 11.

15. Shook, “Five Missing Pieces in Your Standardized Work (Part 3 of 3).”

16. “Post Event Retrospective—Part 1,” Rally Blogs.

17. Macri, “Morgue.”

18. Cockcroft, Hicks, and Orzell, “Lessons Net�ix Learned.”

19. Cockcroft, Hicks, and Orzell, “Lessons Net�ix Learned.”

20. Rachitsky, “7 Keys to a Successful Public Health Dashboard.”

Index

Note: Figures are indicated with f; footnotes are indicated

with n; tables are indicated with t.

SYMBOLS

%C/A percent complete and accurate), 11, 85f, 95

NUMBERS

2/4 outage, 318–320

18F team, 369–371

A

A/B testing

conclusions on, 280

feature planning and, 278

feature testing and, 276–277

feature toggles and, 196–197

history of, 275

need for, 273

our release and, 277–278

practical guide to, 276

Accelerate: e Science of Lean and DevOps, xln, 14, 219

acceptance stage, 152f, 153

acceptance test-driven development (ATDD), 159

acceptance tests, 36, 155–156

accountability, as cultural pillar, 76

Adams, Keith, 338

Adidas, 286–287

Agile

DevOps as continuation of, xxv

Infrastructure Movement, 5–6, 410

Manifesto, 4–5, 410

Agile Software Development with Scrum, 122n

Aisen Seiki Global, 52

Alcoa, 50, 313

alert fatigue, 247

Algra, Ingrid, 343n

Allspaw, John, xxiii, 5, 6, 197, 234, 283, 284, 298, 308, 319, 360, 385n, 410

Amazon

architecture transformation at, 210, 212–213

continuous delivery at, 200–201

DevOps myths and, xxiv–xxv

market-oriented teams at, 102

“master of disaster” at, 316, 317, 399

post-mortem, 311n

service-oriented architecture (SOA) at, 109–110

two-pizza teams at, 110, 111

Amazon Auto Scaling (AAS), 251–252

Amazon Reboot of 2014, Great, 315–316

Amazon Web Services (AWS)

CloudWatch, 391

outage, 305–306, 315

security solutions architect at, 389

ambiguous threats, 313–314

American Airlines

brown�eld transformation, 68

case study, 15–18, 74–77

new vocabulary at, 74–77t

anchoring bias, 388

Anderson, David J., 22

Andon button, 38n

Andon cord

description of, 37–39

Excella, 39–41f

for low-risk releases, 181

work stoppage and, 416–417f

anomaly detection

advanced, 255–257

anomaly detection (continued)

de�ned, 253

Kolmogorov-Smirnov test, 254, 255, 256f, 257

smoothing for, 253–254

Antani, Snehal, 354

antifragility, 52

APIs

cleanly de�ned, 214

enablement, 112–114

loosely coupled architecture and, 209

microservice-based architecture driven by, 388

self-service, 230

versioned, 214

application logging telemetry, 231–233

application performance monitors, 235n

application-based release patterns

dark launching, 190, 197–199

de�ned, 190

feature toggles, 190, 195–197

Arbuckle, Justin, 324, 354

Architectural Review Board (ARB), 333

architecture

Amazon, 212–213

Blackboard Learn, 215–217f

conclusions on, 218

downward spiral in, 208–209

eBay, 207–208

loosely coupled, 26–27, 209, 217

monoliths versus microservices, 210–212

overly tight, 26–27

service-oriented, 109, 210

strangler �g application pattern and, 70, 208, 213–217, 218

Architecture and Patterns for IT, 208

Art of Monitoring, e, 228, 230f

Ashman, David, 215, 216, 217f

ATM cash machines, 392

Atwood, Jeff, 170, 171, 293

Audit Defense Toolkit, DevOps, 391

auditors and compliance officers

ATM cash machines and, 392

PCI compliance at Etsy, 385–387

proving compliance, 389–391

tension between IT and, 389

Austin, Jim, 245

automated testing

Andon cord and, 163–165

categories of tests, 155–156

conclusions on, 166

constraints and, 26

deployment pipeline infrastructure, 151–154

essential components of, 165–166

fast and reproducible tests, 166

at Google, 148–151

green build and, 154, 163, 166

ideal testing pyramid, 157f–158

need for, 147–148

non-functional requirements and, 162–163, 328

observability and, 147

performance testing environment, 161–162

reducing reliance on manual tests, 160–161

research supporting, 165–166

running tests in parallel, 158f–159

test-driven development (TDD), 159, 161, 327

automation, DevOps and, xxvi

Ayers, Zack, 39, 41f

B

bad apple theory, 307

Baker, Bill, 141

banks, as IT companies, xxxv

batch sizes, reducing, 9, 22–24f, 409

Bazaarvoice, 173–175, 176

Beck, Kent, 159, 178

Beedle, Mike, 122n

Behr, Kevin, xlii, 225, 233n, 415f

Bell Labs, 54–55

Besnard, Denis, 416

Betz, Charles, 208

Beyond e Phoenix Project, 57

Big Fish Games, 115–117

big-bang approach, 73

bimodal IT, 71, 72

Blackboard Learn, 215–217f

blameless post-mortems

CSG case study, 318–320

de�ned, 308

inviting Ops engineers to, 117, 123–124

for organizational learning, xxxix, 48–49

publishing reports of, 311–312

sample agenda, 418–419

scheduling of, 308–310

Bland, Mike, 148, 149, 344, 345, 370

Blank, Steve, 411

Blankenship, Ed, 240

blitz, improvement, 335, 336

blue-green deployment pattern

description of, 190, 191f–192

for point-of-sale system, 193

Bohmer, Richard M. J., 313

Booch, Grady, 6n

Bosu, Biswanath, 388

bottlenecks

DevOps and, 405–406

generalists and, 106t

handoffs, queues, and, 414

Boubez, Tou�c, 249, 250f, 251f, 255, 256

bounded contexts, 109

Bouwman, Jan-Joost, 343n

Brakeman, 359, 362f–363

branches, feature, 170

branching by abstraction, 214n

branching strategies, 167, 170–171

Brittain, Mike, 241f, 262f

Brook, Frederick, xli

Brooke’s Law, 286

brown�eld projects

case study, 69–71

de�ned, 67

green�eld projects versus, 66–69

technical debt and, 67

Building Blocks, Blackboard Learn, 215–217f

Building the Future: Big Teaming for Audacious Innovation, 312

bureaucratic organizations, 42, 47, 48t

bureaucratic processes, cutting, 42–43, 296–297, 299

Burgess, Mark, 6n

burnout, decreased, xl, 15, 175

business relationship manager, 116

Buytaert, Kris, 343n

C

Cagan, Marty, 90

Campbell-Pretty, Em, 135–136

Canahuati, Pedro, 105, 263

canary release pattern, 190, 194f–195

canary release test, 177n

Capital One

biz and tech partnership at, 387–389

case study, 342–343, 387–389

Got Goo? program, 296

internal conferences, 342–343

cardholder data breaches, 364, 371

cardholder data environment (CDE), 385–386

case studies

Adidas, 286–287

Amazon, 212–213

American Airlines, 15–18, 74–77

ATM cash machines, 392

Bazaarvoice, 173–175, 176

Bell Labs, 54–55

Blackboard Learn, 215–217f

Capital One, 342–343, 387–389

CSG International, 181–183, 201–206, 318–320

Dixons Retail, 193

Etsy, 186–188, 332, 373–375, 385–387

Excella, 39–41f

Facebook, 198–199

Fannie Mae, 376–378

Federal Government agencies, 369–371

Google, 269–271, 290–291

hospital system, 29–32

hotel company, 143–144

Kessel Run refueling system, 66–69

LinkedIn, 91–93, 237–238

Nationwide Building Society, 124–127

Nationwide Insurance, 342

Net�ix, 251–253

Pivotal Labs, 293–294

Salesforce.com, 383–384

Target, 112–114, 333–334, 342, 343

tax collection agency for UK, 77–80

Twitter, 360–363

Yahoo! Answers, 278–280

Chacon, Scott, 281, 282f

http://salesforce.com/

Chakrabarti, Arup, 263

Change, John Shook’s Model of, 205

change advisory board (CAB), 380, 382

change approval processes

case studies, 383–384, 385–387, 387–389

dangers of, 283–284

at Etsy, 385–387

normal changes, 380, 381–382

at Salesforce.com, 383–384

security and compliance in, 379–380

standard changes, 379–381, 383–384

three categories of changes, 379–380

urgent changes, 380

change control failure, 283

change freezes, 292

Chaos Gorilla, 420

Chaos Kong, 420

Chaos Monkey, 52, 55, 306–307, 315

Chapman, Brent, 347

Chapman, Janet, 124, 125, 126f

chat rooms

announcing changes with, 288

drawbacks of, 94–95

Hubot at GitHub, 321–323

organizational knowledge and, 321–322

shared goals and, 94

as watercooler, 322

Chuvakin, Anton A., 232

Clanton, Ross, 74, 75f, 76, 77t, 297, 335, 336, 343

Claudius, Jonathan, 375

Clemm, Josh, 91–93

cloud computing, �ve characteristics of, 330–331

cloud native, 306

Cloud System Administration, e Practice of, 325

http://salesforce.com/

Cloud.gov, 370, 371

cluster immune system, 190, 195n

coaching kata, 53

Cockcroft, Adrian, xxxit, 102n, 231, 296

code

infrastructure as, 6n

libraries, 356

maintainability, 326

repositories, 355–357

signing, 359–360

Code Climate, 359

code commits

automated tests on, 160, 166

daily, 172

gated commits, 172

Google, 150, 290

Pivotal Labs, 294

security and, 357

strangler �g application pattern, 215–217f

code reviews. See also change approval processes

ATM systems and, 392

change reviews versus, 289n

de�ned, 288

e-mail pass around, 290

forms of, 289–290

Google, 290–291

guidelines for, 288–289

learning-based culture and, 339

“over the shoulder,” 290

pair programming, 289, 292–294

Pivotal Labs, 293–294

requesting, 282

separation of duty and, 184, 384–385, 386

size of change and, 289

http://cloud.gov/

tool-assisted, 290

unauthorized access and, 375, 376

Codecov security breach, 368–369

Cohen, Joshua, 39, 41f

Collins, Justin, 360, 361

Columbia space shuttle, 313

commit stage, 152f, 153

Common Vulnerabilities and Exposures (CVE), 365

communities of practice, 343–345

compliance officers and auditors

ATM cash machines and, 392

Payment Card Industry Data Security Standards (PCI DSS), 385

PCI compliance at Etsy, 385–387

proving compliance, 389–391

separation of duty and, 379, 384–387

tension between IT and, 389

complicated-subsystem teams, 112

conferences

internal, 342–343

sharing experiences from DevOps, 341–342

Conformity Monkey, 420

Conrad, Ben, 78

constraint identi�cation, 25–27

Constraints, eory of, 4, 412–413

Consul, 242n

containers, 143–144, 152, 153n

contextual inquiry, 264

continual learning and experimentation, 3, 45–56

continuous delivery. See also deployment process; low-risk releases, enabling

continuous deployment versus, 199–201

de�ned, 133, 200

elite performance and, 201

infrastructure monitoring and, 243

low-risk releases and, 199–201

Continuous Delivery: Reliable Software Releases rough Build, Test, Deployment

Automation, xxiv, 151, 193, 199, 219

Continuous Delivery Movement, 6, 410–411

continuous integration (CI) and testing

de�ned, 36, 151n

deployment pipeline infrastructure and, 151–154

continuous integration practices

Andon cord and, 163–165

at Bazaarvoice, 173–175, 176

catching errors early, 157–163

reliable automated validation test suite, 154–156

three capabilities required for, 154

trunk-based development, 167–176

convergence of DevOps, 409–412

Conway, Melvin, 97

Conway’s Law

conclusions about, 114

de�ned, 61, 97–98

at Etsy, 98–100, 108

organizational archetypes and, 100–101

Target case study and, 112–114

team boundaries in accordance with, 108

two-pizza team and, 110–111

Cook, Richard, 58, 319

Cook, Scott, 274

core con�ict in IT operations, xxxii–xxxiii, 412f–413

Corman, Josh, 353, 363, 368, 412

Cornago, Fernando, 286

costs of IT-related de�ciencies, xxxvi–xxxvii

COTS software, 417–418

counterfactual thinking, 283n, 310

COVID-19 pandemic

call centers during, 126–127

remote work and, 108n

UK’s �nancial support package, 77–80

Cox, Jason, 107, 119–120, 296

crowdsourcing technology governance, 333–334

CSG International

blameless post-mortem, 318–320

brown�eld transformation, 68

case study, 181–183, 201–206, 318–320

daily deployments at, 181–183

generalists, 106–107

organizational transformation, 201–206

culture, organizational

high-trust, xxxix, 45, 48, 150

importance of, 46

just culture, 47, 307–308

learning-based, 48–49, 339

safety culture, 46–49

three pillars of, 75–76

three types of, 47, 48t

culture of causality, 225, 233n

Cundiff, Dan, 333

Cunningham, Ward, xxxii, 171

customer acquisition funnels, 240, 273, 275, 278

customers, two types of, 43

D

daily work, improvement of, 49–50

daily work of development

at Big Fish Games, 115–117

conclusions on, 127–128

embedded Ops engineers in, 116, 119–120

Ops liaisons in, 116, 117, 120–121

shared services in, 117–118

team rituals in, 117, 121–124

dark launch

de�ned, 190, 197–198

Facebook Chat, 198–199

dashboard

Adidas, 287

creating a simple, 237n

daily work and, 234

Etsy, 227

public health, 421

Data Breach Investigation Report (DBIR), 364

database changes, dealing with, 192

database syntax error, 374

Davenport, Shawn, 295n

Debois, Patrick, xxiii, 5, 6, 405–406, 410

DEBUG level, 232

dedicated release engineer, 116

defects, as waste, 28

DeGrandis, Dominica, 22, 58

Dekker, Sidney, 34, 47, 58, 307, 347, 395

(Delicate) Art of Bureaucracy, e, 299

Deming, W. Edwards, 38, 54

demonstrations, compliance by, 354

dependency scanning, 359

deploy code button, 186

Deployinator console, Etsy, 187–188f

deployment lead time, 8–11f, 409

deployment pipeline foundations

Andon cord and, 163–165

containers, 143–144, 152, 153n

de�ned, 6, 151, 152f

de�nition of “done,” 144–145

Enterprise Data Warehouse, 135–137

goal of deployment pipeline, 153

infrastructure, 151–154

on-demand creation of test environments, 137–138

rebuilding instead of repairing infrastructure, 141–143

single repository of truth, 139–141, 150, 324–327

deployment pipeline protection

ATMs and production telemetry, 392

auditors and, 389–391

Capital One, 387–389

change advisory board (CAB) and, 380, 381, 382

change approval processes and, 379–380

Etsy, 385–387

for normal changes, 380, 381–382

separation of duty, 379, 384–387

for standard changes, 379–381, 383–384

deployment process

Andon cord and, 181

automating, 179–181

continuous deployment, 199–201

CSG International, 181–183, 201–206

decouple deployments from releases, 189–199

Dixons Retail, 193

Etsy, 186–188

Facebook, 177–179

release versus, 189

deployment process (continued)

self-service deployments, 184–188

smoke testing deployments, 180, 187

deploys per day per developer, xxxviii, xxxxixf–xl

destructive testing, 383–384

Dev team rituals, 121–124

Dev tests, 36

developer productivity

DevOps practices and, xlif

measuring, 401–403

shared services for, 117–119

development, daily work of

at Big Fish Games, 115–117

conclusions on, 127–128

embedded Ops engineers in, 116, 119–120

Ops liaisons in, 116, 117, 120–121

shared services in, 117–118

team rituals in, 117, 121–124

development, hypothesis-driven

at Intuit, 273–275

need for, 273, 280

development, test-driven (TDD). See also automated testing

building incrementally with, 161

de�ned, 159

shared libraries and, 327

study on, 159n

development, trunk-based

adopting practices of, 172

at Bazaarvoice, 173–175, 176

bene�ts of, 175

conclusions on, 175–176

gated commits and, 172

for HP’s LaserJet Firmware division, 168–170

need for, 167, 171

DevOps

breaking downward spiral with, xxxv–xxxvii

business value of, xxxvii–xxxix

convergence of, 409–412

core con�ict in IT operations and, xxxii–xxxiii, 412f-413

developer productivity and, xlif–xlii

downward spiral in IT and, xxxiii–xxxvii, 413t–414t

history of, 3–6

myths about, xxiv–xxv

outcomes created by, xxviii, xxix

principles underpinning, 12–14

DevOps Days. See DevOpsDays

DevOps Enterprise Summit, xxxix, 341–342, 343

DevOps journeys. See case studies

DevOpsDays, xxiii, xxiv, 6, 341, 343n, 353, 355, 410

Dickerson, Chad, 99

Dignan, Larry, 110, 111

direct response marketing, 275

Disaster Recovery Program (DiRT), Google’s, 317

Disney, 107, 119–120, 296

Dixons Retail, 193

Doctor Monkey, 420

Dojo, DevOps, 335–336

Dojos, Getting Started With, 58

“done,” modifying de�nition of, 144–145, 172

DORA, State of DevOps Reports from, 5, 14, 57, 103, 140, 165, 166, 175, 185, 201,

217, 227, 243, 285, 312, 326, 331, 343

downward spiral in IT

description of, xxxiii–xxxvii, 413t–414t

DevOps for breaking, xxxvii–xxxix

Drucker, Peter, 75, 80

Dunbar, Robin, 111n

Dunbar’s number, 111n

Dweck, Carol, 107

dynamic analysis, 354

E

early adopters

de�ned, 72f, 73

�nding, 73–74

eBay, 90, 207–208

economic costs of IT-related de�ciencies, xxxvi–xxxviii

Edmondson, Amy C., 312, 313, 347

Edwards, Damon, 10f, 28, 118

Eli Lilly, 312

Eltridge, Patrick, 124, 125, 126f, 127

email pass around code review, 290

emergency change advisory board (ECAB), 380

employee burnout, lower rates of, xl, 175

enabling teams, 112

Encasement Strategy, 70

Eno, Brian, 54, 55

Enterprise Data Warehouse, 135–137

envelope game, simulation of, 23, 24f

environment-based release patterns

blue-green deployments, 190, 191f–192, 193

canary releases, 190, 194f–195

cluster immune systems, 190, 195

de�ned, 190

ERROR level, 232

ethics of DevOps, xxxvii–xxxix

Etsy

blameless post-mortems, 310, 311, 419

brown�eld transformation, 68–69

case studies, 186–188, 332, 373–375, 385–387

cluster immune system, 195n

continuous delivery at, 201

Conway’s Law and, 98–100, 108

designated Ops liaison at, 120–121

DevOps myths and, xxiv–xxv

DevOps transformation at, 226–227

experimentation, 277–278

functional orientation, 101n, 104

LAMP stack, 226

learning-based culture, 308

Morgue tool, 311–312

organizational learning, 49

PCI compliance at, 385–387

PHP run-time warning, 262f

retrospective meetings, 310, 311, 419

self-service deployment, 186–188

separation of duty, 385–387

standardizing technology stack at, 332

StatsD metric library, 234, 235f

transformation projects, 63

Evans, Eric J., 109

Evans, Jason, 338

event router, 229, 230f

Excella, Andon cord at, 39–41f

Expanding Pockets of Greatness: Spreading DevOps Horizontally in Your Organization,

129

experimentation, rapid

A/B testing, 273, 275–278

customer acquisition funnel and, 240, 273, 275, 278

at Etsy, 277–278

at Intuit, 273–275

need for, 273

at TurboTax, 274

at Yahoo! Answers, 278–280

exploratory testing, 36

Explore It!: Reduce Risk and Increase Con�dence with Exploratory Testing, 36, 219

extra features, 28

extra processes, 28

F

Facebook

canary release pattern, 194f–195

case study, 198–199

code deployment, 177–179

continuous delivery, 201

experimentation, 279

feedback, 105

Gatekeeper, 196n, 199

hackathon, 338

Facebook Chat, dark launch, 198–199

fail fasts, 316n

failure parties, 312

failures

blameless post-mortem at CSG, 318–320

calculated risk-taking and, 314–315

game days to rehearse, 316–318

no fear of, 55

publishing post-mortem reports, 311–312

rede�ning, 314–315

rehearsing and injecting, 315–316

retrospective meetings after, 308–310

weak failure signals, 313–314

fallbacks, 316n

Fannie Mae, 376–378

Farley, David, 6, 151, 152f, 156, 158f, 193, 199, 214, 410

Farley, Steve, 339, 342

Farr, Will, 295n

Farrall, Paul, 115–116

fast and reproducible tests, 166

FATAL level, 232

Fearless Organization, e, 347

feature branches, 170

feature �ags. See feature toggles

feature freezes, 175

feature toggles, 195–197, 277

features

extra, 28

planning, 278

testing, 276–277, 279

user excitement and, 241f

Federal Government agencies, 369–371

feedback. See also e Second Way (principles of feedback)

Andon cord and, 37–41

customer observation, 264–265

cycle times, 37f

fast and constant, 10, 13–14, 33

optimizing for downstream work centers, 43–44

quality control closer to the source, 42–43

pager rotation duties, 263–264

principles of, 3, 13–14, 33

production telemetry and, 261–262

safe deployment of code and, 259–261

safety within complex systems, 33–34

seeing problems as they occur, 35–36, 244

self-management by developers, 265–271

stakeholder, 36

swarming, 37–41

types and cycle times, 36–37f

user, 36, 37f

Fernandez, Roberto, 73, 100

Fifth Discipline, e, 35, 49

First Way, e. See e First Way (principles of �ow)

Fitz, Tim, 6, 192n, 199, 411

Five Dysfunctions of a Team: A Leadership Fable, 347

�x forward, 262

�xed mindset, 107

�xits, 345

Flickr, 197–198, 278, 360

�ow, principles of, 3. See also e First Way (principles of �ow)

�ow metrics, 11–12

focusing steps, �ve, 26, 32

following work downstream, 264–265

Forsgren, Nicole, xxxix–xl, 5, 14, 140, 228f, 363, 401–403, 404

Fowler, Martin, 156, 157, 213, 214, 220, 306n

fraud, de�ned, 373

Fryman, James, 295n

full-stack engineer, 106, 386

functional-oriented organizations

de�ned, 100

DevOps outcomes in, 103–104

market orientation versus, 100–101, 103f

problems of, 101–102

funding services and products, 107–108

Furtado, Adam, 69, 70

G

Gaekwad, Karthik, 339

Galbreath, Nick, 259–261, 355, 373–375

Gall’s Law, 70

Gallimore, Jeff, 41

game days, 52, 316–318

Ganglia, 226, 229

gated commits, 172

Gatekeeper, Facebook’s, 196n, 199

Gauntlt security tool, 353, 357

Gaussian distribution, 247f, 249, 253

GE Capital, 324, 354

Geer, Dan, 368

Geinert, Levi, 333

General Electric, CEO of, xxxi–xxxii

General Motors manufacturing plant, 35, 38, 45

generalists, 105–107

generative organizations, 47–48t, 57

Gertner, Jon, 54, 55

GitHub

functional orientation, 101n, 104

Hubot, 321–323

Octoverse Report, 57, 368, 401

peer review, 281–283

pull request processes, 295–296

vulnerability timeline, 368

GitHub Flow, 282

e Goal: A Process of Ongoing Improvement, xlii, xliii, 30, 406

goals

global, 19, 21

improvement, 88

Goldratt, Eliyahu M., xxxiii, xlii, 25, 26, 32, 406

Goldratt’s eory of Constraint, 25–26, 32

Google

architecture, 209f–210

automated testing, 148–151

case study, 269–271, 290–291

code reviews, 290–291

continuous delivery, 200–201

DevOps myths and, xxiv–xxv

disaster recovery program, 317–318

grouplets, 344, 345

launch and hand-off readiness review, 269–271

retrospective documents, 311

service-oriented architectures (SOA), 109–110

shared source code repository, 300, 324–326

Testing on the Toilet newsletter, 149n, 344

Web Server team, 148–151

Google Cloud Datastore, 209f, 210

Got Goo? program, 296

Gothelf, Jeff, 411

Govindarajan, Vijay, 86, 87

Goyal, Rakesh, 387, 388

Grafana, 79, 234, 254, 255

Gramm-Leach-Bailey Act, 389

Graphite, 226, 234, 235f, 236, 254, 255, 322, 374f

Gray, Jim, 212

green build, 154, 163, 166

green�eld vs. brown�eld services, 66–69

grouplets, 344, 345

growth mindset, 107

Gruver, Gary, 43, 148, 160, 168, 169, 170

guardrails, 79

Gupta, Prachi, 237, 238

H

Haber, Eben, 5

hackathon

de�ned, 337n

Facebook, 338

Hamilton, James, 306n

Hammant, Paul, 214n

Hammond, Paul, xxiii, 5, 6, 360, 410

hand back mechanism, 268–269

hand-off readiness review (HRR), 269, 270, 271f

handoffs, 20, 24–25, 414–415

hardships and waste, 27–29

healthcare organizations

generative cultures and, 47–48t

HIPAA requirements, 390–391

hospital case study, 29–32

helplessness, learned, xxxvi

Hendrickson, Elizabeth, 36, 160, 219, 293–294, 300

heroics, 10, 28–29, 170

High-Velocity Edge, e, xxxv

HIPAA, 390–391

HipHop virtual machine project (HHVM), 338

history

A/B testing, 275

DevOps, 3–6

software delivery, xxx–xxxit

HMRC tax collection agency, 77–80

Hodge, Victoria J., 245

holdouts, identifying, 74

Hollnagel, Erik, 416

Holmes, Dwayne, 143, 144

hospital system case study, 29–32

HP LaserJet, 69

HP’s LaserJet Firmware division, 168–170, 176

HSBC bank, xxxvn

Hubot, at GitHub, 321–323

Humble, Jez, xxii–xxiii, xl, 6, 151, 152f, 156, 158f, 191f, 199, 200, 207, 219, 273,

277, 284, 404–405, 406, 410

Hyatt, Matt, 78, 79, 80

hybrid schedules, 108n

hypothesis-driven development

at Intuit, 273–275

need for, 273, 280

I

Idea Factory: Bell Labs and the Great Age of American Innovation, e, 54

ideal testing pyramid, 157f–158

Imbriaco, Mark, 322

Immelt, Jeffrey, xxxi–xxxii

immersive learning opportunities, 16, 18

immutable infrastructure, 142

immutable services, 214

imposter syndrome, 148n, 310

improvement blitz, 335, 336

improvement goals, 88

improvement kata, 6

improvement of daily work, 49–50

INFO level, 232

information radiators, 236, 237, 241

information security. See also deployment pipeline protection

18F team, 369–371

bad paths, 358

Brakeman, 359, 362f–363

change approval processes, 379–380

code signing, 359–360

data breaches, 364, 368–369, 371

defect tracking, 355

dependency scanning, 359

deployment pipeline and, 357, 375–376

DevOps and, 353

dynamic analysis, 354

early-stage product demonstrations, 354

Etsy, 373–375, 385–387

Fannie Mae, 376–378

Gauntlt security tool, 353, 357

happy path, 358

Open Web Application Security Project (OWASP), 359n, 360

OWASP Dependency Check, 368n

OWASP ZAP, 358f, 359

Payment Card Industry Data Security Standards (PCI DSS), 385

post-mortems and, 355

preventive security controls, 355–357

production telemetry and, 371–373

Rugged DevOps, 353

sad and bad paths, 358

separation of duty, 379, 384–387

shared source code repositories and, 355–357

shifting security left, 376–378

silo, 353

software supply chain and, 363–369

source code integrity and code signing, 359–360

SQL injection attacks, 373, 374f

static analysis, 358f–359

Twitter case study, 360–363

Infosec. See information security

Infosec team, 83

infrastructure

centralized telemetry, 227–231

changes, 383–384

as code, 6n

deployment pipeline, 151–154

immutable, 142

metrics, 242–243

rebuilding instead of repairing, 141–143

ING technology organization, 74

innovators and early adopters

de�ned, 72f–73

�nding, 73–74

integration tests, 156

Intuit, 273–275

IT operations

core con�ict in, xxxii–xxxiii, 412f–413

developer productivity, xlif–xlii

DevOps and, xxvi

downward spiral in, xxxv–xxxix, 413t-414t

impact of DevOps on, xxxvii–xxxix

ITIL, xxvii, 139, 263n, 285, 286, 379, 380n

ITIL CMBD, 242n

J

Jacob, Adam, 6n

Jacobson, Daniel, 252f, 254f

Janitor Monkey, 420

Java

automation, 161

Bazaarvoice, 173

dependency scanning, 359

EAR and WAR �les, 152

LinkedIn, 91

Maven Central, 364

ORM, 99n

JavaScript

application logging, 231n

client software level, 239

CSG, 318

eBay, 207n

Facebook, 199

libraries, 326

NPM, 364

open-source dependencies, 363

StatsD, 234

Jenkins, 152, 153, 180, 187, 205, 322, 358f, 377

JIRA, 355, 377, 381, 382, 386

Johnson, Kimberly, 376, 377–378

Jones, Angie, 161

Jones, Daniel T., 23

Joshi, Neeraj, 252f, 254f

just culture, 47, 307–308

Just Culture, 347

K

kaizen blitz, 49, 335, 336

Kalantzis, Christos, 315–316

Kanban: Successful Evolutionary Change for Your Technology Business, 22

kanban boards

example, 20f–21

Ops work on, 124

shared goals and, 94

Toyota Production System, 4

Kandogan, Eser, 5

Kanies, Luke, xxiii, 6n

Kastner, Erik, 187, 188f

Kelly, Mervin, 54, 55

Kersten, Mik, 12, 54

Kessel Run mid-air refueling system, 69–71

Kim, Gene, xxi–xxii, xl, xlii, 13f, 47n, 54, 57, 58, 225, 233n, 265, 284, 295n, 300,

353n, 364, 385n, 403–404, 406, 415f

Kissler, Courtney, 63, 64, 65, 66, 81–82, 83

Knight Capital failure, 283

Kohavi, Ron, 276, 277

Kolmogorov-Smirnov test, 254, 255, 256f, 257

Krishnan, Kripa, 317–318

Kumar, Ashish, 291f

L

laggards (skeptics), 72f, 73

LAMP stack

DevOps myth and, xxvi

Etsy, 226

large batch sizes

merges of, 170–171

small versus, 9, 22–24f, 409

Latency Monkey, 420

latent defects, 317

Lauderbach, John, 108n

launch guidance, 266–267

launch readiness review (LRR), 269, 270, 271f

Lead Architecture Review Board (LARB), 296, 297

lead time

de�ned, 409

focus on, 8, 18

Lean Movement and, 409

of minutes, 10–11f

process time versus, 9f

queue size and, 22, 415f

of three months, 10f

leaders

role of, 52–54

vocabulary for, 76–77t

Lean Enterprise: How High Performance Organizations Innovate at Scale, 278

Lean Manufacturing, xxx, 7, 8, 9

Lean Movement

description of, 3, 409

missing element in, 6

Lean Startup, e, 411

Lean UX movement, 411

LeanKit, 381

learned helplessness, xxxvi

learning-based culture

ASREDS learning loop, 340, 341f

communities of practice, 343–345

conclusions on, 346

DevOps conferences, 341–342

Etsy, 49

grouplets, 344, 345

importance of, 46

improvement blitz, 335, 336

internal conferences, 342–343

just culture, 47, 307–308

rituals to pay down technical debt, 336–339

Teaching ursday, 339

thirty-day challenge at Target, 335–336

safety culture, 46–49

trust and, xli, 45, 48, 150

Leibman, Maya, 15, 16, 17, 75f, 77t

Lencioni, Patrick, 347

Lesiecki, Nick, 344

Letuchy, Eugene, 198, 199

Levenberg, Josh, 149, 300

liaisons, Ops

assigning, 117, 120–121

purpose of, 115–117

team rituals and, 121–124

two types of, 116

libraries, shared, 326, 327

Lightbody, Patrick, 263

limiting work in progress (WIP), 7, 21–22

Limoncelli, Tom, 248, 270, 271, 325–326

LinkedIn

case study, 91–93, 237–238

former monolithic architecture, 210

Operation Inversion, 91–93

self-service metrics, 237–238

Little, Christopher, xxxv, xxvi, 94

logging infrastructure, 231n

logging telemetry, 231–233

logs

centralized, 229

in monitoring framework, 230f–231

Lonestar Application Security Conference, 353

Long, Jeremy, 365

long-lived private branches, 170

loosely coupled architecture, 26–27, 209, 217

Love, Paul, 353n

low-risk releases, architecture for

at Amazon, 212–213

at Blackboard Learn, 215–217f

conclusion on, 218

downward spiral and, 208–209

at eBay, 207–208

loosely coupled architecture, 26–27, 209, 217

monoliths versus microservices, 210–212

service-oriented architecture, 109, 210

strangler �g application pattern and, 70, 208, 213–217, 218

low-risk releases, enabling

Andon cord and, 181

application-based release patterns, 190, 195–199

automating deployment process, 179–181

conclusion on, 206

continuous delivery and, 199–201

at CSG International, 181–183, 201–206

dark launching, 197–199

environment-based release patterns, 190, 191–195

at Etsy, 186–188, 201

at Facebook, 177–179, 201

feature toggles, 195–197

self-service deployments, 184–188

Luyten, Stefan, 24f

M

Macri, Bethany, 49, 419

Magill, Stephen, 364

Maglio, Paul, 5

Making Work Visible: Exposing Time eft to Optimize Work & Flow, 22, 58

Malpass, Ian, 227, 235f, 310

Mangot, Dave, 383, 384

manual tests

automating, 160–161

high reliance on, 10

manufacturing value stream, 7

market-oriented organizations, 100–101

market-oriented teams, 102–103

Marsh, Dianne, 118

Martens, Ryan, 94

Martin, Karen, 7, 9n, 11

mass marketing, 275

Massie, Bill, 385–387

Matatall, Neil, 360, 361

Mathew, Reena, 383, 384

matrix-oriented organizations, 100

Maurer, Dan, 274

Maven Central repository, 364, 365

Maximilien, E. Michael, 159n

McChrystal, Stanley, 347

McDonnell, Patrick, 226

McKinley, Dan, 332

mean time to recover. See MTTR

means and standard deviations, 246–248

Measuring Software Quality whitepaper, 58

Mediratta, Bharat, 149, 344

mentors, test certi�ed, 345

Messeri, Eran, 150, 290, 325

Metasploit, 359, 369

metrics

actionable business, 240–241f

application and business, 240–242

�ow, 11–12

infrastructure, 242–243

library (StatsD), 234

MTTR and, 227

production, 234–235

self-service, 236–238

Metz, Cade, 338

Mickman, Heather, 112–114, 297, 343

microservices

monoliths versus, 210–212

pros and cons of, 211t

shifting to, 212–213

Microsoft Excel, 255

Microsoft Office Framework (MOF) Study, 225

Milstein, Dan, 310

Minimum viable product (MVP), 388

mistakes. See also failures

examining, 308–310

in learning-based culture, 307–308

rede�ning failure, 314–315

Model of Change, John Shook’s, 205

monitoring frameworks, 227–231

monolithic architectures

de�ned, 210, 211t

shifting from, 212–213

Moore, Geoffrey A., 72

Morgue tool, Etsy’s, 311–312

Morrison, Erica, 183f, 204, 206, 318

motion waste, 28

MTTR

batch size and, 292

culture of causality and, 233n

daily deployments and, 183f

de�ned, 16

fact-based problem-solving and, 234

high performers and, 186f, 227, 228f

low-risk changes and, 381

Morgue tool for recording, 311

optimizing for, 261n

tracking metrics and, 227

Mueller, Ernest, 117n, 122, 173–175, 237

Mulkey, Jody, 104–105

Multichannel Digital Tax Platform (MDTP), 78–80

multitasking, 21–22

multivariate testing, de�ned, 276

MySQL, xxvi, xxxit, 226, 296, 332

Mythical Man-Month, e, xli

myths

DevOps, xxiv–xxvi

industrial safety, 416t

N

Nagappan, Nachi, 159n

NASA, 231, 313, 314

National Institute of Standards and Technology (NIST), 330, 331, 389

National Vulnerability Database, 368

Nationwide Building Society, 124–127

Nationwide Insurance, 339, 342

Naval Reactors (NR), 51

.NET, xxviii, 363

Net�ix

Archaius library, 196n

auto-scaling capacity, 251–253

case study, 251–253

Chaos Monkey, 52, 55, 306–307, 315, 420

cluster immune system, 195n

DevOps myths and, xxiv–xxv

as digital-native company, 15

market-oriented teams, 102

shared services, 118

Simian Army, 369n, 420

telemetry, 245–246

Newland, Jesse, 321, 323

Nmap, 359, 369

non-functional requirements (NFRs), 89, 90f, 162–163, 328

Nordstrom, 15, 63–66

normal changes, 380, 381–382

North, Dan, 191f, 193, 232

Nygard, Michael, 315, 347

O

object relational mapping (ORM), 99n

observability, and testing, 147

Octoverse Report, 57, 368, 401

O’Donnell, Glenn, 340

O’Neill, Paul, 50, 313

Open Web Application Security Project (OWASP), 359n, 360

Operation Desert Shield, 189n

opinion of the team, 40

opinionated platform, 79

Ops engineers on service teams, embedding, 119–120

Ops liaisons

assigning, 117, 120–121

purpose of, 115–117

team rituals and, 121–124

two types of, 116

O’Reilly, Barry, 278

organizational archetypes, 100–101

organizational culture

importance of, 46

just culture, 47, 307–308

safety culture, 46–49

three pillars of, 75–76

three types of, 47, 48t

trust and, xli, 45, 48, 150

organizational goals, and technology choices, 329–330

organizational knowledge

chat rooms for capturing, 321–323

easy-to-reuse, 323–324

Ops user stories and, 328–329

recommend_tech program at Target, 333–334

source code repository for, 139–141, 150, 324–327

organizational learning

ASREDS learning loop, 340, 341f

communities of practice, 343–345

conclusions on, 346

DevOps conferences, 341–342

Etsy, 49

grouplets, 344, 345

improvement blitz, 335, 336

internal conferences, 342–343

rituals to pay down technical debt, 336–339

Teaching ursday, 339

thirty-day challenge at Target, 335–336

ORM (object relational mapping), 99n

Orzen, Mike, 49

Osterling, Mike, 7, 9n, 11

Otto, Andreia, 287

outages

2/4 outage, 318–320

Adidas, 286

Amazon Web Services (AWS), 305–306, 315

culture of blame around, 233

culture of causality and, 225

mastering, 347

Net�ix, 314–315

outlier detection, 245–246

outsourcing contracts, IT, 102n

“over the shoulder” code review, 290

OWASP (Open Web Application Security Project), 359n, 360

OWASP Dependency Check, 359, 365, 368n

OWASP ZAP, 358f, 359

Özil, Giray, 289

P

pager rotation duties, 263–264

pair programmed rollback, 164n

pair programming, 289, 292–294

pairing hours, 293n

Pais, Manuel, 111, 117, 129

Pal, Tapabrata, 296, 342–343, 353n

Pandey, Ravi, 336

Parker, Doug, 76–77

Paroski, Drew, 338

partially done work, 28

passion, as cultural piller, 75

passwords, OWASP guidance on, 360

pathological organizations, 47, 48t

Payment Card Industry Data Security Standards (PCI DSS), 385, 386

PayPal, 73n

PDCA (Plan, Do, Check, Act) cycle, 38, 54

peer review

of changes, 288–290

code review basics, 288–291

email pass around, 290

GitHub, 281–283

“over the shoulder” code review, 290

pair programming, 289, 292–294

pull requests, 281–283, 295–296

tool-assisted code review, 290

performance testing environment, 161–162

Perrow, Charles, 34

Phoenix Project, e, xxii, xlii, xxxix, 12, 404, 406, 413, 414

PHP

Conway’s Law, 98, 99

Etsy, 226, 262f, 332

Facebook, 177n, 178, 199, 338

LAMP stack and DevOps, xxvi

as representative technology, xxxit

Pinterest, 114

Pivotal Labs, 293–294

planning horizons, short, 88–89

platform teams, 112

Poppendieck, Mary and Tom, 27

Porter, Chris, 376, 377

post-mortems, blameless

CSG case study, 318–320

de�ned, 308

inviting Ops engineers to, 117, 123–124

for organizational learning, xxxix, 48–49

publishing reports of, 311–312

sample agenda, 418–419

scheduling of, 308–310

Potvin, Rachel, 149, 300, 324, 326

powerlessness, employees and, xxxvi

pretotyping, 275n

preventive security controls, 355–357

problem-solving

guided by telemetry, 225, 233–234

seeing problems as they occur, 35–36, 244

swarming, 37–41

process time, lead time versus, 9f

product owner, 83

production telemetry. See also telemetry; telemetry analysis

ATM systems and, 392

contextual inquiry, 264

in daily work, 234–235

feature toggles, 195–197, 262, 277

�x forward, 262

hand-off readiness review (HRR), 269, 270, 271f

information security and, 371–373

launch guidance, 266–267

launch readiness review (LLR), 270, 271f

LinkedIn, 237–238

pager rotation duties, 263–264

roll back, 262

service hand-back mechanism, 268f–269

site reliability engineers (SREs), 269–271

UX observation, 264–265

productivity, developer

DevOps practices for, xlif

measuring, 401–403

shared services for, 117–120

Project to Product, 12

prototypes, creating, 275n

Prugh, Scott, 72, 106–107, 181, 182, 183, 201–204, 231

psychological safety, 347

pull requests

de�ned, 281

evaluating, 295–296

GitHub, 281–283

Puppet Labs, xxiii, xxxix, xlif, 5, 14, 140, 185, 217

Python

Etsy, 332

ORM, 99n

PyPi for, 364

Zenoss and, 238

Q

quality controls, ineffective, 42–43

queue size, controlling, 22, 414–415f

Quicken, 274n

Quora, 278, 306

R

Rachitsky, Lenny, 420

Rajan, Karthik, 383

Rally, 94, 253, 381

Rapoport, Roy, 245, 246, 314

Rational Uni�ed Process, 4

Raymond, Eric S., 97

rebooting servers, 225

Red Hat, xxxit, 138

Reddit, 306

Reddy, Tarum, 253

release, deployment versus, 189

Release It! Design and Deploy Production-Ready Software, 315, 347

release managers, 83

release patterns

application-based, 190, 195–199

environment-based, 190, 191–195

releases, architecture for low-risk. See architecture

releases, enabling low-risk

Andon cord and, 181

application-based release patterns, 190, 195–199

automating deployment process, 179–181

conclusion on, 206

continuous delivery and, 199–201

at CSG International, 181–183, 201–206

dark launching, 197–199

environment-based release patterns, 190, 191–195

at Etsy, 186–188, 201

at Facebook, 177–179, 201

feature toggles, 195–197

self-service deployments, 184–188

Rembetsy, Michael, 63, 226, 332

remote work, Covid-19 pandemic and, 108n

request for change (RFC) form, 380, 382

resilience engineering, de�ned, 316

resilience patterns, 51–52

resilient organizations

calculated risk-taking in, 314–315

CSG case study, 318–320

description of, 305

experimental model for, 313

game days in, 316–318

just, learning culture in, 307–308, 320

Net�ix example, 305–307

post-mortem reports in, 311–312

retrospective meetings at, 308–310

retrospectives

CSG case study, 318–320

de�ned, 308

Ops engineers at, 117, 123–124

for organizational learning, xxxix, 48–49

publishing reports of, 311–312

sample agenda, 418–419

scheduling of, 308–310

Rettif, Lucas, 333

review and coordination processes

Adidas, 286–287

bureaucracy and, 42–43, 296–297

code review basics, 288–291

conclusions on, 297–298

coordination and scheduling, 288

dangers of change approval processes, 283–284

dangers of manual testing and change freezes, 292

dangers of overly controlling changes, 284–285

GitHub, 281–283

Google, 290–291

pair programming, 289, 292–294

Pivotal Labs, 293–294

pull requests, 281–283, 295–296

Rhoades, Lacy, 277–278

Rice, David, 412

Richardson, Vernon, xxxvin

Ries, Eric, 6n, 24, 195n, 411

Right Media, 259–261

risk-taking, calculated, 314–315

rituals

Dev team, 121–124

technical debt and, 336–339

Robbins, Jesse, 316, 317, 399, 410

Roberto, Michael, 313

roll back, 262

Rossi, Chuck, 177, 178, 198

Rother, Mike, 6, 49, 53, 54, 104, 411

Rouster, 383

Ruby, 152, 231n, 234, 359, 363, 364

Ruby on Rails, xxxit, 99n, 143, 191n, 362

Rugged Computing movement, 412

Rugged DevOps, 353

Rushgrove, Gareth, 358f

S

Sachs, Marcus, 371

safety

in complex systems, 33–34

myths about, 416t

safety culture, 46–49

Safety Differently: Human Factors for a New Era, 395

Salesforce.com, 383–384

Sarbanes-Oxley Act, 267

Savoia, Alberto, 275n

scenius, 54–55

Schmidt, Eric, 69

Schwaber, Ken, 122n

Schwartz, Mark, 299

Scott, Kevin, 92, 93

Scrum, 122n, 410

Scryer, 251–253

Second Way, e. See e Second Way (principles of feedback)

security. See information security

security and compliance, DevOps compatibility with, xxv

Security Chaos Engineering, 142n

Security Monkey, 420

sel�essness, as cultural pillar, 75

Senge, Peter, 35, 49, 320

separation of duty, 379, 384–387

service-oriented architectures (SOAs), 109, 210

settling period, 243

Shafer, Andrew Clay, xxiv, 5, 410

Shared Operations Team (SOT), 181–182n

shared services, 117–119

Shewhart, Walter, 54

Shewhart cycle, 38, 54

Shingo, Shigeo, 27

Shinn, Bill, 389–391

Shook, John, 205

Shortridge, Kelly, 142n

Shoup, Randy, xli, 109–110, 164, 207, 208, 209f, 210, 211f, 289, 291, 311, 326

silent majority, 74

siloization, 105

silos

breaking down, 124–127

http://salesforce.com/

functional teams in, 125, 126f

learning, 340

Simian Army, 369n, 420

single repository of truth

as deployment pipeline foundation, 139–141, 150

for global improvement, 324–327, 334

at Google, 324–326

site reliability engineers (SREs), 269–271

Skelton, Matthew, 111, 117, 129

small batch sizes, 7, 9, 22–24f, 409

small teams, 110–111

Smart, Jonathan, 125, 341f, 403

smoke testing deployments, 180, 187

Smollen, Alex, 360, 361

smoothing, 253

Snover, Jeffrey, xxxii

Snyder, Ross, 98, 99, 100

software, COTS, 417–418

software delivery. See also deployment pipeline foundations; low-risk release,

enabling

faster, xxxiiit

history of, xxx–xxxit

software supply chain, security of, 363–369

software type, myth about DevOps and, xxvi

SolarWinds security breach, 368

Sonatype Nexus Lifecycle, 368n

Sonatype State of the Software Supply Chain Report, 364, 365, 366

Sooner Safer Happier, 125, 340, 395, 403

source code repository, shared

as deployment pipeline foundation, 139–141, 150

for global improvement, 324–327, 334

at Google, 324–326

preventive security controls and, 355–357

SPACE framework, 403

Spafford, George, xliv, 225, 233n, 353n, 415f

Spear, Steven J., xxxvii, 34, 38, 49, 50, 58, 105, 305, 313, 335, 338

specialists, 105–107

Spotify, 15

spring cleanings, 337

sprint planning boards, 20-21

Sprouter, 98–100n, 108

SQL injection attacks, 373, 374f

Stack Exchange, 278, 293

stakeholder feedback, 36

standard changes

description of, 379–380

at Salesforce.com, 383–384

standups, daily, 117, 120, 122, 410

Starbucks, 15

startups, DevOps for, xxiv

State of DevOps Reports, xln, xlii, 5, 14, 15, 57, 67, 71, 103, 140, 165, 166, 175,

185, 201, 217, 227, 243, 284, 285, 312, 326, 331, 343

State of the Octoverse report, GitHub’s, 57, 368, 401

static analysis, 358f–359

statistical analysis software, Tableau, 253

StatsD metric library, 234, 235f

Stillman, Jessica, 338

Stoneham, Jim, 278–279, 280

strangler �g application pattern

at Blackboard Learn, 215–217f

blog explaining, 220

de�ned, 70, 208, 213–215, 218

stream-aligned teams, 112

Strear, Chris, 29–32

Sussman, Noah, 187

Sussna, Jeff, 265n

swarming

case study, 39–41

http://salesforce.com/

purpose of, 37–39

systems of engagement, 71, 72

systems of record, 71, 72

T

Tableau, 253

Taleb, Nassim Nicholas, 52

Tang, Diane, 276

Target

API enablement, 112–114

approval processes, 296–297

case study, 112–114, 333–334, 342, 343

internal conferences, 342, 343

recommend_tech program, 333–334

thirty-day challenge, 335–336

as traditional enterprise, 15

task switching, 28

tax collection agency, UK’s, 77–80

Team of Teams: New Rules of Engagement for a Complex World, 347

team opinion, requesting, 40

team rituals, 121–124

Team Topologies: Organizing Business and Technology Teams for Fast Flow, 111, 117,

129

teams

18F team, 369–371

Conway’s Law and, 108

dedicated team, 86–88

four types of, 111–112

functional teams in silos, 125, 126f

generalists on, 105–107

Google Web Server (GWS) team, 148–151

long-lived, 126f

platform team, 112

Shared Operations Team (SOT), 181–182n

stream-aligned, 112

two-pizza team, 110–111

in value stream, 83

technical debt

brown�eld transformations and, 67

de�ned, xxxiv–xxxv, 171, 205

reducing, 89–93, 165

rituals to pay down, 336–339

test automation and, 161, 165

technology choices

Etsy, 332

organizational goals and, 329–330

Target, 333–334

Technology Enterprise Adoption Process (TEAP), 296, 297

technology value stream. See also value stream; value stream selection

description of, 8–12

invisible work in, 19–20

telemetry. See also production telemetry; telemetry analysis

application and business metrics, 240–242

application logging, 231–233

centralized telemetry infrastructure, 227–231

conclusions on, 244

culture of causality, 225, 233n

daily work and, 234–235

de�ned, 225–226

detection of problems with, 36

Etsy, 226–227

gaps, 239–240

information radiators, 236, 237, 241

infrastructure metrics, 242–243

monitoring frameworks, 227–231

Net�ix, 245–246

problem-solving guided by, 233–234

security-related, 371–375

self-service access to, 236–237

self-service metrics at LinkedIn, 237–238

settling period, 243–244

StatsD metric library, 234, 235f

telemetry analysis

alerting systems, 248–249, 250f, 255f

anomaly detection techniques, 253–257

Gaussian distribution, 247f, 249

Kolmogorov-Smirnov test, 254, 255, 256f, 257

means and standard deviations, 246–248

non-Gaussian distribution, 249–251f

outlier detection, 245–246

Scryer tool at Net�ix, 251–253

smoothing, 253–254

Tableau software, 253

Terhorst-North, Dan, 191f, 193, 232

test setup and run, 26

test-driven development (TDD), 159, 161, 327

testing, A/B

conclusions on, 280

feature toggles and, 196–197

history of, 275

integrating into feature planning, 278

integrating into feature testing, 276–277

integrating into our release, 277–278

need for, 273

practical guide to, 276

testing, automated

Andon cord and, 163–165

categories of tests, 155–156

conclusions on, 166

deployment pipeline infrastructure, 151–154

essential components of, 165–166

fast and reproducible tests, 166

at Google, 148–151

green build and, 154, 163, 166

ideal testing pyramid, 157f–158

need for, 147–148

non-functional requirements and, 162–163, 328

observability and, 147

performance testing environment, 161–162

reducing reliance on manual tests, 160–161

research supporting, 165–166

running tests in parallel, 158f–159

test-driven development (TDD), 159, 161, 327

testing, operations, and security, as everyone’s job, 104–105

Testing on the Toilet newsletter, 149n, 344

e First Way (principles of �ow)

case study, 29–32

constraint identi�cation, 25–27

general description of, 13f, 19

handoff reduction, 24–25

kanban boards, 4, 20f–21, 94, 124

limiting work in progress (WIP), 7, 10, 21–22

making work visible, 19–21, 93, 94, 124

reducing batch sizes, 22–24f

small batch sizes, 7, 9, 22–24f

waste and hardship elimination, 27–29

e Second Way (principles of feedback)

case study, 39–41

description of, 13f–14

feedback types and cycle times, 36–37f

optimizing for downstream work centers, 43–44

quality control closer to the source, 42–43

safety within complex systems, 33–34

seeing problems as they occur, 35–36

swarming, 37–39, 41

e ird Way (continual learning and experimentation)

case study, 54–55

conclusions on, 55–56

description of, 13f, 14

global knowledge, 51

improvement of daily work, 49–50

just culture, 47, 307–308

leader’s role, 52–54

resilience patterns, 51–52

safety culture for, 46–49

e ree Ways

case study, 15–18

de�ned, 12–14

high-level principles of, xliv

research supporting, 14–15

eory of Constraints, 4, 412–413

ird Way, e. See e ird Way (continual learning and experimentation)

oughtworks’ Tech Radar, 57

rasher, Paula, 129

ree Mile Island, 34

ree Ways, e. See e ree Ways

ticket, de�ned, 381n

Ticketmaster/LiveNation, 104, 243

Tischler, Tim, 184

Tomayko, Ryan, 295, 296

tool-assisted code review, 290

Toyota Kata: Managing People for Improvement, Adaptiveness and Superior

Results, 6, 49, 104, 411

Toyota Kata Movement, description of, 4, 6, 49, 54, 411

Toyota Production System

Andon cord, 37–39, 163, 416–417f

core belief in, 285

improvement blitz, 335

improvement kata, 6

information radiators, 236, 237, 241

Lean Movement and, 409

techniques, 4

transparent uptime, 311n, 420–421

Treynor Sloss, Ben, 269

Trimble, Chris, 86, 87

trunk-based development

adopting practices of, 172

at Bazaarvoice, 173–175, 176

bene�ts of, 175

conclusions on, 175–176

gated commits and, 172

for HP’s LaserJet Firmware division, 168–170

need for, 167, 171

Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing,

276

TurboTax, 274, 275

Turnbull, James, 228, 230f

Twitter

architecture, 210

experimentation, 279

Fail Whale error page, 360

static security testing, 360–363

two-pizza team, 110–111

U

Unicorn Project, e, 219, 333n

unit tests, 155

universality of the solution, xlii–xliii

urgent changes, 380

US Air Force, 69–71

US Federal Government agencies, 369–371

US Navy, 34n, 51

user acceptance testing (UAT), 152

user feedback, 36, 37f

user research, 273, 275n, 277. See also A/B testing

user stories, 328–329

UX movement, Lean, 411

UX observation, 264–265

V

value stream. See also value stream selection

de�ned, 7, 18

manufacturing, 7

selection of, 61, 63

technology, 8–12

value stream manager, 83

value stream mapping

%C/A metrics in, 11, 85, 95

case studies, 15–18, 91–93

conclusions on, 85

creating a map, 84–86

de�ned, 81, 84–86

dedicated transformation team and, 86–88, 95

example of a value stream map, 85f

goals and, 88

Lean movement and, 4

members of value stream, 83

at Nordstrom, 81–83

technical debt and, 89–93

Value Stream Mapping: How to Visualize Work and Align Leadership for

Organizational Transformation, 7

value stream selection

American Airlines’ new vocabulary, 74–77t

brown�eld transformation of refueling system, 69–71

case studies, 69–71, 74–77, 77–80

expanding scope of initiative, 73–77

green�eld vs. brown�eld services, 66–69

innovators and early adopters, 72–74

Nordstrom’s DevOps journey, 63–66

systems of engagement, 71, 72

systems of record, 71, 72

tax collection agency’s journey, 77–80

van Kemenade, Ron, 74

Van Leeuwen, Evelijn, 343n

Vance, Ashlee, 92

Velocity Conference, 410

Verizon data breach, 364, 371

version control system, 139–141

versioned APIs, 214

Vincent, John, 247

visibility of automated test failures, 164

visibility of work, 19–21, 93, 94

Visible Ops Handbook, e, 225

Visible Ops Security, 353n

visual work boards, 20f–21. See also kanban boards

vocabulary, using a new, 76–77t

Vogels, Werner, 110, 212

Vulnerabilities and Exposures, Common (CVEs), 364, 365

Vulnerability Database, National, 368

W

Walker, Jason, 333

Wang, Kendrick, 277

WARN level, 232

waste and hardship elimination, 27–29

water-Scrum-fall anti-pattern, 165n

weak failure signals, 313–314

Westrum, Ron, 47, 48t, 57

Westrum Organizational Typology Model, 48t

Wickett, James, 353

Williams, Branden, xxv

Williams, Jeff, 412

Williams, Laurie, 159n, 293

Willis, John, xxiii–xxiv, 3, 5, 57, 406–407, 409, 410

Wolberg, Kirsten, 73n

Womack, James P., 23, 53

Wong, Bruce, 316

Wong, Eric, 238

work, visibility of, 19–21, 93, 94, 124

work in process (WIP), 7, 10, 21–22

workplace safety, at Alcoa, 50

X

Xu, Ya, 276

Y

Yadav, Yikalp, 286

Yahoo! Answers, 278–280

Yuan, Danny, 252f, 254f

Z

Zenoss, 229, 238

Zhao, Haiping, 338

ZooKeeper, 242

Zuckerberg, Mark, 338

ACKNOWLEDGMENTS

Gene Kim

ank you to my wife, Margueritte, and my sons, Reid,

Parker, and Grant, for putting up with me being in deadline

mode for over �ve years. And to my parents for helping me

become a nerd early in life. ank you to my amazing co-

authors, as well as the IT Revolution team who made this

book possible: Anna Noak and especially to Leah Brown for

all her heroic work pulling this second edition together!

I am so grateful to everyone who made the �rst edition

possible: John Allspaw (Etsy), Alanna Brown (Puppet),

Adrian Cockcroft (Battery Ventures), Justin Collins

(Brakeman Pro), Josh Corman (Atlantic Council), Jason Cox

(e Walt Disney Company), Dominica DeGrandis (LeanKit),

Damon Edwards (DTO Solutions), Dr. Nicole Forsgren (Chef),

Gary Gruver, Sam Guckenheimer (Microsoft), Elisabeth

Hendrickson (Pivotal Software), Nick Galbreath (Signal

Sciences), Tom Limoncelli (Stack Exchange), Chris Little,

Ryan Martens, Ernest Mueller (AlienVault), Mike Orzen,

Christopher Porter (CISO, Fannie Mae), Scott Prugh (CSG

International), Roy Rapoport (Net�ix), Tarun Reddy

(CA/Rally), Jesse Robbins (Orion Labs), Ben Rockwood

(Chef), Andrew Shafer (Pivotal), Randy Shoup (Stitch Fix),

James Turnbull (Kickstarter), and James Wickett (Signal

Sciences).

I also want to thank the many people whose incredible

DevOps journeys we studied, including Justin Arbuckle,

David Ashman, Charlie Betz, Mike Bland, Dr. Tou�c Boubez,

Em Campbell-Pretty, Jason Chan, Pete Cheslock, Ross

Clanton, Jonathan Claudius, Shawn Davenport, James

DeLuccia, Rob England, John Esser, James Fryman, Paul

Farrall, Nathen Harvey, Mirco Hering, Adam Jacob, Luke

Kanies, Kaimar Karu, Nigel Kersten, Courtney Kissler,

Bethany Macri, Simon Morris, Ian Malpass, Dianne Marsh,

Norman Marks, Bill Massie, Neil Matatall, Michael Nygard,

Patrick McDonnell, Eran Messeri, Heather Mickman, Jody

Mulkey, Paul Muller, Jesse Newland, Dan North, Dr.

Tapabrata Pal, Michael Rembetsy, Mike Rother, Paul Stack,

Gareth Rushgrove, Mark Schwartz, Nathan Shimek, Bill

Shinn, JP Schneider, Dr. Steven Spear, Laurence Sweeney,

Jim Stoneham, and Ryan Tomayko.

And I am so profoundly grateful for the many reviewers

who gave us fantastic feedback that shaped this book: Will

Albenzi, JT Armstrong, Paul Auclair, Ed Bellis, Daniel

Blander, Matt Brender, Alanna Brown, Branden Burton, Ross

Clanton, Adrian Cockcroft, Jennifer Davis, Jessica DeVita,

Stephen Feldman, Martin Fisher, Stephen Fishman, Jeff

Gallimore, Becky Hartman, Matt Hatch, William Hertling,

Rob Hirschfeld, Tim Hunter, Stein Inge Morisbak, Mark

Klein, Alan Kraft, Bridget Kromhaut, Chris Leavory, Chris

Leavoy, Jenny Madorsky, Dave Mangot, Chris McDevitt,

Chris McEniry, Mike McGarr, omas McGonagle, Sam

McLeod, Byron Miller, David Mortman, Chivas Nambiar,

Charles Nelles, John Osborne, Matt O’Keefe, Manuel Pais,

Gary Pedretti, Dan Piessens, Brian Prince, Dennis Ravenelle,

Pete Reid, Markos Rendell, Trevor Roberts, Jr., Frederick

Scholl, Matthew Selheimer, David Severski, Samir Shah, Paul

Stack, Scott Stockton, Dave Tempero, Todd Varland, Jeremy

Voorhis, and Branden Williams.

And several people gave me an amazing glimpse of what

the future of authoring with modern toolchains looks like,

including Andrew Odewahn (O’Reilly Media) who let us use

the fantastic Chimera reviewing platform, James Turnbull

(Kickstarter) for his help creating my �rst publishing

rendering toolchain, and Scott Chacon (GitHub) for his work

on GitHub Flow for authors.

Jez Humble

Creating this book has been a labor of love, for Gene in

particular. It’s an immense privilege and pleasure to have

worked with Gene and my other co-authors, John and Pat,

along with Todd, Anna, Robyn and the editorial and

production team at IT Revolution preparing this work—

thank you. I also want to thank Nicole Forsgren whose work

with Gene, Alanna Brown, Nigel Kersten and I on the

PuppetLabs/DORA State of DevOps Report over the last three

years has been instrumental in developing, testing and

re�ning many of the ideas in this book. My wife, Rani, and

my two daughters, Amrita and Reshmi, have given me

boundless love and support during my work on this book, as

in every part of my life. ank you. I love you. Finally, I feel

incredibly lucky to be part of the DevOps community, which

almost without exception walks the talk of practicing

empathy and growing a culture of respect and learning.

anks to each and every one of you.

Patrick Debois

I would like to thank those who were on this ride, much

gratitude to you all.

John Willis

First and foremost, I need to acknowledge my saint of a wife

for putting up with my crazy career. It would take another

book to express how much I learned from my co-authors

Patrick, Gene and Jez. Other very important in�uencers and

advisers in my journey are Mark Hinkle, Mark Burgess,

Andrew Clay Shafer, and Michael Cote. I also want to give a

shout out to Adam Jacob for hiring me at Chef and giving me

the freedom to explore, in the early days, this thing we call

Devops. Last but de�nitely not least is my partner in crime,

my Devops Cafe cohost, Damon Edwards.

Nicole Forsgren

I’m grateful to Jez and Gene, whose collaboration on the

State of DevOps Reports (and later DORA) provided a

wonderful research lab and foundation for work. e

partnership wouldn’t have been possible without the insights

of Alanna Brown, who spearheaded the initiative and who we

were able to work with on those �rst few reports. I continue

to be grateful for those who believe in women—and believe

women—with ambition, ideas, and opinions. Some notable

people in my life are my parents (sorry for the stress!), my

dissertation advisors Suzie Weisband and Alexandra

Durcikova (much love and respect to you for taking a chance

on me and my pivot), Xavier Velasquez (you’ve always

believed my plans will work), and of course my lady

backchannel (thank you for love, support, and for space to

rage so it doesn’t end up on my Twitter timeline). And as

always, Diet Coke.

ABOUT THE AUTHORS

Gene Kim is a bestselling author, researcher, multiple award-

winning CTO, and founder of IT Revolution. His books

include e Phoenix Project, e Unicorn Project, and Accelerate.

Since 2014, he has been the founder and organizer of DevOps

Enterprise Summit, studying the technology transformations

of large, complex organizations.

Jez Humble has co-authored several bestselling books on

software, including Jolt Award-winner Continuous Delivery

and Shingo Publication Award winner Accelerate. He works at

Google and teaches at the University of California, Berkeley.

Patrick Debois is Director of DevOps Relations and Advisor

at Snyk. He works to bridge the gap between projects and

operations by using Agile techniques in development, project

management, and system administration.

John Willis is Senior Director of Global Transformation

Office at RedHat. Hehas worked in the IT management

industry for more than thirty-�ve years. He is coauthor of

Beyond e Phoenix Project and host the Profound podcast.

Nicole Forsgren, PhD, is Partner at Microsoft Research

leading the Developer Velocity Lab. She is author of the

Shingo Publication Award-winning book Accelerate: e

Science of Lean Software and DevOps and is best known as lead

investigator on the largest DevOps studies to date. She has

been a successful entrepreneur (with an exit to Google),

professor, performance engineer, and sysadmin. Her work

has been published in several peer-reviewed journals.

	Cover Page
	Half Title
	Full Title
	Copyright
	Contents
	Figures & Tables
	Note from the Publisher on the Second Edition
	Foreword to the Second Edition: Nicole Forsgren
	Foreword to the First Edition: John Allspaw
	Preface
	Introduction
	Part I—The Three Ways
	Part I Introduction
	01: Agile, Continuous Delivery, and the Three Ways
	02: The First Way: The Principles of Flow
	03: The Second Way: The Principles of Feedback
	04: The Third Way: The Principles of Continual Learning and Experimentation
	Part 1 Conclusion

	Part II—Where to Start
	Part II Introduction
	05: Selecting Which Value Stream to Start With
	06: Understanding the Work in Our Value Stream, Making it Visible, and Expanding it Across the Organization
	07: How to Design Our Organization and Architecture with Conway’s Law in Mind
	08: How to Get Great Outcomes by Integrating Operations into the Daily Work of Development
	Part II Conclusion

	Part III—The First Way: The Technical Practices of Flow
	Part III Introduction
	09: Create the Foundations of Our Deployment Pipeline
	10: Enable Fast and Reliable Automated Testing
	11: Enable and Practice Continuous Integration
	12: Automate and Enable Low-Risk Releases
	13: Architect for Low-Risk Releases
	Part III Conclusion

	Part IV—The Second Way: The Technical Practices of Feedback
	Part IV Introduction
	14: Create Telemetry to Enable Seeing and Solving Problems
	15: Analyze Telemetry to Better Anticipate Problems and Achieve Goals
	16: Enable Feedback So Development and Operations Can Safely Deploy Code
	17: Integrate Hypothesis-Driven Development and A/B Testing into Our Daily Work
	18: Create Review and Coordination Processes to Increase Quality of Our Current Work
	Part IV Conclusion

	Part V—The Third Way: The Technical Practices of Continual Learning and Experimentation
	Part V Introduction
	19: Enable and Inject Learning into Daily Work
	20: Convert Local Discoveries into Global Improvements
	21: Reserve Time to Create Organizational Learning and Improvement
	Part V Conclusion

	Part VI—The Technological Practices of Integrating Information Security, Change Management, and Compliance
	Part VI Introduction
	22: Information Security Is Everyone’s Job Every Day
	23: Protecting the Deployment Pipeline
	Part VI Conclusion

	A Call to Action: Conclusion to The DevOps Handbook
	Afterword to the Second Edition
	Appendices
	Bibliography
	Notes
	Index
	Acknowledgments
	About the Authors

