

Swift 3 Object-Oriented Programming
Second Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Second edition: February 2017

Production reference: 1210217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78712-039-6

www.packtpub.com

http://www.packtpub.com

Credits

Author

Gastón C. Hillar

Copy Editor

Muktikant Garimella

Reviewer

Cecil Costa

Project Coordinator

Ulhas Kambali

Commissioning Editor

Ashwin Nair

Proofreader

Safis Editing

Acquisition Editor

Reshma Raman

Indexer

Pratik Shirodkar

Content Development Editors
Divij Kotian
Vikas Tiwari

Graphics

Jason Monteiro

Technical Editor

Jijo Maliyekal

Production Coordinator

Shraddha Falebhai

  

About the Author
Gastón C. Hillar is Italian and has been working with computers since he was eight. He
began programming with the legendary Texas TI-99/4A and Commodore 64 home
computers in the early 80s. He has a bachelor's degree in computer science (graduated with
honors), and an MBA (graduated with an outstanding thesis). At present, Gastón is an
independent IT consultant and a freelance author who is always looking for new
adventures around the world.

He has been a senior contributing editor at Dr. Dobb’s and has written more than a hundred
articles on software development topics. Gastón was also a former Microsoft MVP in
technical computing. He has received the prestigious Intel® Black Belt Software Developer
award eight times.

He is a guest blogger at Intel® Software Network (h t t p ://s o f t w a r e . i n t e l . c o m). You can
reach him at gastonhillar@hotmail.com and follow him on Twitter at h t t p ://t w i t t e r . c o

m /g a s t o n h i l l a r . Gastón’s blog is h t t p ://c s h a r p m u l t i c o r e . b l o g s p o t . c o m .

He lives with his wife, Vanesa, and his two sons, Kevin and Brandon.

http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
http://software.intel.com)
mailto:gastonhillar@hotmail.com
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com

Acknowledgement
At the time of writing this book, I was fortunate to work with an excellent team at Packt
Publishing, whose contributions vastly improved the presentation of this book. Reshma
Raman allowed me to provide her with ideas to write an updated edition of Object-
Oriented Programming with Swift 2 to cover Swift 3, and I jumped into the exciting project
of teaching Object-Oriented Programming in the most promising programming language
developed by Apple: Swift 3.

Vikas Tiwari helped me realize my vision for this book and provided many sensible
suggestions regarding the text, format, and flow. The reader will notice his great work.
Vikas took the great work Divij Kotian had done in the previous edition and helped me in
this new edition. It’s been great working with Reshma and Vikas in another project and I
can’t wait to work with them again. I would like to thank my technical reviewers and
proofreaders for their thorough reviews and insightful comments. I was able to incorporate
some of the knowledge and wisdom they have gained in their many years in the software
development industry. This book was possible because they gave valuable feedback. The
entire process of writing a book requires a huge amount of lonely hours. I wouldn’t be able
to write an entire book without dedicating some time to play soccer against my sons, Kevin
and Brandon, and my nephew, Nicolas. Of course, I never won a match; however, I did
score a few goals.

About the Reviewer
Cecil Costa, also know as Eduardo Campos in Latin countries, is a Euro-Brazilian freelance
developer who has been learning about computers since getting his first 286 in 1990. From
then on, he kept learning about programming languages, computer architecture, and
computer science theory. Learning and teaching are his passions; this is the reason why he
worked as a trainer and an author. He has been giving on-site courses for companies such
as Ericsson, Roche, TVE (a Spanish television channel), and lots of others. He is also the
author of Swift Cookbook First Edition and Swift 2 Blueprints, both by Packt Publishing. He
will soon publish an iOS 10 programming video course. Nowadays, Cecil Costa teaches
through online platforms, helping people from across the world. In 2008, he founded his
own company, Conglomo Limited (h t t p ://w w w . c o n g l o m o . e s), which offers development
and training programs both on-site and online. Throughout his professional career, he has
created projects by himself and also worked for different companies from small to big ones,
such as IBM, Qualcomm, Spanish Lottery, and Dia%. He develops a variety of computer
languages (such as Swift, C++, Java, Objective-C, JavaScript, Python, and so on) in different
environments (iOS, Android, Web, Mac OS X, Linux, Unity, and so on), because he thinks
that good developers needs to learn all kinds of programming languages to open their
mind; only after this will they really understand what development is. Nowadays, Cecil is
based in the UK, where he is progressing in his professional career as an iOS developer.

I’d like to thank Rahul Nair for being a such professional and good person.

http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es
http://www.conglomo.es

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /S w i f t - O b j e c t - O r i e n t e d - P r o g r a m m i n g - S e c o n d /d p

/1787120392.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392
https://www.amazon.com/Swift-Object-Oriented-Programming-Second/dp/1787120392

Table of Contents
Preface 1

Chapter 1: Objects from the Real World to the Playground 7

Installing the required software on Mac OS 7
Installing the required software on Ubuntu Linux 11
Working with Swift 3 on the web 12
Capturing objects from the real world 13
Generating classes to create objects 20
Recognizing variables and constants to create properties 22
Recognizing actions to create methods 25
Organizing classes with UML diagrams 28
Working with API objects in the Xcode Playground 34
Exercises 41
Test your knowledge 42
Summary 43

Chapter 2: Structures, Classes, and Instances 44

Understanding structures, classes, and instances 44
Understanding initialization and its customization 46
Understanding deinitialization and its customization 47
Understanding automatic reference counting 48
Declaring classes 48
Customizing initialization 49
Customizing deinitialization 56
Creating the instances of classes 63
Exercises 65
Test your knowledge 65
Summary 66

Chapter 3: Encapsulation of Data with Properties 67

Understanding elements that compose a class 67
Declaring stored properties 69
Generating computed properties with setters and getters 74
Combining setters, getters, and a related property 83
Understanding property observers 88
Transforming values with setters and getters 93

[ii]

Creating values shared by all the instances of a class with type
properties 94
Creating mutable classes 99
Building immutable classes 102
Exercises 106
Test your knowledge 106
Summary 108

Chapter 4: Inheritance, Abstraction, and Specialization 109

Creating class hierarchies to abstract and specialize behavior 109
Understanding inheritance 114
Declaring classes that inherit from another class 117
Overriding and overloading methods 122
Overriding properties 126
Controlling whether subclasses can or cannot override members 129
Working with typecasting and polymorphism 134
Taking advantage of operator overloading 146
Declaring compound assignment operator functions 149
Declaring unary operator functions 151
Declaring operator functions for specific subclasses 152
Exercises 154
Test your knowledge 155
Summary 156

Chapter 5: Contract Programming with Protocols 157

Understanding how protocols work in combination with classes 157
Declaring protocols 160
Declaring classes that adopt protocols 164
Taking advantage of the multiple inheritance of protocols 169
Combining inheritance and protocols 172
Working with methods that receive protocols as arguments 180
Downcasting with protocols and classes 184
Treating instances of a protocol type as a different subclass 189
Specifying requirements for properties 192
Specifying requirements for methods 195
Combining class inheritance with protocol inheritance 197
Exercises 208
Test your knowledge 209
Summary 210

Chapter 6: Maximization of Code Reuse with Generic Code 211

[iii]

Understanding parametric polymorphism and generic code 211
Declaring a protocol to be used as a constraint 212
Declaring a class that conforms to multiple protocols 214
Declaring subclasses that inherit the conformance to protocols 218
Declaring a class that works with a constrained generic type 220
Using a generic class for multiple types 225
Combining initializer requirements in protocols with generic types 234
Declaring associated types in protocols 235
Creating shortcuts with subscripts 236
Declaring a class that works with two constrained generic types 239
Using a generic class with two generic type parameters 243
Inheriting and adding associated types in protocols 246
Generalizing existing classes with generics 248
Extending base types to conform to custom protocols 253
Test your knowledge 261
Exercises 261
Summary 263

Chapter 7: Object-Oriented and Functional Programming 264

Refactoring code to take advantage of object-oriented programming 264
Understanding functions as first-class citizens 277
Working with function types within classes 279
Creating a functional version of array filtering 282
Writing equivalent closures with simplified code 284
Creating a data repository with generics and protocols 286
Filtering arrays with complex conditions 291
Using map to transform values 295
Combining map with reduce 298
Chaining filter, map, and reduce 301
Solving algorithms with reduce 302
Exercises 304
Test your knowledge 305
Summary 306

Chapter 8: Extending and Building Object-Oriented Code 307

Putting together all the pieces of the object-oriented puzzle 307
Adding methods with extensions 309
Adding computed properties to a base type with extensions 313
Declaring new convenience initializers with extensions 318
Defining subscripts with extensions 320

[iv]

Working with object-oriented code in iOS apps 321
Adding an object-oriented data repository to a project 330
Interacting with an object-oriented data repository through Picker
View 335
Exercises 340
Test your knowledge 340
Summary 342

Chapter 9: Exercise Answers 343

Chapter 1, Objects from the Real World to the Playground 343
Chapter 2, Structures, Classes, and Instances 344
Chapter 3, Encapsulation of Data with Properties 344
Chapter 4, Inheritance, Abstraction, and Specialization 345
Chapter 5, Contract Programming with Protocols 345
Chapter 6, Maximization of Code Reuse with Generic Code 346
Chapter 7, Object-Oriented and Functional Programming 346
Chapter 8, Extending and Building Object-Oriented Code 347

Index 348

Preface
Object-oriented programming, also known as OOP, is a required skill in absolutely any
modern software developer job. It makes a lot of sense because object-oriented
programming allows you to maximize code reuse and minimize maintenance costs.
However, learning object-oriented programming is challenging because it includes too
many abstract concepts that require real-life examples to be easy to understand. In addition,
object-oriented code that doesn’t follow best practices can easily become a maintenance
nightmare.

Swift is a multiparadigm programming language and one of its most important paradigms
is OOP. If you want to create great applications and apps for Mac, iPhone, iPad, Apple TV,
and Apple Watch (Mac OS, iOS, tvOS, and watchOS operating systems) you need to master
OOP in Swift 3. However, Swift 3 is not limited to Apple platforms and you can take
advantage of your Swift 3 knowledge to develop applications that target other platforms
and use it for server-side code. In addition, as Swift also grabs nice features found in
functional programming languages, it is convenient to know how to mix OOP code with
functional programming code.

This book will allow you to develop high-quality reusable object-oriented code in Swift 3.
You will learn the OOP principles and how Swift implements them. You will learn how to
capture objects from real-world elements and create object-oriented code that represents
them. You will understand Swift’s approach towards object-oriented code. You will
maximize code reuse and reduce maintenance costs. Your code will be easy to understand
and it will work with representations of real-life elements.

What this book covers
Chapter 1, Objects from the Real World to the Playground, covers the principles of object-
oriented paradigms. We will understand how real-world objects can become part of
fundamental elements in the code. We will translate elements into the different components
of the object-oriented paradigm supported in Swift 3--classes, protocols, properties,
methods, and instances. We will run examples in Xcode 8, the Swift REPL and a web-based
Swift 3 sandbox.

Chapter 2, Structures, Classes, and Instances, explains generating blueprints to create objects.
You will learn about an object’s life cycle and work with many examples to understand how
object initializers and deinitializers work.

Preface

[2]

Chapter 3 ,Encapsulation of Data with Properties, explains organizing data in the blueprints
that generate objects. You will understand the different members of a class and how its
different members are reflected in members of the instances generated from a class. We will
learn the difference between mutable and immutable classes.

Chapter 4, Inheritance, Abstraction, and Specialization, helps you in creating a hierarchy of
blueprints that generate objects. We will take advantage of inheritance and many related
features to specialize behavior.

Chapter 5, Contract Programming with Protocols, delves into how Swift works with protocols
in combination with classes. We will declare and combine multiple blueprints to generate a
single instance. We will declare protocols with different types of requirements, and then, we
will create classes that conform to these protocols.

Chapter 6, Maximization of Code Reuse with Generic Code, covers how to maximize code reuse
by writing code capable of working with objects of different types, that is, instances of
classes that conform to specific protocols or whose class hierarchy includes specific
superclasses. We will work with protocols and generics.

Chapter 7, Object-Oriented Programming and Functional Programming, covers how to refactor
existing code to take full advantage of object-oriented code. We will prepare the code for
future requirements, reduce maintenance cost, and maximize code reuse. We will also work
with many functional programming features included in Swift 3, combined with object-
oriented programming.

Chapter 8, Protection and Organization of Code, puts together all the pieces of the object-
oriented puzzle. We will take advantage of extensions to add features to types, classes, and
protocols to which we don’t have access to the source code. We will make sure that the code
exposes only the things that it has to expose, and we will learn how everything we learned
about object-oriented programming is useful in any kind of apps we might create.

What you need for this book
In order to work with Xcode 8.x and the Swift Playground, you will need a Mac computer
capable of running OS X 10.11.5 or later, with 8 GB RAM.

Preface

[3]

In order to work with Swift 3.x open source version in the Linux platform, you will need
any computer capable of running Ubuntu 14.04 or later, or Ubuntu 15.10 or later. These are
the Linux distributions where the Swift open source binaries have been built and tested. It it
also possible to run the Swift compiler and utilities on other Linux distributions. You must
check the latest available documentation at the Swift open source website: h t t p s ://s w i f t .

o r g .

In order to work with the web-based IBM Swift Sandbox, you will need any device capable
of executing a modern web browser.

Who this book is for
This book is for iOS and Mac OS developers who want to get a detailed practical
understanding of object-oriented programming with the latest version of Swift 3.0.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We just
need to enter :help to list all the available debugger commands."

A block of code is set as follows:

 let degCUnit = HKUnit.degreeCelsius()
 let degFUnit = HKUnit.degreeFahrenheit()

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 open func filteredBy(condition: (Int) -> Bool) -> [Int] {
 return numbersList.filter({ condition($0) })
 }

https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org
https://swift.org

Preface

[4]

Any command-line input or output is written as follows:

id: 1, name: "Invaders 2017", highestScore: 1050, playedCount: 3050
id: 2, name: "Minecraft", highestScore: 3741050, playedCount: 780009992

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /S w i f t - 3- O b j e c t - O r i e n t e d - P r o g r a m m i n g . We also have other code bundles from
our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/Swift-3-Object-Oriented-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Objects from the Real World to

the Playground
Whenever you have to solve a problem in the real world, you use elements and interact
with them. For example, when you are thirsty, you take a glass, you fill it up with water,
soda, or your favorite juice, and then you drink. Similarly, you can easily recognize
elements, known as objects, from real-world actions and then translate them into object-
oriented code. In this chapter, we will start learning the principles of object-oriented
programming to use them in Swift 3 to develop apps and applications.

Installing the required software on Mac OS
In this book, you will learn to take advantage of all the object-oriented features included in
Swift programming language version 3. Some of the examples might be compatible with
previous Swift versions, such as 2.3, 2.2, 2.1, and 2.0, but it is essential to use Swift 3.0 or
later because this version is not backward compatible. We won't write code that is
backwards compatible with previous Swift versions because our main goal is to work with
Swift 3.0 or later and to use its syntax.

We will use Xcode as our Integrated Development Environment (IDE). All the examples
work with Xcode version 8 or higher. The latest versions of the IDE include Swift 3 as one of
the supported programming languages to build iOS apps, watchOS apps, tvOS apps, and
Mac OS applications. It is important to note that Xcode only runs on Mac OS, and all the
instructions provided in this chapter consider that we are running this operating system on
a Mac computer. However, after Apple launched Swift 2.2, it made the language open
source and added a port to Linux, specifically to Ubuntu. Swift 3 is also available on
Ubuntu. Thus, we can apply everything we learn about object-oriented programming with
Swift when targeting other platforms to which the language is ported.

Objects from the Real World to the Playground

[8]

In case you want to work with the Swift open source release on Mac OS,
you can download the latest release in the Downloads section at
http://swift.org. You can run all the code examples included in this
book in the Swift Read Evaluate Print Loop command-line environment
instead of working with Xcode Playground. The Swift Read Evaluate Print
Loop command-line environment is also known as Swift REPL.

It is also possible to use the Swift Playgrounds app on iOS 10.0 or later in the iPad models
that are compatible with this app. You can work with this app to run the examples.
However, our main IDE will be Xcode.

The following is the URL for the Swift Playgrounds app:
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=908519492

In order to install Xcode, you just need to launch the Mac App Store, enter Xcode in the
search box, click on the Xcode application icon shown in the results, and make sure that it is
the application developed by Apple and not an Xcode helper application. The following
screenshot shows the details of the Xcode application in the Mac App Store:

http://swift.org
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=908519492

Objects from the Real World to the Playground

[9]

Then, click on Get and wait until the Mac App Store downloads Xcode. Note that it is
necessary to download a few GBs and therefore it may take some time to finish the
download process. Once the download is finished, click on Install and follow the necessary
steps to complete the application's installation process. Finally, you will be able to launch
the Xcode application as you would execute any other application in your Mac OS
operating system. It is also possible to download and install Xcode from
http://developer.apple.com/xcode/.

Apple usually launches Xcode beta versions before releasing the final stable versions. It is
highly recommended to avoid working with beta versions to test the examples included in
this book because beta versions are unstable and some examples might crash or generate
unexpected outputs. The Mac App Store only offers the latest stable version of Xcode, and
therefore, there is no risk of installing a beta version by mistake when following the
previously explained steps.

In case we have any Xcode beta version installed on the same computer in which we will
run the book samples, we have to make sure that the configuration for the stable Xcode
version uses the appropriate command-line tools. We won't work with the command-line
tools, but we will take advantage of Playground, and this feature uses the command-line
tools under the hood.

Launch Xcode, navigate to Xcode | Preferences…, and click on Locations. Make sure that
the Command Line Tools drop-down menu displays the stable Xcode version that you
installed as the selected option. The following screenshot shows Xcode 8.0 (8A218a) as the
selected version for Command Line Tools.

http://developer.apple.com/xcode/

Objects from the Real World to the Playground

[10]

However, you will definitely see a higher version number because Xcode is updated
frequently:

We don't need an iOS Developer Program membership to run the
examples included in this book. However, in case we want to distribute
the apps or applications coded in Swift to any App Store or activate
certain capabilities in Xcode, we will require an active membership.

You don't need any previous experience with the Swift programming language to work
with the examples in this book and learn how to model and create object-oriented code with
Swift 3. If you have some experience with Objective-C, Java, C#, Python, Ruby, or
JavaScript, you will be able to easily learn Swift's syntax and understand the examples.
Swift borrows many features from these and other modern programming languages, and
therefore, any knowledge of these languages will be extremely useful.

Objects from the Real World to the Playground

[11]

Installing the required software on Ubuntu
Linux
In case we want to work with Swift 3 in Ubuntu Linux, we won't be able to run the
examples that interact with any iOS API. However, we will be able to run a big percentage
of the sample code included in this book, and we will be able to learn the most important
object-oriented principles.

We can download the latest release for our Ubuntu version in the DOWNLOAD section at
http://swift.org. This page includes all the instructions to install the required
dependencies (clang and libicu-dev) and to execute the Swift REPL command-line
environment.

Once we have completed the installation, we can execute the swift command to run the
REPL in a Terminal. After we see a welcome message, we can enter Swift code and the
REPL will display the results of executing each code block. We can also take advantage of a
set of LLDB debugging commands. We just need to enter :help to list all the available
debugger commands.

The following screenshot shows the Terminal application in Ubuntu running the swift
command and displaying the results after entering two lines of Swift code:

http://swift.org/

Objects from the Real World to the Playground

[12]

Working with Swift 3 on the web
In case we want to work with Swift 3 in Windows or in any other platform, we can work
with a web-based Swift sandbox developed by IBM. We just need to open the following
web page in a web browser: h t t p s ://s w i f t l a n g . n g . b l u e m i x . n e t /#/r e p l .

The IBM Swift Sandbox mimics the Playground with a text-based UI and it allows you to
enter the code on the left-hand side and watch the results of the execution on the right-hand
side. The sandbox is simple and not as powerful as the Xcode Playground. As it happens
with Swift in Ubuntu Linux, we won't be able to run the examples that interact with any
iOS API. However, we will be able to run a big percentage of the sample code included in
this book, and we will be able to learn the most important object-oriented principles with
any compatible web browser.

The following screenshot shows IBM Swift Sandbox displaying the results of executing two
lines of Swift code in Chrome under Windows 10. We just need to enter the Swift code on
the left-hand side and click on the Execute button (play icon) to see the results of compiling
and executing the code on the right-hand side:

https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl
https://swiftlang.ng.bluemix.net/#/repl

Objects from the Real World to the Playground

[13]

Capturing objects from the real world
Now, let's forget about Xcode and Swift for a while. Imagine that we have to develop a new
universal iOS app that targets the iPad, iPhone, and iPod touch devices. We will have
different User Interfaces (UI) and User Experiences (UX) because these devices have
diverse screen sizes and resolutions. However, no matter the device in which the app runs,
it will have the same goal.

Imagine that Vanessa is a very popular YouTuber, painter, and craftswoman who usually
uploads videos on a YouTube channel. She has more than a million followers, and one of
her latest videos had a huge impact on social networking sites. In this video, she sketched
basic shapes and then painted them with acrylic paint to build patterns. She worked with
very attractive colors, and many famous Hollywood actresses uploaded pictures on
Instagram sharing their creations with the technique demonstrated by Vanessa and with the
revolutionary special colors developed by a specific acrylic paint manufacturer.

Obviously, the acrylic paint manufacturer wants to take full advantage of this situation, so
he specifies the requirements for an app. The app must provide a set of predefined 2D
shapes that the users can drag and drop in a document to build a pattern so that they can
change both the 2D position and size. It is important to note that the shapes cannot
intersect, and users cannot change the line widths because these are the basic requirements
of the technique introduced by Vanessa. A user can select the desired line and fill colors for
each shape. At any time, the user can tap a button, and the app must display a list of the
acrylic paint tubes, bottles, or jars that the user must buy to paint the drawn pattern.
Finally, the user can easily place an online order to request the suggested acrylic paint
tubes, bottles, or jars. The app also generates a tutorial to explain to the user how to
generate each of the final colors for the lines and fills by thinning the appropriate amount of
acrylic paint with water, based on the colors that the user has specified.

Objects from the Real World to the Playground

[14]

The following figure shows an example of a pattern. Note that it is extremely simple to
describe the objects that compose the pattern: four 2D shapes-specifically, two rectangles
and two circles. If we measure the shapes, we would easily realize that they aren't two
squares and two ellipses; they are two rectangles and two circles:

We can easily recognize the objects; we understand that the pattern is composed of many
2D geometric shapes. Now, let's focus on the core requirement for the app, which is
calculating the required amounts of acrylic paint. We have to take into account the
following data for each shape included in the pattern in order to calculate the amount of
acrylic paint:

The perimeter
The area
The line color
The fill color

The app allows users to use a specific color for the line that draws the borders of each
shape. Thus, we have to calculate the perimeter in order to use it as one of the values that
will allow us to estimate the amount of acrylic paint that the user must buy to paint each
shape's border. Then, we have to calculate the area to use it as one of the values that will
allow us to estimate the amount of acrylic paint that the user must buy to fill each shape's
area.

Objects from the Real World to the Playground

[15]

We have to start working on the backend code that calculates areas and perimeters. The app
will follow Vanessa's guidelines to create the patterns, and it will only support the
following six shapes:

Squares
Equilateral triangles
Rectangles
Circles
Ellipses
Regular hexagons

We can start writing Swift code-specifically, six functions that calculate the areas of the
previously enumerated shapes and another six to calculate their perimeters. Note that we
are talking about functions, and we stopped thinking about objects; therefore, we will face
some problems with this path, which we will solve with an object-oriented approach from
scratch.

For example, if we start thinking about functions to solve the problem, one possible solution
is to code the following twelve functions to do the job:

calculatedSquareArea

calculatedEquilateralTriangleArea

calculatedRectangleArea

calculatedCircleArea

calculatedEllipseArea

calculatedRegularHexagonArea

calculatedSquarePerimeter

calculatedEquilateralTrianglePerimeter

calculatedRectanglePerimeter

calculatedCirclePerimeter

calculatedEllipsePerimeter

calculatedRegularHexagonPerimeter

Objects from the Real World to the Playground

[16]

Each of the previously enumerated functions has to receive the necessary parameters of
each shape and return either its calculated area or perimeter. These functions do not have
side effects, that is, they do not make changes to the arguments they receive and they just
return the results of the calculated perimeters. Therefore, we use calculated instead of
calculate as the first word for their names. This way, it will be easier for us to generate
the object-oriented version as we will continue to follow the API design guidelines that
Apple has provided for Swift 3.

Now, let's forget about functions for a bit. Let's recognize the real-world objects from the
application's requirements that we were assigned. We have to calculate the areas and
perimeters of six elements, which are six nouns in the requirements that represent real-life
objects-specifically 2D shapes. Our list of real-world objects is exactly the same that
Vanessa's specification uses to determine the shapes allowed to be used to create patterns.
Take a look at the list:

Squares
Equilateral triangles
Rectangles
Circles
Ellipses
Regular hexagons

After recognizing the real-life objects, we can start designing our application by following
an object-oriented paradigm. Instead of creating a set of functions that perform the required
tasks, we can create software objects that represent the state and behavior of a square,
equilateral triangle, rectangle, circle, ellipse, and regular hexagon. This way, the different
objects mimic the real-world 2D shapes. We can work with the objects to specify the
different attributes required to calculate the area and perimeter. Then, we can extend these
objects to include the additional data required to calculate other required values, such as the
quantity of acrylic paint required to paint the borders.

Now, let's move to the real world and think about each of the previously enumerated six
shapes. Imagine that we have to draw each of the shapes on paper and calculate their areas
and perimeters. After we draw each shape, which values will we use to calculate their areas
and perimeters? Which formulae will we use?

Objects from the Real World to the Playground

[17]

We started working on an object-oriented design before we started coding,
and therefore, we will work as if we didn't know many concepts of
geometry. For example, we can easily generalize the formulae that we use
to calculate the perimeters and areas of regular polygons. However, we
will analyze the requirements in most cases; we still aren't experts on the
subject, and we need to dive deeper into the subject before we can group
classes and generalize their behavior.

The following figure shows a drawn square and the formulae that we will use to calculate
the perimeter and area. We just need the length of a side, usually identified as a:

The following figure shows a drawn equilateral triangle and the formulae that we will use
to calculate the perimeter and area. This type of triangle has equal sides, and the three
internal angles are equal to 60 degrees. We just need the length of each side, usually
identified as a:

Objects from the Real World to the Playground

[18]

The following figure shows a drawn rectangle and the formulae that we will use to calculate
the perimeter and area. We need the width and height values:

The following figure shows a drawn circle and the formulae that we will use to calculate the
perimeter and area. We just need the radius, usually identified as r:

Objects from the Real World to the Playground

[19]

The following figure shows a drawn ellipse and the formulae that we will use to calculate
the perimeter and area. We need the semimajor axis (usually labeled as a) and semiminor
axis (usually labeled as b) values:

The following figure shows a drawn regular hexagon and the formulae that we will use to
calculate the perimeter and area. We just need the length of each side, usually labeled as a:

The following table summarizes the data required for each shape:

Shape Required data

Square The length of a side

Equilateral triangle The length of a side

Rectangle The width and height

Circle The radius

Ellipse The semimajor and semiminor axes

Regular hexagon The length of a side

Objects from the Real World to the Playground

[20]

Each object that represents a specific shape encapsulates the required data that we
identified. For example, an object that represents an ellipse will encapsulate the ellipse's
semimajor and semiminor axes.

Data encapsulation is one of the major pillars of object-oriented
programming.

Generating classes to create objects
Imagine that you want to draw and calculate the areas of six different ellipses. You will end
up with six ellipses drawn, their different semimajor axis and semiminor axis values, and
their calculated areas. It would be great to have a blueprint to simplify the process of
drawing each ellipse with their different semimajor axis and semiminor axis values.

In object-oriented programming, a class is a template definition or blueprint from which
objects are created. Classes are models that define the state and behavior of an object. After
declaring a class that defines the state and behavior of an ellipse, we can use it to generate
objects that represent the state and behavior of each real-world ellipse:

Objects are also known as instances. For example, we can say each circle
object is an instance of the Circle class.

The following figure shows two circle instances drawn with their radius values specified:
Circle #1 and Circle #2. We can use a Circle class as a blueprint to generate the two
different Circle instances. Note that Circle #1 has a radius value of 175, and Circle #2 has a
radius value of 350. Each instance has a different radius value:

Objects from the Real World to the Playground

[21]

The following figure shows three ellipse instances drawn with their semimajor axis and
semiminor axis values specified: Ellipse #1, Ellipse #2, and Ellipse #3. In this case, we can
use an Ellipse class as a blueprint to generate the three different ellipse instances. It is
very important to understand the difference between a class and the objects or instances
generated through its usage. The object-oriented programming features supported in Swift
allow us to discover which blueprint we used to generate a specific object. We will use these
features in many examples in the upcoming chapters. Thus, we can know that each object is
an instance of the Ellipse class. Each ellipse has its own specific values for the semimajor
and semiminor axes:

Objects from the Real World to the Playground

[22]

We recognized six completely different real-world objects from the application's
requirements, and therefore, we can generate the following six classes to create the
necessary objects:

Square

EquilateralTriangle

Rectangle

Circle

Ellipse

RegularHexagon

Note the usage of Pascal case for class names; this means that the first letter of each word
that composes the name is capitalized, while the other letters are in lowercase. This is a
coding convention in Swift. For example, we use the RegularHexagon name for the class
that will generate regular hexagons. Pascal case is also known as UpperCamelCase or
Upper Camel Case.

Recognizing variables and constants to
create properties
We know the information required for each of the shapes to achieve our goals. Now, we
have to design the classes to include the necessary properties that provide the required data
to each instance. We have to make sure that each class has the necessary variables that
encapsulate all the data required by the objects to perform all the tasks based on our
application domain.

Let's start with the RegularHexagon class. It is necessary to know the length of a side for
each instance of this class, that is, for each regular hexagon object. Thus, we need an
encapsulated variable that allows each instance of the RegularHexagon class to specify the
value for the length of a side.

The variables defined in a class to encapsulate the data for each instance of
the class in Swift are known as properties. Each instance has its own
independent value for the properties defined in the class. The properties
allow us to define the characteristics for an instance of the class. In other
programming languages, the variables defined in a class are known as
either attributes or fields.

Objects from the Real World to the Playground

[23]

The RegularHexagon class defines a floating point property named lengthOfSide, whose
initial value is equal to 0 for any new instance of the class. After we create an instance of the
RegularHexagon class, it is possible to change the value of the lengthOfSide attribute.

Note the usage of Camel case, which is using a lowercase first letter, for class property
names. The first letter is lowercase, and then, the first letter for each word that composes the
name is capitalized, while the other letters are in lowercase. It is a coding convention in
Swift for both variables and properties. For example, we use the lengthOfSide name for
the property that stores the value of the length of a side.

Imagine that we create two instances of the RegularHexagon class. One of the instances is
named regularHexagon1 and the other, regularHexagon2. The instance names allow us
to access the encapsulated data for each object, and therefore, we can use them to change
the values of the exposed properties.

Swift uses a dot (.) to allow us to access the properties of instances. So,
regularHexagon1.lengthOfSide provides access to the length of side of the
RegularHexagon instance named regularHexagon1, and
regularHexagon2.lengthOfSide does the same for the RegularHexagon instance
named regularHexagon2.

Note that the naming convention makes it easy for us to differentiate an
instance name, that is, a variable from a class name. Whenever we see the
first letter in uppercase or capitalized, it means that we are talking about a
class.

We can assign 20 to regularHexagon1.lengthOfSide and 50 to
regularHexagon2.lengthOfSide. This way, each RegularHexagon instance will have a
different value for the lengthOfSide attribute.

Now, let's move to the Ellipse class. We can define two floating point attributes for this
class: semiMajorAxis and semiMinorAxis. Their initial values will also be 0. Then, we
can create three instances of the Ellipse class named ellipse1, ellipse2, and
ellipse3.

Objects from the Real World to the Playground

[24]

We can assign the values summarized in the following table to the three instances of the
Ellipse class:

Instance name semiMinorAxis value semiMajorAxis value

ellipse1 210 400

ellipse2 180 300

ellipse3 180 356

This way, ellipse1.semiMinorAxis will be equal to 210, while
ellipse3.semiMinorAxis will be equal to 180. The ellipse1 instance represents an
ellipse with semiMinorAxis of 210 and semiMajorAxis of 400.

The following table summarizes the floating point properties defined for each of the six
classes that we need for our application:

Class name Properties list

Square lengthOfSide

EquilateralTriangle lengthOfSide

Rectangle width and height

Circle radius

Ellipse semiMinorAxis and semiMajorAxis

RegularHexagon lengthOfSide

The properties are members of their respective classes. However,
properties aren't the only members that classes can have.

Note that three of these classes have the same property: lengthOfSide-specifically, the
Square, EquilateralTriangle, and RegularHexagon classes. We will dive deep into
what these three classes have in common later and take advantage of object-oriented
features to reuse code and simplify our application's maintenance. However, we are just
starting our journey, and we will make improvements as we cover additional object-
oriented features included in Swift.

Objects from the Real World to the Playground

[25]

The following figure shows a Unified Modeling Language (UML) class diagram with the
six classes and their properties. This diagram is very easy to understand. The class name
appears on the top of the rectangle that identifies each class. A rectangle below the same
shape that holds the class name displays all the property names exposed by the class with a
plus sign (+) as a prefix. This prefix indicates that what follows it is an attribute name in
UML and a property name in Swift:

Recognizing actions to create methods
So far, we have designed six classes and identified the necessary properties for each of
them. Now, it is time to add the necessary pieces of code that work with the previously
defined properties to perform all the tasks. We have to make sure that each class has the
necessary encapsulated functions that process the property values specified in the objects to
perform all the tasks.

Let's forget a bit about the similarities between the different classes. We will work with
them individually as if we didn't have the necessary knowledge of geometric formulae. We
will start with the Square class. We need pieces of code that allow each instance of this
class to use the value of the lengthOfSide property to calculate the area and perimeter.

Objects from the Real World to the Playground

[26]

The functions defined in a class to encapsulate the behavior of each
instance of the class are known as methods. Each instance can access the
set of methods exposed by the class. The code specified in a method can
work with the properties specified in the class. When we execute a
method, it will use the properties of the specific instance. Whenever we
define methods, we must make sure that we define them in a logical place,
that is, in the place where the required data is kept.

When a method doesn't require parameters, we can say that it is a parameterless method. In
this case, all the methods we will initially define for the classes will be parameterless
methods that just work with the values of the previously defined properties and use the
formulae shown in the figures. Thus, we will be able to call them without arguments. We
will start creating methods, but we will be able to explore additional options based on
specific Swift features later.

The Square class defines the following two parameterless methods. We will declare the
code for both methods within the definition of the Square class so that they can access the
lengthofSide property value:

calculatedArea: This method returns a floating point value with the calculated
area for the square. It returns the square of the lengthOfSide attribute value
(lengthOfSide2 or lengthOfSide ^ 2).
calculatedPerimeter: This method returns a floating point value with the
calculated perimeter for the square. It returns the lengthOfSide attribute value
multiplied by 4 (4 * lengthOfSide).

Note the usage of Camel case, that is, using a lowercase first letter, for method names. The
first letter is in lowercase, and then, the first letter for each word that composes the name is
capitalized, while the other letters are in lowercase. As it happened with property names, it
is a coding convention in Swift for methods.

These methods do not have side effects, that is, they do not make changes to the related
instance. The methods just return the calculated values. Their operation is naturally
described by the calculate verb. We use calculated instead of calculate as the first
word for their names because the verb's imperative must be used for mutating methods. In
this case, the methods are nonmutating, and we follow the API design guidelines that
Apple provided for Swift 3.

Objects from the Real World to the Playground

[27]

Swift uses a dot (.) to allow us to execute the methods of the instances. Imagine that we
have two instances of the Square class: square1 with the lengthOfSide property equal to
20 and square2 with the lengthOfSide property equal to 40. If we call
square1.calculatedArea, it will return the result of 202, which is 400. If we call
square2.calculatedArea, it will return the result of 402, which is 1600. Each instance has
a diverse value for the lengthOfSide attribute, and therefore, the results of executing the
calcualteArea method are different.

If we call square1.calculatedPerimeter, it will return the result of 4 * 20, which is 80.
On the other hand, if we call square2.calculatePerimeter, it will return the result of 4 *
40, which is 160.

Now, let's move to the EquilateralTriangle class. We need exactly two methods with
the same names specified for the Square class: calculatedArea and
calculatedPerimeter. In addition, the methods return the same type and don't need
parameters, so we can declare both of them as parameterless methods, as we did in the
Square class. However, these methods have to calculate the results in a different way, that
is, they have to use the appropriate formulae for an equilateral triangle. The other classes
also need the same two methods. However, each of them will use the appropriate formulae
for the related shape.

We have a specific problem with the calculatedPerimeter method that the Ellipse
class generates. Perimeters are complex to calculate for ellipses, so there are many formulae
that provide approximations. An exact formula requires an infinite series of calculations.
We can use an initial formula that isn't very accurate, which we will have to improve later.
The initial formula will allow us to return a floating point value with the calculated
approximation of the perimeter for the ellipse.

Objects from the Real World to the Playground

[28]

The following figure shows an updated version of the UML diagram with the six classes,
their attributes, and their methods:

Organizing classes with UML diagrams
So far, our object-oriented solution includes six classes with their properties and methods.
However, if we take another look at these six classes, we will notice that all of them have
the same two methods: calculatedArea and calculatedPerimeter. The code for the
methods in each class is different because each shape uses a special formula to calculate
either the area or the perimeter. However, the declarations, contracts, or protocols for the
methods are the same. Both methods have the same name, are always parameterless, and
return a floating point value. Thus, all of them return the same type.

Objects from the Real World to the Playground

[29]

When we talked about the six classes, we said we were talking about six different
geometrical shapes or simply shapes. Thus, we can generalize the required behavior or
protocol for the six shapes. These shapes must define the calculatedArea and
calculatedPerimeter methods with the previously explained declarations. We can create
a protocol to make sure that the six classes provide the required behavior.

The protocol is a special class named Shape, and it generalizes the requirements for the
geometrical shapes in our application. In this case, we will work with a special class, but in
the future, we will use protocols for the same goal. The Shape class declares two
parameterless methods that return a floating point value: calculatedArea and
calculatedPerimeter. Then, we will declare the six classes as subclasses of the Shape
class, which will inherit these definitions, and provide the specific code for each of these
methods.

The subclasses of Shape (Square, EquilateralTriangle, Rectangle, Circle, Ellipse,
and RegularHexagon) implement the methods because they provide code while
maintaining the same method declarations specified in the Shape superclass. Abstraction
and hierarchy are two major pillars of object-oriented programming.

Object-oriented programming allows us to discover whether an object is an instance of a
specific superclass. After we change the organization of the six classes and after they
become subclasses of Shape, any instance of Square, EquilateralTriangle, Rectangle,
Circle, Ellipse, or RegularHexagon is also a Shape class. In fact, it isn't difficult to
explain the abstraction because we speak the truth about the object-oriented model when
we say that it represents the real world. It makes sense to say that a regular hexagon is
indeed a shape and therefore an instance of RegularHexagon is a Shape class. An instance
of RegularHexagon is both a Shape (the superclass of RegularHexagon) class and a
RegularHexagon (the class that we used to create the object) class.

Objects from the Real World to the Playground

[30]

The following figure shows an updated version of the UML diagram with the superclass or
base class (Shape), its six subclasses, and their attributes and methods. Note that the
diagram uses a line that ends in an arrow that connects each subclass to its superclass. You
can read the line that ends in an arrow as the following: the class where the line begins is a
subclass of the class that has the line ending with an arrow. For example, Square is a
subclass of Shape and EquilateralTriangle is a subclass of Shape:

Objects from the Real World to the Playground

[31]

A single class can be the superclass of many subclasses.

Now, it is time to have a meeting with a domain expert, that is, someone who has an
excellent knowledge of geometry. We can use the UML diagram to explain the object-
oriented design for the solution. After we explain the different classes that we will use to
abstract behavior, the domain expert explains to us that many of the shapes have something
in common and that we can generalize behavior even further. The following three shapes
are regular polygons:

An equilateral triangle (the EquilateralTriangle class)
A square (the Square class)
A regular hexagon (the RegularHexagon class)

Regular polygons are polygons that are both equiangular and equilateral. All the sides that
compose a regular polygon have the same length and are placed around a common center.
This way, all the angles between any two sides are equal. An equilateral triangle is a regular
polygon with three sides, the square has four sides, and the regular hexagon has six sides.
The following picture shows the three regular polygons and the generalized formulae that
we can use to calculate their areas and perimeters. The generalized formula to calculate the
area requires us to calculate a cotangent, which is abbreviated as cot:

Objects from the Real World to the Playground

[32]

As the three shapes use the same formula with just a different value for the number of sides
(n) parameter, we can generalize the required protocol for the three regular polygons. The
protocol is a special class named RegularPolygon that defines a new numberOfSides
property that specifies the number of sides with an integer value. The RegularPolygon
class is a subclass of the previously defined Shape class. It makes sense because a regular
polygon is indeed a shape. The three classes that represent regular polygons become
subclasses of RegularPolygon. However, both the calculateArea and
calculatedPerimeter methods are coded in the RegularPolygon class using the
generalized formulae. The subclasses just specify the right value for the inherited
numberOfSides property, as follows:

EquilateralTriangle: 3
Square: 4
RegularHexagon: 6

The RegularPolygon class also defines the lengthOfSide property that was previously
defined in the three classes that represent regular polygons. Now, the three classes become
subclasses of RegularPolygon and inherit the lengthOfSide property. The following
figure shows an updated version of the UML diagram with the new RegularPolygon class
and the changes in the three classes that represent regular polygons. The three classes that
represent regular polygons do not declare either the calculatedArea or
calculatedPerimeter methods because these classes inherit them from the
RegularPolygon superclass and don't need to make changes to these methods that apply a
general formula:

Objects from the Real World to the Playground

[33]

Our domain expert also explains to us a specific issue with ellipses. There are many
formulae that provide approximations of the perimeter value for this shape. Thus, it makes
sense to add additional methods that calculate the perimeter using other formulae. He
suggests us to make it possible to calculate the perimeters with the following formulae:

The second version of the formula developed by Srinivasa Aiyangar Ramanujan
The formula proposed by David W. Cantrell

We will define the following two additional parameterless methods to the Ellipse class.
The new methods will return a floating point value and solve the specific problem of the
ellipse shape:

CalculatedPerimeterWithRamanujanII

CalculatedPerimeterWithCantrell

Objects from the Real World to the Playground

[34]

This way, the Ellipse class will implement the methods specified in the Shape superclass
and also add two specific methods that aren't included in any of the other subclasses of
Shape. The following figure shows an updated version of the UML diagram with the new
methods for the Ellipse class:

Working with API objects in the Xcode
Playground
Now, let's forget a bit about geometry, shapes, polygons, perimeters, and areas. We will
interact with API objects in the Xcode Playground. You still need to learn many things
before we can start creating object-oriented code. However, we will write some code in the
Playground to interact with an existing API before we move forward with our journey into
the object-oriented programming world.

Objects from the Real World to the Playground

[35]

The following example interacts with an iOS API, and therefore, you
cannot run it in Ubuntu or in the web-based IBM Swift Sandbox.
However, you will be able to run most of the examples that don't interact
with iOS APIs in the forthcoming chapters.

Object-oriented programming is extremely useful when you have to interact with API
objects. When Apple launched iOS 8, it introduced a Health app that provided iPhone users
access to a dashboard of health and fitness data. The HealthKit framework introduced in
the iOS SDK 8 allows app developers to request permissions from the users themselves to
read and write specific types of health and fitness data. The framework makes it possible to
ask for, create, and save health and fitness data that the users will see summarized in the
Health app. This app is still a very important app in iOS 10, and the Apple Watch device in
its two versions can generate very useful data for this app.

When we store and query health and fitness data, we have to use the framework to work
with the units in which the values are expressed, their conversions, and localizations. For
example, let's imagine an app that stores body temperature data without considering the
units and their conversions. A value of 39 degrees Celsius (which is equivalent to 102.2
degrees Fahrenheit) in an adult would means that the person's body temperature is higher
than normal (that is, they may have a fever). However, a value of 39 degrees Fahrenheit
(equivalent to 3.88 degrees Celsius) would mean that the person's body is close to its
freezing point. If our app just stores values without considering the related units and user
preferences, we can have huge mistakes. If the app just saves 39 degrees and thinks that the
user will always display Celsius, it will still display 39 degrees to a user whose settings use
Fahrenheit as the default temperature unit. Thus, the app will provide wrong information
to the user.

The data in HealthKit is always represented by a double value with an associated simple or
complex unit. The units are classified into types, and it is possible to check the compatibility
between units before performing conversions. We can work with HealthKit quantities and
units in the Swift interactive Playground and understand how simple it is to work with an
object-oriented framework. It is important to note that the Playground doesn't allow us to
interact with the HealthKit data store. However, we will just play with quantities and units
in a few object-oriented snippets.

Objects from the Real World to the Playground

[36]

Start Xcode, navigate to File | New | Playground…, enter a name for Playground, select
iOS as the desired platform, click on Next, select the desired location for the Playground
file, and click on Create. Xcode will display a Playground window with a line that imports
UIKit and creates a string variable. You just need to add the following line to be able to
work with quantities and units from the HealthKit framework, as shown in the
subsequent screenshot:

 import HealthKit

Xcode allows us to create playgrounds for any of the following platforms:
iOS, Mac OS, and tvOS.

All HealthKit types start with the HK prefix. HKUnit represents a particular unit that can
be either simple or complex. Simple units for temperature are degrees Celsius and degrees
Fahrenheit. A complex unit for mass/volume is ounces per liter (oz/L). HKUnit supports
many standard SI units (Système Internationale d'Unités in French, International System
of Units in English) and non-SI units.

Add the following two lines to the Swift Playground and check the results on the right-
hand side of the window; you will notice that they generate instances of
HKTemperatureUnit. Thus, you created two objects that represent temperature units, as
follows. The code file for the sample is included in the swift_3_oop_chapter_01_01
folder:

 let degCUnit = HKUnit.degreeCelsius()
 let degFUnit = HKUnit.degreeFahrenheit()

Objects from the Real World to the Playground

[37]

In Swift 2.x, in order to work with the APIs, it was necessary to repeat
information many times. Swift 3 reduced the need to repeat information
that was obvious, and therefore, we have to write less code to achieve the
same goal compared with Swift 2.x. For example, in Swift 2.x, it was
necessary to write HKUnit.degreeCelsiusUnit() and
HKUnit.degreeFahrenheitUnit(). The HKUnit prefix makes it clear
that we are talking about a unit, and therefore, Swift 3 removed the Unit
word as a suffix of both HKUnit.degreeCelsiusUnit() and
HKUnit.degreeFahrenheitUnit(). As a result, we can write the
previously shown code that uses HKUnit.degreeCelsius() and
HKUnit.degreeFahrenheit().

However, there are other ways to create objects that represent temperature units. It is also
possible to use the HKUnit initializer, which returns the appropriate unit instance from its
string representation. For example, the following lines also generate instances of
HKTemperatureUnit for degrees in Celsius and Fahrenheit. The code file for the sample is
included in the swift_3_oop_chapter_01_01 folder:

 let degCUnitFromStr = HKUnit(from: "degC")
 let degFUnitFromStr = HKUnit(from: "degF")

In Swift 2.x, it was necessary to use fromString instead of from to
achieve the same goal shown in the previous lines. Swift 3 reduced the
code that it is necessary to write to make API calls.

The following lines generate two instances of HKEnergyUnit-one for kilocalories and the
other for kilojoules. The code file for the sample is included in the
swift_3_oop_chapter_01_01 folder:

 let kiloCaloriesUnit = HKUnit(from: "kcal")
 let joulesUnit = HKUnit(from: "kJ")

The next two lines generate two instances of HKMassUnit-one for kilograms and the other
for pounds. The code file for the sample is included in the swift_3_oop_chapter_01_01
folder:

 let kiloGramsUnit = HKUnit.gramUnit(with:
 HKMetricPrefix.kilo)
 let poundsUnit = HKUnit.pound()

Objects from the Real World to the Playground

[38]

The next line generates an instance of _HKCompoundUnit because the string specifies a
complex unit for mass/volume: ounces per liter (oz/L). The code file for the sample is
included in the swift_3_oop_chapter_01_01 folder. The subsequent screenshot shows
the results displayed in the Playground:

 let ouncesPerLiter = HKUnit(from: "oz/L")

HKQuantity encapsulates a quantity value (Double) and the unit of measurement
(HKUnit). This class doesn't provide all the operations you might expect to work with
quantities and their units of measure, but it allows you to perform some useful
compatibility checks and conversions.

The following lines create two HKQuantity instances with temperature units; we name the
instances bodyTemperature1 and bodyTemperature2. The former uses degrees Celsius
(degCUnit) and the latter degrees Fahrenheit (degFUnit). Then, the code calls the is
method with the compatibleWith argument to make sure that each HKQuantity instance
can be converted to degrees Fahrenheit (degFUnit). If is returns true, it means that you
can convert to HKUnit, which is specified as the compatibleWith argument. We always
have to call this method before calling the doubleValue method. This way, we will avoid
errors when the units aren't compatible.

The doubleValue method returns the quantity value converted to the unit specified as the
for argument. In this case, the two calls make sure that the value is expressed in degrees
Fahrenheit, no matter what the temperature unit specified in each HKQuantity instance is.
The code file for the sample is included in the swift_3_oop_chapter_01_01 folder. The
screenshot that follows the given code shows the results displayed in the Playground:

 let bodyTemperature1 = HKQuantity(unit: degCUnit,
 doubleValue: 35.2)

Objects from the Real World to the Playground

[39]

 let bodyTemperature2 = HKQuantity(unit: degFUnit,
 doubleValue: 95)
 print(bodyTemperature1.description)
 print(bodyTemperature2.description)

 if bodyTemperature1.is(compatibleWith: degFUnit) {
 print("Temperature #1 in Fahrenheit degrees: \
 (bodyTemperature1.doubleValue(for: degFUnit))")
 }

 if bodyTemperature2.is(compatibleWith: degFUnit) {
 print("Temperature #2 in Fahrenheit degrees: \
 (bodyTemperature2.doubleValue(for: degFUnit))")
 }

Objects from the Real World to the Playground

[40]

The following line shows an example of the code that creates a new HKQuantity instance
with a quantity and temperature unit converted from degrees Fahrenheit to degrees
Celsius. There is no convert method that acts as a shortcut, so we have to call doubleValue
and use it in the HKQuantity initializer, as follows. The code file for the sample is included
in the swift_3_oop_chapter_01_01 folder:

 let bodyTemperature2InDegC = HKQuantity(unit:
 degCUnit, doubleValue:
 bodyTemperature2.doubleValue(for: degCUnit))

The compare method returns a ComparisonResult value that indicates whether the
receiver is greater than, equal to, or less than the compatible HKQuantity value specified as
an argument. For example, the following lines compare bodyTemperature1 with
bodyTemperature2 and print the results of the comparison. Note that it isn't necessary to
convert both the HKQuantity instances to the same unit; they just need to be compatible,
and the compare method will be able to perform the comparison by making the necessary
conversions under the hood. In this case, one of the temperatures is in degrees Celsius and
the other is in degrees Fahrenheit. The screenshot that follows the given code shows the
results displayed in the Playground:

 let bodyTemperature2InDegC = HKQuantity(unit:
 degCUnit, doubleValue:
 bodyTemperature2.doubleValue(for: degCUnit))

 let comparisonResult =
 bodyTemperature1.compare(bodyTemperature2)
 switch comparisonResult {
 case ComparisonResult.orderedDescending:
 print("Temperature #1 is greater than #2")
 case ComparisonResult.orderedAscending:
 print("Temperature #2 is greater than #1")
 case ComparisonResult.orderedSame:
 print("Temperature #1 is equal to Temperature #2")
 }

Objects from the Real World to the Playground

[41]

In many cases, the APIs removed the NS prefix in Swift 3. In Swift 2.3, the
compare method returned an NSComparisonResult value. In Swift 3, the
compare method returns a ComparisonResult value. In addition, the
APIs in Swift 3 use lowerCamelCase for enumeration values. Therefore,
the NSComparisonResult.OrderedDescending value in Swift 2.3 is
ComparisonResult.orderedDescending in Swift 3.

Exercises
Now that you understand what an object is, it is time to recognize objects in different
applications:

Exercise 1: Work with an iOS app and recognize its objects. Work with an app
that has both an iPhone and iPad version. Execute the app in both versions and
recognize the different objects that the developers might have used to code the
app. Create a UML diagram with the classes that you would use to create the
Think about the methods and properties that you would require for each class. If
the app is extremely complex, just focus on a specific feature.
Exercise 2: Work with a Mac OS application and recognize its objects. Execute the
app and work with a specific feature. Recognize the objects that interact to enable
you to work with the feature. Write down the objects you recognized and their
required behaviors.

Objects from the Real World to the Playground

[42]

Test your knowledge
Objects are also known as:1.

Classes1.
Subclasses2.
Instances3.

The code specified in a method within a class:2.
Cannot access the properties specified in the class1.
Can access the properties specified in the class2.
Cannot interact with other members of the class3.

A subclass:3.
Inherits all members from its superclass1.
Inherits only methods from its superclass2.
Inherits only properties from its superclass3.

The variables defined in a class to encapsulate data for each instance of the class4.
in Swift are known as:

Subclasses1.
Properties2.
Methods3.

The functions defined in a class to encapsulate behavior for each instance of the5.
class are known as:

Subclasses1.
Properties2.
Methods3.

Which of the following conventions is appropriate for enumeration values in6.
Swift 3:

lowerCamelCase1.
UpperCamelCase2.
ALL UPPERCASE3.

Which of the following class names follow the PascalCase convention, also7.
known as the UpperCamelCase convention, and would be an appropriate name
for a class in Swift 3:

regularHexagon1.
RegularHexagon2.
Regularhexagon3.

Objects from the Real World to the Playground

[43]

Which of the following method names would be appropriate for a non-mutating8.
method that returns the calculated perimeter for a square in Swift 3, considering
the API design guidelines:

calculatedPerimeter1.
calculatePerimeter2.
calculateThePerimeter3.

Which of the following method names would be appropriate for a mutating9.
method that saves the calculated perimeter of an instance's property for a square
in Swift 3, considering the API design guidelines:

calculatedPerimeter1.
calculatePerimeter2.
calculatingPerimeter3.

Summary
In this chapter, you learned how to recognize real-world elements and translate them into
the different components of the object-oriented paradigm supported in Swift 3: classes,
protocols, properties, methods, and instances. You understood that the classes represent
blueprints or templates to generate the objects, also known as instances.

We designed a few classes with properties and methods that represent blueprints for real-
life objects. Then, we improved the initial design by taking advantage of the power of
abstraction and specialized different classes. We generated many versions of the initial
UML diagram as we added superclasses and subclasses. Finally, we wrote some code in the
Swift Playground to understand how we can interact with API objects. We recognized
many differences between Swift 3 and the previous versions of the programming language
when interacting with APIs.

Now that you have learned some of the basics of the object-oriented paradigm, we are
ready to start creating classes and instances in Swift 3, which is the topic of the next chapter.

2
Structures, Classes, and

Instances
In this chapter, you will learn the differences between structures and classes. We will start
working with examples on how to code classes and customize the initialization and
deinitialization of instances. We will understand how classes work as blueprints to generate
instances and dive deep into all the details of Automatic Reference Counting (ARC).

Understanding structures, classes, and
instances
In the previous chapter, you learned some of the basics of the object-oriented paradigm,
including classes and objects, which are also known as instances. We started working on an
app required by an acrylic paint manufacturer who wanted to take full advantage of the
popularity of an admired YouTuber, painter, and craftswoman. We ended up creating a
UML diagram with the structure of many classes, including their hierarchy, properties, and
methods. It is time to take advantage of the Xcode Playground to start coding the classes
and work with them.

We can also execute all the examples included in this chapter in the Swift
REPL in either macOS or Linux. In addition, we can execute the samples in
the web-based IBM Swift Sandbox. We will analyze the results of
executing the sample code in the Xcode Playground, the Swift REPL, and
IBM Swift Sandbox.

Structures, Classes, and Instances

[45]

In Swift, a class is always the type and blueprint. The object is the working instance of the
class, and one or more variables can hold a reference to an instance. An object is an instance
of the class and the variables can be of a specific type (that is, a class) and hold objects of the
specific blueprint that we generated when declaring the class.

It is very important to mention some of the differences between a class and structure in
Swift. A structure is also a type and blueprint. In fact, structures in Swift are very similar to
classes. You can add methods and properties to structures as you do with classes, with the
same syntax.

However, there is a very important difference between structures and
classes: Swift always copies structures when you pass them around the
code because structures are value types. For example, whenever you pass
a structure as an argument to a method or function, Swift copies the
structure. When you work with classes, Swift passes them by reference
because classes are reference types. In addition, classes support
inheritance, while structures don't.

There are other differences between classes and structures. However, we will focus on the
capabilities of classes because they will be the main building blocks of our object-oriented
solutions.

Now, let's move to the world of superheroes. If we want to model an object-oriented app to
work with superheroes, we will definitely have a SuperHero base class. Each superhero
available in our app will be a subclass of the SuperHero superclass. For example, let's
consider that we have the following subclasses of SuperHero:

SpiderMan: This is a blueprint for Spider-Man
AntMan: This is a blueprint for Ant-Man

So, each superhero becomes a subclass of SuperHero and a type in Swift. Each superhero is
a blueprint that we will use to create instances. Suppose Kevin, Brandon, and Nicholas are
three players who select a superhero as their preferred character to play a game in our app.
Kevin and Brandon choose Spider-Man, and Nicholas selects Ant-Man. In our application,
Kevin will be an instance of the SpiderMan subclass, Brandon will be an instance of the
SpiderMan subclass, and Nicholas will be an instance of the AntMan subclass.

Structures, Classes, and Instances

[46]

As Kevin, Brandon, and Nicholas are superheroes, they share many properties. Some of
these properties will be initialized by the class, because the superhero they belong to
determines some features — for example, the super powers, strength, running speed, flying
speed (in case the superhero has flight abilities), attack power, and defense power.
However, other properties will be specific to the instance, such as the name, weight, age,
costume, and hair colors.

Understanding initialization and its
customization
When you ask Swift to create an instance of a specific class, something happens under the
hood. Swift creates a new instance of the specified type, allocates the necessary memory,
and then executes the code specified in the initializer.

You can think of initializers as equivalents of constructors in other
programming languages such as C# and Java.

When Swift executes the code within an initializer, there is already a live instance of the
class. Thus, we have access to the properties and methods defined in the class. However, we
must be careful in the code we put in the initializer because we might end up
generating huge delays when we create instances of the class.

Initializers are extremely useful to execute setup code and properly
initialize a new instance.

So, for example, before you can call either the calculatedArea or calculatedPerimeter
method, you want both the semiMajorAxis and semiMinorAxis fields for each new
Ellipse instance to have a value initialized to the appropriate values that represent the
shape. Initializers are extremely useful when we want to define the values for the properties
of the instances of a class right after their creation and before we can access the variables
that reference the created instances.

Sometimes, we need specific arguments to be available at the time of creating an instance.
We can design different initializers with the necessary arguments and use them to create
instances of a class. This way, we can make sure that there is no way of creating specific
classes without using the provided initializers that make the necessary arguments required.

Structures, Classes, and Instances

[47]

Swift uses a two-phase initialization process for classes. The first phase makes each class in
the hierarchy that defines a property assign the initial value for each of them. Once all the
properties are assigned their initial values, the second phase allows each class in the
hierarchy to customize each of its defined properties. After the second phase finishes, the
new instance is ready to be used, and Swift allows us to access the variable that references
this instance to access its properties and/or call its methods.

In case you have experience with Objective-C, the two-phase initialization
process in Swift is very similar to the procedure in Objective-C. However,
Swift allows us to set customized initial values.

Understanding deinitialization and its
customization
At some specific times, our app won't need to work with an instance anymore. For example,
once you calculate the perimeter of a regular hexagon and display the results to the user,
you don't need the specific RegularHexagon instance anymore. Some programming
languages require you to be careful about leaving live instances alive, and you have to
explicitly destroy them and deallocate the memory that it consumed.

Swift uses an automatic reference counting, also known as ARC, to automatically deallocate
the memory used by instances that aren't being referenced anymore. When Swift detects
that you aren't referencing an instance anymore, Swift executes the code specified within
the instance's deinitializer before the instance is deallocated from memory. Thus, the
deinitializer can still access all of the instance's resources.

You can think of deinitializers as equivalents of destructors in other
programming languages such as C# and Java. You can use deinitializers to
perform any necessary cleanup before the objects are deallocated and
removed from memory.

For example, think about the following situation: you need to count the number of instances
of a specific class that are being kept alive. You can have a variable shared by all the classes.
Then, customize the class initializer to automatically increase the value for the counter, that
is, increase the value of the variable shared by all the classes. Finally, customize the class
deinitializer to atomically decrease the value for the counter. This way, you can check the
value of this variable to know the objects that are being referenced in your application.

Structures, Classes, and Instances

[48]

Understanding automatic reference counting
Automatic reference counting is very easy to understand. Imagine that we have to
distribute the items that we store in a box. After we distribute all the items, we must throw
the box in a recycle bin. We cannot throw the box in the recycle bin when we still have one
or more items in it. Seriously, we don't want to lose the items we have to distribute because
they are very expensive.

The problem has a very easy solution; we just need to count the number of items that
remain in the box. When the number of items in the box reaches zero, we can get rid of the
box.

One or more variables can hold a reference to a single instance of a class.
Thus, it is necessary to count the number of references to an instance
before Swift can get rid of an instance. When the number of references to a
specific instance reaches zero, Swift can automatically and safely remove
the instance from memory because nobody needs this specific instance
anymore.

For example, you can create an instance of a class and assign it to a variable. The automatic
reference counting mechanism registers the reference and knows that the there is one
reference to this instance. Then, you can assign the same instance to another variable, and
therefore, the automatic reference counting mechanism will increase the reference count for
the single instance to two.

After the first variable runs out of scope, the second variable that holds a reference to the
instance will still be accessible. The automatic reference counting mechanism will decrease
the reference count for the single instance to one as a result of the first variable running out
of scope. At this point, the reference count for the single instance is equal to one and,
therefore, the instance must still be available, that is, we need it alive.

After the second variable runs out of scope, there are no more variables that hold a
reference to the instance; therefore, the automatic reference counting mechanism will
decrease the reference count for the single instance to zero and mark it as disposable. At this
point, the instance can be safely removed from memory.

The automatic reference counting mechanism can remove the instance
from memory at any time after the reference count for the instance reaches
zero.

Structures, Classes, and Instances

[49]

Declaring classes
The following lines declare a new minimal Circle class in Swift. The code file for the
sample is included in the swift_3_oop_chapter_02_01 folder:

 class Circle {
 }

The class keyword, followed by the class name (Circle), composes the header of the class
definition. In this case, the class doesn't have a parent class or superclass; therefore, there
are neither superclasses listed after the class name nor a colon (:). A pair of curly braces
({}) encloses the class body after the class header. In the forthcoming chapters, we will
declare classes that inherit from another class, and therefore, they will have a superclass. In
this case, the class body is empty. The Circle class is the simplest possible class we can
declare in Swift.

Any new class you create that doesn't specify a superclass is considered a
base class. Whenever you declare a class without a subclass, the class
doesn't inherit from a universal base class, as happens in other
programming languages such as C#. Thus, the Circle class is known as a
base class in Swift.

Customizing initialization
We want to initialize instances of the Circle class with the radius value. In order to do so,
we can take advantage of customized initializers. Initializers aren't methods, but we will
write them with syntax that is very similar to the instance methods. They will use the init
keyword to differentiate from instance methods, and Swift will execute them automatically
when we create an instance of a given type. Swift runs the code within the initializer before
any other code within a class.

We can define an initializer that receives the radius value as an argument and use it to
initialize a property with the same name. We can define as many initializers as we want to,
and therefore, we can provide many different ways of initializing a class. In this case, we
just need one initializer.

Structures, Classes, and Instances

[50]

The following lines create a Circle class and define an initializer within the class body. The
code file for the sample is included in the swift_3_oop_chapter_02_02 folder:

 class Circle {
 var radius: Double
 init(radius: Double)
 {
 print("I'm initializing a new Circle instance
 with a radius value of \(radius).")
 self.radius = radius
 }
 }

The initializer is declared with the init keyword. The initializer receives a single
argument: radius. The code within the initializer prints a message on the console
indicating that the code is initializing a new Circle instance with a specific radius value.
This way, we will understand when the code within the initializer is executed. As the
initializer has an argument, we can call it a parameterized initializer.

Then, the next line assigns the radius the Double value received as an argument to the
radius class's Double property. We will use self.radius to access the radius property
for the instance and radius to reference the argument. In Swift, the self keyword
provides access to the instance that is created and we want to initialize. The line before the
initializer declares the radius double property. We will dive deep into the proper usage of
properties in Chapter 3, Encapsulation of Data with Properties and Subscripts.

The following lines create two instances of the Circle class named circle1 and circle2.
Note that it is necessary to use the radius argument label each time we create an instance
because we use the previously declared initializer. The initializer specifies radius as the
name of the argument of the Double type that it requires. When we create an instance, we
have to use the same argument name indicated in the initializer declaration, radius,
followed by a colon (:), and the value we want to pass for the parameter. The first line
specifies radius: 25; therefore, we will pass 25 to the radius parameter. The second line
specifies radius: 50, and therefore, we will pass 50 to the radius parameter. The code
file for the sample is included in the swift_3_oop_chapter_02_03 folder:

 var circle1 = Circle(radius: 25)
 var circle2 = Circle(radius: 50)

After we enter all the lines that declare the class and create the two instances in the
Playground, we will see two messages that say, I'm initializing a new Circle
instance with a radius value of, followed by the radius value specified in the call to
the initializer of each instance in the Debug area, at the bottom of the Playground window.

Structures, Classes, and Instances

[51]

On the right-hand side, we will see (2 times) displayed for the call to the print function
within the initializer of the Circle class.

Hover the mouse over (2 times) and click on the Show Result button displayed with a plus
sign (+) and located on the right-hand side, as shown in the following screenshot:

By default, the Playground will display the latest value generated with the call to the print
function: I'm initializing a new Circle instance with a radius value of
50.0. Because the initializer was executed twice (two times), we want the Playground to
display the two generated values. Control-click on the rounded rectangle that displays I'm
initializing a new Circle instance with a radius value of 50.0, and select
Value History in the context menu, as shown in the next screenshot:

This way, the Playground will display all the values that were generated each time the
print function was called. In this case, the Playground will display two values. On the
right-hand side of each line that creates a Circle instance, we will see Circle displayed,
indicating to us the type of the created instance. Hover the mouse over each Circle text and
click on the Show Result button displayed with a plus sign (+) and located on the right-hand
side. The Playground will display the value for the radius property below each line that
creates a Circle instance, as shown in the following screenshot:

Structures, Classes, and Instances

[52]

We will use the Show Results and Value History options in the
Playground to understand how our code works. Many screenshots will
display the results of using both options.

Structures, Classes, and Instances

[53]

The following screenshot shows the results of running the code in the Swift REPL. After the
REPL displays the initialization messages, it displays details about the two instances we just
created: circle1 and circle2. The details include the values for the radius property:

The following lines show the output that the Swift REPL displays after we create the two
Circle instances:

circle1: Circle = {
 radius = 25
}
circle2: Circle = {
 radius = 50
}

We can read the two lines as follows: circle1 is an instance of Circle with its radius
property set to 25, and circle2 is an instance of Circle with its radius property set to
50.

Structures, Classes, and Instances

[54]

The following screenshot shows the results of running the code in the web-based IBM Swift
Sandbox:

Each line that creates an instance uses the class name followed by the argument label and
the desired value for the radius class as an argument enclosed in parentheses. Swift
automatically assigns the Circle type for each of the variables (circle1 and circle2).
After we execute the two lines that create the instances of Circle, we can take a look at the
values for circle1.radius and circle2.radius in the Playground. We can click on the
Quick Look icon (an eye) on the right-hand side, located on the left-hand side of the Show
Result icon that has been converted to a Hide Result icon because we are already showing
the results. A popup will display the property and its value for the instance. The following
screenshot shows the results of inspecting circle1:

Structures, Classes, and Instances

[55]

The following line won't allow the Playground to compile the code and will display a build
error because the compiler cannot find a parameterless initializer declared in the Circle
class. The specific error message is the following: Missing argument for parameter
'radius' in call. The subsequent screenshot shows the error icon on the left-hand side
of the line that tries to create a Circle instance and the detailed Playground execution error
displayed within the Debug area at the bottom of the window. We will see a similar error
message in the Swift REPL and in the Swift Sandbox. The code file for the sample is
included in the swift_3_oop_chapter_02_04 folder:

 var circleError = Circle()

Remove the previous line that generated an error and enter the following two lines. The
code file for the sample is included in the swift_3_oop_chapter_02_05 folder:

 print(type(of: circle1))
 print(type(of: circle2))

In the previous Swift versions, such as Swift 2.3, we could use
dynamicType to retrieve the runtime type as a value. Swift 3 doesn't
provide support for dynamicType anymore.

The Playground will display “Circle\n” as a result for both the lines because both the
variables hold instances of the Circle class, as shown in the following screenshot. The
type function allows us to retrieve the runtime type as a value for the instance passed for
the of argument. We will see the same output in the Swift REPL and in the Swift Sandbox:

Structures, Classes, and Instances

[56]

Customizing deinitialization
We want to know when the instances of the Circle class will be removed from memory;
that is, when the objects aren't referenced by any variable and automatic reference count
mechanism decides that they have to be removed from memory. Deinitializers are special
parameterless class methods that are automatically executed just before the runtime
destroys an instance of a given type. Thus, we can use them to add any code we want to run
before the instance is destroyed. We cannot call a deinitializer; they are only available for
the runtime.

The deinitializer is a special method that uses the deinit keyword in its declaration. The
declaration must be parameterless, and it cannot return a value.

The following lines declare a deinitializer within the body of the Circle class:

 deinit {
 print("I'm destroying the Circle instance with a
 radius value of \(radius).")
 }

The following lines show the new complete code for the Circle class. The code file for the
sample is included in the swift_3_oop_chapter_02_06 folder:

 class Circle {
 var radius: Double
 init(radius: Double)
 {
 print("I'm initializing a new Circle instance with
 a radius value of \(radius).")
 self.radius = radius
 }
 deinit {
 print("I'm destroying the Circle instance with a
 radius value of \(radius).")
 }
 }

Structures, Classes, and Instances

[57]

The code within the deinitilizer prints a message on the console indicating that the runtime
will destroy a Circle instance with a specific radius value. This way, we will understand
when the code within the deinitializer is executed.

The following lines create two instances of the Circle class named circleToDelete1 and
circleToDelete2. Then, the next lines assign new instances to both variables; therefore,
the reference count for both objects reaches zero, and the automatic reference counting
mechanism destroys them. Before the destruction takes place, Swift executes the
deinitialization code. Enter the following lines in the Playground after adding the code for
the deinitializer of the Circle class. The code file for the sample is included in the
swift_3_oop_chapter_02_07 folder:

 var circleToDelete1 = Circle(radius: 25)
 var circleToDelete2 = Circle(radius: 50)
 circleToDelete1 = Circle(radius: 32)
 circleToDelete2 = Circle(radius: 47)

Use the previously explained Show Result and Value History options for the call to the
print function in both the initializer and the deinitializer. We will see the following
messages in the Playground, as shown in the screenshot that follows them:

 I'm initializing a new Circle instance with a radius
 value of 25.0.
 I'm initializing a new Circle instance with a radius
 value of 50.0.
 I'm initializing a new Circle instance with a radius
 value of 32.0.
 I'm destroying the Circle instance with a radius value
 of 25.0.
 I'm initializing a new Circle instance with a radius
 value of 47.0.
 I'm destroying the Circle instance with a radius value
 of 50.0.

Structures, Classes, and Instances

[58]

The first two lines appear because we created instances of Circle, and Swift executed the
initialization code. Then, we assigned the result of creating a new instance of the Circle
class to the circleToDelete1 variable, and therefore, we removed the only existing
reference to the instance with a radius value of 25.0. Swift printed a line that indicates that
it initialized a new instance with a radius value of 32.0. After this line, Swift printed the
line generated by the execution of the deinitializer of the Circle instance that had a radius
value of 25.0.

Structures, Classes, and Instances

[59]

Then, we assigned the result of creating a new instance of the Circle class to the
circleToDelete2 variable, and therefore, we removed the only existing reference to the
instance with a radius value of 50.0. Swift printed a line that indicates that it initialized a
new instance with a radius value of 47.0. After this line, Swift printed the line generated by
the execution of the deinitializer of the Circle instance that had a radius value of 50.0.

The following screenshot shows the results of running the code in the Swift REPL:

Structures, Classes, and Instances

[60]

The following screenshot shows the results of running the code in the web-based IBM Swift
Sandbox:

The following lines create an instance of the Circle class named circle3 and then assign
a reference of this object to referenceToCircle3. Thus, the reference count to the object
increases to two. The next line assigns a new instance of the Circle class to circle3;
therefore, the reference count for the object goes down from two to one. As the
referenceToCircle3 variable stills holds a reference to the Circle instance, Swift doesn't
destroy the instance, and we don't see the results of the execution of the deinitializer. Enter
the following lines in the Playground after the declaration of the Circle class. Note that the
screenshot only displays the results of the execution of the initializer in the Playground, and
there is no execution for the deinitializer.

Structures, Classes, and Instances

[61]

The code file for the sample is included in the swift_3_oop_chapter_02_08 folder:

 var circle3 = Circle(radius: 42)
 var referenceToCircle3 = circle3
 circle3 = Circle(radius: 84)

Structures, Classes, and Instances

[62]

The following screenshot shows the results of running the code in the Swift REPL:

The following screenshot shows the results of running the code in the web-based IBM Swift
Sandbox:

Structures, Classes, and Instances

[63]

Creating the instances of classes
The following lines create an instance of the Circle class named circle within the scope
of a generatedCircleRadius function. The code within the function uses the created
instance to access and return the value of its radius property. In this case, the code uses the
let keyword to declare an immutable reference to the Circle instance named circle. An
immutable reference is also known as a constant reference because we cannot replace the
reference held by the circle constant to another instance of Circle. When we use the var
keyword, we declare a reference that we can change later.

After we define the new function, we will call it. Note that the screenshot displays the
results of the execution of the initializer and then the deinitializer. Swift destroys the
instance after the circle constant goes out of scope because its reference count goes down
from one to zero; therefore, there is no reason to keep the instance alive. Enter the following
lines in the Playground after the declaration of the Circle class. The code file for the
sample is included in the swift_3_oop_chapter_02_09 folder:

 func generatedCircleRadius() -> Double {
 let circle = Circle(radius: 20)
 return circle.radius
 }
 print(generatedCircleRadius())

The following lines show the results displayed in the Playground's Debug area after we
execute the previously shown code. The following screenshot shows the results displayed
on the right-hand side of the lines of code in the Playground:

 I'm initializing a new Circle instance with a radius
 value of 20.0.
 I'm destroying the Circle instance with a radius value
 of 20.0.
 20.0

Note that it is extremely easy to code a function that creates an instance and uses it to call a
method because we don't have to worry about removing the instance from memory. The
automatic reference counting mechanism does the necessary cleanup work for us.

Structures, Classes, and Instances

[64]

The following screenshot shows the results of running the code in the Swift REPL:

The following screenshot shows the results of running the code in the web-based IBM Swift
Sandbox:

Structures, Classes, and Instances

[65]

Exercises
Now that you understand an instance's life cycle, it is time to spend some time in the
Playground, the Swift REPL, or the Swift Sandbox, creating new classes and instances:

Exercise 1: Create a new Employee class with a custom initializer that requires
two string arguments: firstName and lastName. Use the arguments to initialize
properties with the same names as the arguments. Display a message with the
values for firstName and lastName when an instance of the class is created.
Display a message with the values for firstName and lastName when an
instance of the class is destroyed.

Create an instance of the Employee class and assign it to a variable.
Check the messages printed in the Playground's Debug area.
Assign a new instance of the Employee class to the previously
defined variable. Check the messages printed in the Playground's
Debug area.

Exercise 2: Create a function that receives two string arguments: firstName
and lastName. Create an instance of the previously defined Employee class with
the received arguments as parameters for the creation of the instance. Use the
instance properties to print a message with the first name followed by a space
and the last name. You will be able to create a method and add it to the
Employee class later to perform the same task. However, first, you must
understand how you can work with the properties defined in a class.

Test your knowledge
Swift uses one of the following mechanisms to automatically deallocate the1.
memory used by instances that aren't referenced anymore:

Automatic Random Garbage Collector.1.
Automatic Reference Counting.2.
Automatic Instance Map Reduce.3.

Swift executes an instance's deinitializer:2.
Before the instance is deallocated from memory.1.
After the instance is deallocated from memory.2.
After the instance memory is allocated.3.

Structures, Classes, and Instances

[66]

A deinitializer:3.
Can still access all of the instance's resources.1.
Can only access the instance's methods but no properties.2.
Cannot access any of the instance's resources.3.

Swift allows us to define:4.
Only one initializer per class.1.
A main initializer and two optional secondary initializers.2.
Many initializers with different arguments.3.

Each time we create an instance:5.
We must use argument labels.1.
We can optionally use argument labels.2.
We don't need to use argument labels.3.

Which of the following lines retrieves the runtime type as a value for an instance6.
called circle1 in Swift 3:

circle1.dynamicType1.
typeof(circle1)2.
type(of: circle1)3.

Summary
In this chapter, you learned about an object's life cycle. You also learned how object
initializers and deinitializers work. We declared our first class to generate a blueprint for
objects. We customized object initializers and deinitializers and tested their personalized
behavior in action with live examples in Swift's Playground. We understood how they work
in combination with automatic reference counting. You also learned how we can run the
samples in the Swift REPL and the web-based Swift Sandbox.

Now that you have learned to start creating classes and instances, you are ready to share,
protect, use, and hide data with the data encapsulation features included in Swift, which is
the topic of the next chapter.

3
Encapsulation of Data with

Properties
In this chapter, you will learn about all the elements that might compose a class. We will
start organizing data in blueprints that generate instances. We will work with examples to
understand how to encapsulate and hide data by working with properties combined with
access control. In addition, you will learn about properties, methods, and mutable versus
immutable classes.

Understanding elements that compose a
class
So far, we have worked with a very simple class and many instances of this class in the
Playground, the Swift REPL and the web-based Swift Sandbox. Now, it is time to dive deep
into the different members of a class.

The following list enumerates the most common element types that you can include in a
class definition in Swift and their equivalents in other programming languages. We have
already worked with a few of these elements:

Initializers: These are equivalent to constructors in other programming
languages
Deinitializers: These are equivalent to destructors in other programming
languages
Type properties: These are equivalent to class fields or class attributes in other
programming languages

Encapsulation of Data with Properties

[68]

Type methods: These are equivalent to class methods in other programming
languages
Subscripts: These are also known as shortcuts
Instance properties: These are equivalent to instance fields or instance attributes
in other programming languages
Instance methods: These are equivalent to instance functions in other
programming languages
Nested types: These are types that only exist within the class in which we define
them

You have already learned how basic initializers and deinitializers work in the previous
chapter. So far, we have used an instance-stored property to encapsulate data in our
instances. We could access the instance property without any kind of restrictions as a
variable within an instance.

However, as it happens sometimes in real-world situations, restrictions are necessary to
avoid serious problems. Sometimes, we want to restrict access or transform specific instance
properties into read-only attributes. We can combine the restrictions with computed
properties that can define getters and/or setters.

Computed properties can define get and/or set methods, also known as
getters and setters. Setters allow us to control how values are set, that is,
these methods are used to change the values of related properties. Getters
allow us to control the values that we return when computed properties
are accessed. Getters don't change the values of related properties.

Sometimes, all the members of a class share the same attribute, and we don't need to have a
specific value for each instance. For example, superhero types have some profile values,
such as the average strength, average running speed, attack power, and defense power. We
can define the following type properties to store the values that are shared by all the
instances: averageStrength, averageRunningSpeed, attackPower, and
defensePower. All the instances have access to the same type properties and their values.
However, it is also possible to apply restrictions to their access.

Encapsulation of Data with Properties

[69]

It is also possible to define methods that don't require an instance of a specific class to be
called; therefore, you can invoke them by specifying both the class and method names.
These methods are known as type methods, operate on a class as a whole, and have access
to type properties, but they don't have access to any instance members, such as instance
properties or methods, because there is no instance at all. Type methods are useful when
you want to include methods related to a class and don't want to generate an instance to call
them. Type methods are also known as static or class methods.
However, we have to pay attention to the keyword we use to declare type methods in Swift
because a type method declared with the static keyword has a different behavior from a
type method declared with the class keyword. We will understand the differences
between these as we move forward with the examples in this and forthcoming chapters.

Declaring stored properties
When we design classes, we want to make sure that all the necessary data is available to the
methods that will operate on this data; therefore, we encapsulate the data. However, we just
want relevant information to be visible to the users of our classes that will create instances,
change values of accessible properties, and call the available methods. Thus, we want to
hide or protect some data that is just needed for internal use. We don't want to make
accidental changes to sensitive data.

For example, when we create a new instance of any superhero, we can use both its name
and birth year as two parameters for the initializer. The initializer sets the values of two
properties: name and birthYear. The following lines show a sample code that declares the
SuperHero class.

The code file for the sample is included in the swift_3_oop_chapter_03_01 folder:

 class SuperHero {
 var name: String
 var birthYear: Int
 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
 }

Encapsulation of Data with Properties

[70]

The next lines create two instances that initialize the values of the two properties and then
use the print function to display their values in the Playground. The code file for the
sample is included in the swift_3_oop_chapter_03_01 folder:

 var antMan = SuperHero(name: "Ant-Man", birthYear:
 1975)
 print(antMan.name)
 print(antMan.birthYear)
 var ironMan = SuperHero(name: "Iron-Man", birthYear:
 1982)
 print(ironMan.name)
 print(ironMan.birthYear)

The following screenshot shows the results of the declaration of the class and the execution
of the lines in the Playground:

Encapsulation of Data with Properties

[71]

The following screenshot shows the results of running the code in the Swift REPL. The
REPL displays details about the two instances we just created: antMan and ironMan. The
details include the values of the name and birthYear properties:

The following lines show the output that the Swift REPL displays after we create the two
SuperHero instances:

 antMan: SuperHero = {
 name = "Ant-Man"
 birthYear = 1975
 }
 ironMan: SuperHero = {
 name = "Iron-Man"
 birthYear = 1982
 }

We can read the two lines as follows: the antMan variable holds an instance of SuperHero
with its name set to "Ant-Man" and its birthYear set to 1975. The ironMan variable holds
an instance of SuperHero with its name set to "Iron-Man" and its birthYear set to 1982.

Encapsulation of Data with Properties

[72]

The following screenshot shows the results of running the code in the web-based IBM Swift
Sandbox:

We don't want a user of our SuperHero class to be able to change a superhero's name after
an instance is initialized because the name is not supposed to change. There is a simple way
to achieve this goal in our previously declared class. We can use the let keyword to define
an immutable name stored property of type string instead of using the var keyword. We
can also replace the var keyword with let when we define the birthYear stored property
because the birth year will never change after we initialize a superhero instance.

The following lines show the new code that declares the SuperHero class with two stored
immutable properties: name and birthYear. Note that the initializer code hasn't changed,
and it is possible to initialize both the immutable stored properties with the same code. The
code file for the sample is included in the swift_3_oop_chapter_03_02 folder:

 class SuperHero {
 let name: String
 let birthYear: Int
 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
 }

Encapsulation of Data with Properties

[73]

Stored immutable properties are also known as stored nonmutating
properties.

The next lines create an instance that initializes the values of the two immutable stored
properties and then use the print function to display their values in the Playground. Then,
the two highlighted lines of code try to assign a new value to both properties and fail to do
so because they are immutable properties. The code file for the sample is included in the
swift_3_oop_chapter_03_03 folder:

 var antMan = SuperHero(name: "Ant-Man", birthYear:
 1975)
 print(antMan.name)
 print(antMan.birthYear)

 antMan.name = "Batman"
 antMan.birthYear = 1976

The Playground displays the following two error messages for the last two lines, as shown
in the next screenshot. We will see similar error messages in the Swift REPL and in the Swift
Sandbox:

Cannot assign to property: 'name' is a 'let' constant

Cannot assign to property: 'birthYear' is a 'let' constant

Encapsulation of Data with Properties

[74]

When we use the let keyword to declare a stored property, we can
initialize the property, but it becomes immutable-that is, a constant-after
its initialization.

Generating computed properties with setters
and getters
As previously explained, we don't want a user of our superhero class to be able to change a
superhero's birth year after an instance is initialized because the superhero won't be born
again at a different date. In fact, we want to calculate the superhero's age and make it
available to users. We use an approximated age in order to keep the focus on the properties
and don't complicate our lives with the manipulation of complete dates and the Date class.

We can define a property called age with a getter method but without a setter method; that
is, we will create a read-only computed property. This way, it is possible to retrieve the
superhero's age, but we cannot change it because there isn't a setter defined for the
property. The getter method returns the result of calculating the superhero's age based on
the current year and the value of the birthYear stored property.

The following lines show the new version of the SuperHero class with the new age
calculated read-only property. It is necessary to import Foundation to use the Date and
Calendar classes. Note that the code for the getter method appears after the property
declaration with its type and the get keyword. All the lines enclosed in curly brackets after
the get keyword define the code that will be executed when we request the value for the
age property. The method creates a new instance of the Date class, date, and retrieves the
current calendar, Calendar.current. Then, the method retrieves the year component for
date and returns the difference between the current year and the value of the birthYear
property. The code file for the sample is included in the swift_3_oop_chapter_03_04
folder:

 import Foundation

 class SuperHero {
 let name: String
 let birthYear: Int
 var age: Int {
 get {
 let date = Date()
 let calendar = Calendar.current
 let year = calendar.component(.year, from: date)

Encapsulation of Data with Properties

[75]

 return year - birthYear
 }
 }
 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
 }

We must use the var keyword to declare computed properties, such as the
previously defined age computed property.
Swift 3 removed the NS prefix from many classes and made the APIs
simpler. Instead of working with NSDate, we work with the Date class.
Instead of working with NSCalendar, we work with the Calendar class.
In addition, the methods and the properties have shorter names that do
not repeat unnecessary words.

The next lines create an instance that initializes the values of the two immutable stored
properties and then use the print function to display the value of the age calculated
property in the Playground. Enter the lines after the code that creates the new version of the
SuperHero class. Then, a line of code tries to assign a new value to the age property and
fails to do so because the property doesn't declare a setter method. We will see a similar
error message in the Swift REPL and in the Swift Sandbox. The code file for the sample is
included in the swift_3_oop_chapter_03_05 folder:

 var antMan = SuperHero(name: "Ant-Man", birthYear:
 1975)
 print(antMan.age)
 var ironMan = SuperHero(name: "Iron-Man", birthYear:
 1982)
 print(ironMan.age)

 antMan.age = 32

Encapsulation of Data with Properties

[76]

The Playground displays the following error message for the last line, as shown in the next
screenshot:

Cannot assign to property: 'age' is a get-only property

A computed property with a getter method and without a setter method is
known as a get-only property.

Later, we will decide that it would be nice to allow the user to customize a superhero and
allow it to change either its age or birth year. We can add a setter method to the age
property with code that calculates the birth year based on the specified age and assigns this
value to the birthYear property. Of course, the first thing we need to do is replace the let
keyword with var when we define the birthYear stored property as we want it to become
a mutable property.

Encapsulation of Data with Properties

[77]

The following lines show the new version of the SuperHero class with the new age
calculated property. Note that the code for the setter method appears after the code for the
getter method within the curly brackets that enclose the getter and setter declarations. We
can place the setter method before the getter method. All the lines enclosed in curly brackets
after the set keyword define the code that will be executed when we assign a new value to
the age property, and the implicit name for the new value is newValue. So, the code
enclosed in curly brackets after the set keyword receives the value that will be assigned to
the property in the newValue argument. As we didn't specify a different name for the
implicit argument, we can access the value using the newValue argument. Note that we
don't see the argument name in the code; this is the default convention in Swift. The code
file for the sample is included in the swift_3_oop_chapter_03_05 folder:

 import Foundation

 class SuperHero {
 let name: String
 var birthYear: Int
 var age: Int {
 get {
 let date = Date()
 let calendar = Calendar.current
 let year = calendar.component(.year, from: date)
 return year - birthYear
 }
 set {
 let date = Date()
 let calendar = Calendar.current
 let year = calendar.component(.year, from: date)
 birthYear = year - newValue
 }
 }
 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
 }

Encapsulation of Data with Properties

[78]

The setter method creates a new instance of the Date class, date, and retrieves the current
calendar, calendar. Then, the method retrieves the year component for date and assigns
the result of the current year, year, minus the new age value that is specified, newValue, to
the birthYear property. This way, the birthYear property will save the year in which the
super hero was born based on the received age value.

The next lines create two instances of the SuperHero class, assign a value to the age
computed property, and then use the print function to display the value of both the age
calculated property and the birthYear stored property in the Playground. Enter the lines
after the code that creates the new version of the SuperHero class. The code file for the
sample is included in the swift_3_oop_chapter_03_05 folder:

 var antMan = SuperHero(name: "Ant-Man", birthYear:
 1975)
 print(antMan.age)
 var ironMan = SuperHero(name: "Iron-Man", birthYear:
 1982)
 print(ironMan.age)

 antMan.age = 32
 print(antMan.age)
 print(antMan.birthYear)

 ironMan.age = 45
 print(ironMan.age)
 print(ironMan.birthYear)

Encapsulation of Data with Properties

[79]

As a result of assigning a new value to the age computed property, its setter method
changes the value of the birthYear stored property, as shown in the following screenshot:

Encapsulation of Data with Properties

[80]

Both the getter and setter methods use the same code to retrieve the current year. We can
add a get-only property that retrieves the current year and call it from both the getter and
setter methods for the age computed property. We will declare the function as a get-only
property for the SuperHero class. We know that this class isn't the best place for this get-
only property as it would be better to have it added to a date-related class, such as the Date
class. We will be able to do so later after you learn additional things.

The following lines show the new version of the SuperHero class with the new
currentYear calculated property. Note that the code for both the setter and getter methods
for the age property is simpler because they use the new currentYear calculated property
instead of repeating the code. The code file for the sample is included in the
swift_3_oop_chapter_03_06 folder:

 import Foundation

 class SuperHero {
 let name: String
 var birthYear: Int
 var age: Int {
 get {
 return currentYear - birthYear
 }
 set {
 birthYear = currentYear - newValue
 }
 }
 var currentYear: Int {
 get {
 let date = Date()
 let calendar = Calendar.current
 let year = calendar.component(.year, from: date)
 return year
 }
 }
 init(name: String, birthYear: Int) {
 self.name = name
 self.birthYear = birthYear
 }
 }

Encapsulation of Data with Properties

[81]

Declarations that use the let keyword cannot be computed properties;
therefore, we must always use the var keyword when we declare
computed properties, even when they are get-only properties.

The next lines create two instances of the SuperHero class, assign a value to the age
computed property, and then use the print function to display the value of both the age
calculated property and the birthYear stored property in the Playground. Enter the lines
after the code that creates the new version of the SuperHero class. The code file for the
sample is included in the swift_3_oop_chapter_03_06 folder:

 var superBoy = SuperHero(name: "Super-Boy", birthYear:
 2008)
 print(superBoy.age)
 var superGirl = SuperHero(name: "Super-Girl",
 birthYear: 2009)
 print(superGirl.age)

 superBoy.age = 9
 print(superBoy.age)
 print(superBoy.birthYear)

 superGirl.age = 8
 print(superGirl.age)
 print(superGirl.birthYear)
 print(superBoy.currentYear)
 print(superGirl.currentYear)

Note the number of times each property's getter and setter methods are executed in the
Playground. In this case, the currentYear getter method is executed eight times, as shown
in the following screenshot:

Encapsulation of Data with Properties

[82]

Encapsulation of Data with Properties

[83]

The recently added currentYear computed property is get-only; therefore, we won't add a
set clause to it. We can simplify the code that declares this property by omitting the get
clause, as shown in the following lines.

The code file for the sample is included in the swift_3_oop_chapter_03_07 folder:

 var currentYear: Int {
 let date = Date()
 let calendar = Calendar.current
 let year = calendar.component(.year, from: date)
 return year
 }

We only have to specify the get clause when we provide a set clause for
the property.

Combining setters, getters, and a related
property
Sometimes, we want to have more control over the values that are set to properties and
retrieved from them, and we can take advantage of getters and setters to do so. In fact, we
can combine a getter and a setter, which generate a computed property and a related
property that stores the computed value, and access protection mechanisms to prevent the
user from making changes to the related property and force him to always use the
computed property.

The superhero's sneakers might change over time. However, we always have to make sure
that the sneakers' name is an uppercase string. We can define a sneakers property with a
getter method that always converts the string value to an uppercase string and stores it in a
private sneakersField property.

Whenever we assign a value to the sneakers property, the setter method is called under
the hood with the value to be assigned as an argument. Whenever we specify the sneakers
property in any expression, the getter method is called under the hood to retrieve the actual
value. The following lines show a new version of the SuperHero class that adds a
sneakers calculated property.

Encapsulation of Data with Properties

[84]

The code file for the sample is included in the swift_3_oop_chapter_03_08 folder:

 import Foundation

 public class SuperHero {
 public let name: String
 public var birthYear: Int
 private var sneakersField = "NOT SPECIFIED"
 public var sneakers: String {
 get {
 return sneakersField
 }
 set {
 sneakersField = newValue.localizedUppercase
 }
 }
 public var age: Int {
 get {
 return currentYear - birthYear
 }
 set {
 birthYear = currentYear - newValue
 }
 }
 public var currentYear: Int {
 let date = Date()
 let calendar = Calendar.current
 let year = calendar.component(.year, from: date)
 return year
 }
 init(name: String, birthYear: Int, sneakers: String)
 {
 self.name = name
 self.birthYear = birthYear
 self.sneakers = sneakers
 }
 }

Encapsulation of Data with Properties

[85]

The new version of the class is declared as public class; therefore, we declared name,
birthYear, and sneakers as public properties. We also declared both the age and
currentYear properties as public. This way, when someone creates instances of the
SuperHero class outside the source file that declares it, he will be able to access the public
members, that is, the public properties we have declared. However, the code declares the
sneakersField property as a private property; therefore, only the code included in the
SuperHero class will be able to access this property. This way, the sneakersField
property will be hidden for those who create instances of the SuperHero class.

Swift 3 made changes to the meaning of both the private and public
access modifiers when compared to previous Swift versions, and
introduced new access modifiers: fileprivate and open.

In Swift 3, a class declared with the public access modifier is accessible outside the
defining module. However, a class declared as public can only be subclassed in the same
module where it is defined. If we want to be able to access and subclass a class outside a
module, we must use the new open access modifier. A class declared with the open access
modifier in Swift 3 is equivalent to a class declared with the public access modifier in the
earlier Swift versions.

When we declare a member of a class with the public access level, the member will be
accessible but not overridable outside the defining module. If we want the member to be
both accessible and overridable outside of the defining module, we must use the new open
access modifier. A member declared with the open access modifier in Swift 3 is equivalent
to a member declared with the public access modifier in the earlier Swift versions.

When we declare a member of a class with the private access level, the member will be
accessible only within the enclosing declaration, that is, within the class. If we want the
member to be accessible only in the defining module, we must use the new fileprivate
access modifier. A member declared with the fileprivate access modifier in Swift 3 is
equivalent to a member declared with the private access modifier in the previous Swift
versions. The private access modifier in Swift 3 is more private than in the previous
versions and allows us to declare members that we only want to use within the code of the
class that declares them.

Encapsulation of Data with Properties

[86]

When we declare the sneakersField private property, we will specify its initial value as
"NOT SPECIFIED" and not declare its type because the type-inference mechanism
determines that it is of type String, based on the initial value. The following line of code is
equivalent to the second line of code. We used the first line for the declaration to simplify
our code and avoid redundancy whenever possible:

 private var sneakersField = "NOT SPECIFIED"
 private var sneakersField: String = "NOT SPECIFIED"

We should take advantage of the type inference mechanism included in
Swift as much as possible to reduce unnecessary boilerplate code.

The initializer for the class added a new argument that provides an initial value for the new
sneakers property. The next lines create two instances of the SuperHero class, assign a
value to the sneakers computed property, and then use the print function to display the
value of the property in the Playground. In both cases, we will initialize sneakers with a
string that the setter method converts to an uppercase string. Thus, when we print the
values returned by the getter method, the Playground will print the uppercase string that is
stored in the sneakerField private property. Enter the lines after the code that creates the
new version of the SuperHero class. The code file for the sample is included in the
swift_3_oop_chapter_03_08 folder:

 var superBoy = SuperHero(name: "Super-Boy", birthYear:
 2008, sneakers: "Running with Swift 3")
 print(superBoy.sneakers)
 var superGirl = SuperHero(name: "Super-Girl",
 birthYear: 2009, sneakers: "Jumping Super Girl")
 print(superGirl.sneakers)

Note the number of times each property's getter and setter methods are executed in the
Playground. In this case, the sneakers getter method is executed two times, as shown in
the following screenshot:

Encapsulation of Data with Properties

[87]

We can combine a property with the getter and setter methods, along with
access protection mechanisms and a related property that acts as an
underlying field, to have absolute control over how values are set to and
retrieved from the underlying field.

Encapsulation of Data with Properties

[88]

Understanding property observers
Each superhero has a running speed score that determines how fast he will move when
running; therefore, we will add a public runningSpeedScore property. We will change the
initializer code to set an initial value for the new property. However, this new property has
some specific requirements.

Whenever the running speed score is about to change, it will be necessary to trigger a few
actions. In addition, we have to trigger other actions after the value for this property
changes. We might consider adding code to a setter method combined with a related
property, run code before we set the new value to the related property, and then run code
after we set the new value. However, Swift allows us to take advantage of property
observers that make it easier to run the code before and after the running speed score
changes.

We can define a public runningSpeedScore property with both a willSet and didSet
methods. After we create an instance of the new version of the SuperHero class and
initialize the new property with its initial value, the code in the willSet method will be
executed when we assign a new value to the property and before Swift sets the new value
to the property. Thus, at the time the willSet method executes the code, the property still
has the previous value, and we can access the new value that will be set by checking the
value of the newValue implicit parameter.

Then, when Swift changes the value of the property, the didSet method will be executed.
Thus, at the time the didSet method executes the code, the property has the new value.

The code defined in the willSet and/or didSet methods only runs when
we change the value of the property after its initial value is set. Thus,
property observers don't run when the property is initialized.

The following lines show the code that defines the new public runningSpeedScore
property with the property observers and the new code for the initializer. Note that the
code for the rest of the class isn't included in order to avoid repeating the previous code.
The code file for the sample is included in the swift_3_oop_chapter_03_09 folder:

 public var runningSpeedScore: Int {
 willSet {
 print("The current value for running speed score
 is:(runningSpeedScore)")
 print("I will set the new value for running speed
 score to: (newValue)")
 }

Encapsulation of Data with Properties

[89]

 didSet {
 print("I have set the new value for running speed
 score to: (runningSpeedScore)")
 }
 }
 init(name: String, birthYear: Int, sneakers: String,
 runningSpeedScore: Int) {
 self.name = name
 self.birthYear = birthYear
 self.runningSpeedScore = runningSpeedScore
 self.sneakers = sneakers
 }

The willSet method prints the current value of runningSpeedScore and the new value
that will be set to this property and received in the newValue implicit parameter. The
didSet method prints the new value that is set to the runningSpeedScore property.

Swift makes it easy to insert the value of an expression into a string by
placing the expression within parentheses after a backslash (\). We took
advantage of this syntax in the previous code to print the values of both
runningSpeedScore and newValue as part of a message string.

The initializer for the class added a new argument that provides an initial value to the new
runningSpeedScore property. The next lines create an instance of the SuperHero class
and assign a value to the runningSpeedScore property. Note that both the willSet and
didSet methods were executed only once because the code didn't run when we initialized
the value of the property. Enter the lines after the code that creates the new version of the
SuperHero class. The code file for the sample is included in the
swift_3_oop_chapter_03_09 folder:

 var superBoy = SuperHero(name: "Super-Boy", birthYear:
 2008, sneakers: "Running with Swift 3",
 runningSpeedScore: 5)
 print(superBoy.sneakers)
 superBoy.runningSpeedScore = 7

Encapsulation of Data with Properties

[90]

The Playground displays a message indicating the current value of the property before the
new value that is set, that will be set, and finally, that was set, as shown in the next
screenshot:

When we take advantage of property observers, we cannot use getters
and/or setters at the same time. Thus, we cannot define getter and/or setter
methods when we use the willSet and/or didSet methods for a
property. Swift doesn't make it possible to combine them.

Encapsulation of Data with Properties

[91]

We can use the didSet method to keep the value of a property in a valid range. For
example, we can define the runningSpeedScore property with a didSet method, which
transforms the values lower than 0 to 0 and values higher than 50 to 50. The following code
will do the job. We have to replace the previous code, which declared the
runningSpeedScore property, with the new code. The code file for the sample is included
in the swift_3_oop_chapter_03_10 folder:

 public var runningSpeedScore: Int {
 didSet {
 if (runningSpeedScore < 0) {
 runningSpeedScore = 0
 }
 else if (runningSpeedScore > 50) {
 runningSpeedScore = 50
 }
 }
 }

The next lines create an instance of the SuperHero class and try to assign different values to
the runningSpeedScore property. Enter the lines after the code that creates the new
version of the SuperHero class:

 var superBoy = SuperHero(name: "Super-Boy", birthYear:
 2008, sneakers: "Running with Swift 3",
 runningSpeedScore: 5)
 print(superBoy.runningSpeedScore)
 superBoy.runningSpeedScore = -5
 print(superBoy.runningSpeedScore)
 superBoy.runningSpeedScore = 200
 print(superBoy.runningSpeedScore)
 superBoy.runningSpeedScore = 6
 print(superBoy.runningSpeedScore)

After we specified -5 as the desired value of the runningSpeedScore property, we printed
its actual value, and the result was 0. After we specified 200, the actual printed value was
50. Finally, after we specified 6, the actual printed value was 6, as shown in the next
screenshot. The code in the didSet method did its job; we can control all the values
accepted for the property. Note that the didSet method doesn't execute one more time
when we set the new value for the property within the didSet method.

Encapsulation of Data with Properties

[92]

The code file for the sample is included in the swift_3_oop_chapter_03_10 folder:

We can use the didSet method when we want to validate the values accepted for a
property after it is initialized. Remember that the didSet method isn't executed when the
property is initialized. Thus, if we execute the following lines, the printed value will be 135,
and the property will be initialized with an invalid value. Enter the lines after the code that
creates the new version of the SuperHero class. The code file for the sample is included in
the swift_3_oop_chapter_03_11 folder:

 var superFlash = SuperHero(name: "Flash",
 birthYear: 1972, sneakers: "Flash running",
 runningSpeedScore: 135)
 print(superFlash.runningSpeedScore)

Encapsulation of Data with Properties

[93]

Transforming values with setters and getters
We can define a property with a setter method that transforms the values that will be set as
valid values for a related property. The getter method would just need to return the value
of the related property to generate a property that will always have valid values even when
it is initialized. This way, we can make sure that whenever we require the property value,
we will retrieve a valid value.

The following code replaces the previously declared runningSpeedScore property
declaration that worked with a property observer, specifically, a didSet method. In this
case, the setter transforms the values lower than 0 to 0 and values higher than 50 to 50. The
setter stores either the transformed or original value that is in a valid range in the related
runningSpeedScoreField property. The getter returns the value of the related
runningSpeedScoreField property, that is, the private property that always stores a
valid value. We have to replace the previous code, which declared the
runningSpeedScore property, with the new code within the SuperHero class. The code
file for the sample is included in the swift_3_oop_chapter_03_12 folder:

 private var runningSpeedScoreField: Int = 0
 public var runningSpeedScore: Int {
 get {
 return runningSpeedScoreField
 }
 set {
 if (newValue < 0) {
 runningSpeedScoreField = 0
 } else if (newValue > 50) {
 runningSpeedScoreField = 50
 } else {
 runningSpeedScoreField = newValue
 }
 }
 }

Now, let's execute the following lines in the Playground. Enter the lines after the code that
creates the new version of the SuperHero class. The code file for the sample is included in
the swift_3_oop_chapter_03_11 folder:

 var superFlash = SuperHero(name: "Flash",
 birthYear: 1972, sneakers: "Flash running",
 runningSpeedScore: 135)
 print(superFlash.runningSpeedScore)

Encapsulation of Data with Properties

[94]

If we execute the following lines, the printed value will be 50, and the property will be
initialized with a valid value because the code defined in the setter method will transform
135 into the maximum accepted value, which is 50, as seen in the following screenshot:

When we initialize a property that has a setter method, Swift calls the
setter for the initialization value.

Creating values shared by all the instances
of a class with type properties
The LionSuperHero class is a blueprint for lions that are superheroes. This class should
inherit from the SuperHero class, but we will forget about inheritance and other super
types of superheroes for a while and use the LionSuperHero class to understand the
difference between type and instance properties.

Encapsulation of Data with Properties

[95]

We will define the following type properties to store the values that are shared by all the
members of the lion superhero group:

averageStrength: This is the average strength of the superhero group.
averageRunningSpeed: This is the average running speed of the superhero
group.
attackPower: This is the attack power score of the superhero group.
defensePower: This is the defense power score of the superhero group.
warriorScore: This is the score that combines the previously mentioned values
in a single value that determines the warrior score of the superhero group. It is a
calculated type property.

The following lines create a LionSuperHero class, declare the previously enumerated type
properties, and declare two additional instance public properties named name and
runningSpeedScore. The code file for the sample is included in the
swift_3_oop_chapter_03_13 folder:

 public class LionSuperHero {

 public static var averageStrength: Int = 10
 public static var averageRunningSpeed: Int = 9
 public static var attackPower: Int = 10
 public static var defensePower: Int = 6
 public static var warriorScore: Int {
 return (averageStrength * 3) + (attackPower * 3) +
 (averageRunningSpeed * 2) + (defensePower * 2)
 }

 public let name: String

 private var runningSpeedScoreField: Int = 0
 public var runningSpeedScore: Int {
 get {
 return runningSpeedScoreField
 }
 set {
 if (newValue < 0) {
 runningSpeedScoreField = 0
 } else if (newValue > 50) {
 runningSpeedScoreField = 50
 } else {
 runningSpeedScoreField = newValue
 }
 }
 }

Encapsulation of Data with Properties

[96]

 init(name: String, runningSpeedScore: Int) {
 self.name = name
 self.runningSpeedScore = runningSpeedScore
 }
 }

The code initializes each type property in the same line that declares the field. The only
difference between a type and instance property is the inclusion of the static keyword to
indicate that we want to create a type property.

The following line prints the value of the previously declared averageStrength type
property. Note that we didn't create any instance of the LionSuperHero class and that we
specified the type property name after the class name and a dot. The code file for the sample
is included in the swift_3_oop_chapter_03_13 folder:

 print(LionSuperHero.averageStrength)

Swift doesn't allow us to access a type property from an instance;
therefore, we always have to use a class name to access a type property.

You can assign a new value to any type property declared with the static and var
keywords. For example, the following lines assign 9 to the averageStrength type
property and print the new value. The code file for the sample is included in the
swift_3_oop_chapter_03_13 folder:

 LionSuperHero.averageStrength = 9
 print(LionSuperHero.averageStrength)

Encapsulation of Data with Properties

[97]

The following screenshot shows the results of executing the preceding code in the
Playground:

Encapsulation of Data with Properties

[98]

We can easily convert a type property into an immutable type property by replacing the
var keyword with the let keyword. For example, we don't want the class users to change
the attack power of the superhero group; therefore, we can change the line that declared the
attackPower type property with the following line, which creates an immutable type
property or a read-only class constant. The code file for the sample is included in the
swift_3_oop_chapter_03_14 folder:

public static let attackPower: Int = 10

The warriorScore type property is a calculated type property that only defines a getter
method; therefore, it is a read-only calculated type property. Note that the declaration uses
a simplified version of a property, which just has a getter method and simply returns the
calculated value after the type (Int):

 public static var warriorScore: Int {
 return (averageStrength * 3) + (attackPower * 3) +
 (averageRunningSpeed * 2) + (defensePower * 2)
 }

The next lines are equivalent to the previous warriorScore type property declaration. In
this case, the declaration uses the get method instead of just returning the calculated value:

 public static var warriorScore: Int {
 get {
 return (averageStrength * 3) + (attackPower * 3) +
 (averageRunningSpeed * 2) + (defensePower * 2)
 }
 }

The following line prints the value for this type property. The code file for the sample is
included in the swift_3_oop_chapter_03_14 folder:

 print(LionSuperHero.warriorScore)

The following lines create a new instance of the LionSuperHero class and use the value of
the averageRunningSpeed type property in a sum that specifies the value of the
runningSpeedScore argument. The code file for the sample is included in the
swift_3_oop_chapter_03_14 folder:

 var superTom = LionSuperHero(name: "Tom",
 runningSpeedScore: LionSuperHero.averageRunningSpeed +
 1)

Encapsulation of Data with Properties

[99]

Creating mutable classes
So far, we have worked with different types of properties. When we declare stored instance
properties with the var keyword, we create a mutable instance property, which means that
we can change their values for each new instance we create. When we create an instance of
a class that defines many public-stored properties, we create a mutable object, which is an
object that can change its state.

A mutable object is also known as a mutating object.

For example, let's think about a class named MutableVector3D that represents a mutable
3D vector with three public-stored properties: x, y, and z. We can create a new
MutableVector3D instance and initialize the x, y, and z attributes. Then, we can call the
sum method with the delta values of x, y, and z as arguments. The delta values specify the
difference between the existing and new or desired value. So, for example, if we specify a
positive value of 30 in the deltaX parameter, it means we want to add 30 to the X value.
The following lines declare the MutableVector3D class that represents the mutable version
of a 3D vector in Swift. The code file for the sample is included in the
swift_3_oop_chapter_03_15 folder:

 public class MutableVector3D {
 public var x: Float
 public var y: Float
 public var z: Float
 init(x: Float, y: Float, z: Float) {
 self.x = x
 self.y = y
 self.z = z
 }
 public func sum(deltaX: Float, deltaY: Float,
 deltaZ: Float) {
 x += deltaX
 y += deltaY
 z += deltaZ
 }

 public func printValues() {
 print("X: (x), Y: (y), Z: (z))")
 }
 }

Encapsulation of Data with Properties

[100]

Note that the declaration of the sum instance method uses the func keyword, specifies the
arguments with their types enclosed in parentheses, and then declares the body for the
method enclosed in curly brackets. The public sum instance method receives the delta
values for x, y, and z (deltaX, deltaY, and deltaZ) and mutates the object, which means
that the method changes the values of x, y, and z. The public printValues method prints
the values of the three instance-stored properties: x, y, and z.

Swift API Design Guidelines suggest us to name functions and methods
according to their side-effects. In this case, the sum operation is naturally
described by a verb; therefore, we use the verb's imperative for the
mutating method: sum.

The following lines create a new MutableVector3D instance method called
myMutableVector, initialized with the values of the x, y, and z properties. Then, the code
calls the sum method with the delta values of x, y, and z as arguments and finally calls the
printValues method to check the new values after the object is mutated with the call to
the sum method. The code file for the sample is included in the
swift_3_oop_chapter_03_14 folder:

 var myMutableVector = MutableVector3D(x: 30, y: 50,
 z: 70)
 myMutableVector.sum(deltaX: 20, deltaY: 30,
 deltaZ: 15)
 myMutableVector.printValues()

The results of the execution in the Playground are shown in the following screenshot:

Encapsulation of Data with Properties

[101]

Swift 3 normalized the first parameter declaration in methods and
functions. As a result of this, by default, Swift 3 externalizes the first
parameter. Thus, first parameter declarations in Swift 3 match the
behavior of the second and later parameters in the earlier Swift versions,
such as Swift 2.3 and 2.2. In the previous example, we had to specify the
argument label for the first parameter, deltaX, when we called the sum
method. If we want to suppress the externalization of the argument label
for the first parameter, we must add an underscore (_) followed by a space
before the parameter label in the method's declaration. For example,
public sum (_ deltaX: Float, deltaY: Float, deltaZ:

Float) would generate a method that we can call without specifying the
argument label for the first parameter, that is, with the default behavior
we had in Swift 2.3 and 2.2.

The initial values of the myMutableVector fields are 30 for x, 50 for y, and 70 for z. The
sum method changes the values of the three instance-stored properties; therefore, the object
state mutates as follows:

myMutableVector.X mutates from 30 to 30 + 20 = 50
myMutableVector.Y mutates from 50 to 50 + 30 = 80
myMutableVector.Z mutates from 70 to 70 + 15 = 85

The values for the myMutableVector fields after the call to the sum method are 50 for x, 80
for y, and 85 for z. We can say that the method mutated the object's state; therefore,
myMutableVector is a mutable object and an instance of a mutable class.

It's a very common requirement to generate a 3D vector with all the values initialized to 0,
that is, x = 0, y = 0, and z = 0. A 3D vector with these values is known as an origin
vector. We can add a type method to the MutableVector3D class named makeOrigin to
generate a new instance of the class initialized with all the values in 0. Type methods are
also known as class or static methods in other object-oriented programming languages. It is
necessary to add the class keyword before the func keyword to generate a type method
instead of an instance. The following lines define the makeOrigin type method. Add the
lines within the MutableVector3D class declaration. The code file for the sample is
included in the swift_3_oop_chapter_03_15 folder:

 public class func makeOrigin() -> MutableVector3D {
 return MutableVector3D(x: 0, y: 0, z: 0)
 }

Encapsulation of Data with Properties

[102]

Swift API Design Guidelines suggest us to begin the names of factory
methods with make.

The preceding method returns a new instance of the MutableVector3D class with 0 as the
initial value for all the three elements. The following lines call the makeOrigin type method
to generate a 3D vector, the sum method for the generated instance, and finally, the
printValues method to check the values of the three elements on the Playground. The
code file for the sample is included in the swift_3_oop_chapter_03_15 folder:

 var myMutableVector2 = MutableVector3D.makeOrigin()
 myMutableVector2.sum(deltaX: 5, deltaY: 10,
 deltaZ: 15)
 myMutableVector2.printValues()

The following screenshot shows the results of executing the preceding code in the
Playground:

Encapsulation of Data with Properties

[103]

Building immutable classes
Mutability is very important in object-oriented programming. In fact, whenever we expose
mutable properties, we create a class that will generate mutable instances. However,
sometimes a mutable object can become a problem and in certain situations, we want to
avoid objects changing their state. For example, when we work with concurrent code, an
object that cannot change its state solves many concurrency problems and avoids potential
bugs.

An immutable object is also known as a non-mutating object.

For example, we can create an immutable version of the previous MutableVector3D class
to represent an immutable 3D vector. The new ImmutableVector3D class has three
immutable instance properties declared with the let keyword instead of the previously
used var keyword: x, y, and z. We can create a new ImmutableVector3D instance and
initialize the immutable instance properties. Then, we can call a summed method with the
delta values of x, y, and z as arguments.

Swift API Design Guidelines suggest us to name functions and methods
according to their side-effects. In this case, the sum operation is naturally
described by a verb; therefore, we apply the ed suffix (or its past tense) for
the nonmutating method: summed. Remember that we used the verb's
imperative for the mutating method: sum.

The summed public instance method receives the delta values for x, y, and z (deltaX,
deltaY, and deltaZ), and returns a new instance of the same class with the values of x, y,
and z initialized with the results of the sum. The following lines show the code of the
ImmutableVector3D class. The code file for the sample is included in the
swift_3_oop_chapter_03_16 folder:

 public class ImmutableVector3D {
 public let x: Float
 public let y: Float
 public let z: Float
 init(x: Float, y: Float, z: Float) {
 self.x = x
 self.y = y
 self.z = z
 }

Encapsulation of Data with Properties

[104]

 public func summed(deltaX: Float, deltaY: Float,
 deltaZ: Float) -> ImmutableVector3D {
 return ImmutableVector3D(x: x + deltaX, y: y +
 deltaY, z: z + deltaZ)
 }
 public func printValues() {
 print("X: (self.x), Y: (self.y), Z: (self.z))")
 }
 public class func makeEqualElements(initialValue:
 Float) -> ImmutableVector3D {
 return ImmutableVector3D(x: initialValue,
 y: initialValue, z: initialValue)
 }
 public class func makeOrigin() -> ImmutableVector3D
 {
 return makeEqualElements(initialValue: 0)
 }
 }

In the new ImmutableVector3D class, the summed method returns a new instance of the
ImmutableVector3D class, that is, the current class. In this case, the makeOrigin type
method returns the results of calling the makeEqualElements type method with 0 as an
argument.

The makeEqualElements type method receives an initialValue argument for all the
elements of the 3D vector, creates an instance of the actual class, and initializes all the
elements with the received unique value. The makeOrigin type method demonstrates how
we can call another type method within a type method. Note that both the type methods
specify the returned type with -> followed by the type name (ImmutableVector3D) after
the arguments enclosed in parentheses. The following line shows the declaration for the
makeEqualElements type method with the specified return type:

 public class func makeEqualElements(initialValue:
 Float) -> ImmutableVector3D {

The following lines call the makeOrigin type method, to generate an immutable 3D vector
named vector0, and the summed method for the generated instance, and save the returned
instance in the new vector1 variable. The call to the summed method generates a new
instance and doesn't mutate the existing object. Enter the lines after the code that declares
the ImmutableVector3D class. The code file for the sample is included in the
swift_3_oop_chapter_03_16 folder:

 var vector0 = ImmutableVector3D.makeOrigin()
 var vector1 = vector0.summed(deltaX: 5, deltaY: 10,

Encapsulation of Data with Properties

[105]

 deltaZ: 15)
 vector1.printValues()

The code doesn't allow the users of the ImmutableVector3D class to
change the values of the x, y, and z properties declared with the let
keyword. The code doesn't compile if you try to assign a new value to any
of these properties after they were initialized. Thus, we can say that the
ImmutableVector3D class is 100 percent immutable. In other words, it is
a non-mutating class.

Finally, the code calls the printValues method for the returned instance (vector1) to
check the values of the three elements on the Playground, as shown in the following
screenshot:

Encapsulation of Data with Properties

[106]

The immutable version adds an overhead, compared with the mutable version, because it is
necessary to create a new instance of the class as a result of calling the summed method. The
previously analyzed mutable version (MutableVector3D) just changed the values for the
attributes, and it wasn't necessary to generate a new instance. Obviously, the immutable
version (ImmutableVector3D) has both a memory and performance overhead. However,
when we work with concurrent code, it makes sense to pay the extra overhead to avoid
potential issues caused by mutable objects. We just have to make sure that we analyze the
advantages and tradeoffs in order to decide the most convenient way of coding our specific
classes.

Exercises
Now that you understand instance properties, type properties, and methods, it is time to
spend some time in the Playground, the Swift REPL, or the Sandbox, creating new classes
and instances:

Exercise 1: Create mutable versions of the following three classes that we
analyzed in Chapter 1, Objects from the Real-World to the Playground:

Equilateral triangle (The EquilateralTriangle class)
Square (The Square class)
Regular hexagon (The RegularHexagon class)

Exercise 2: Create immutable versions of the previously created classes

Test your knowledge
You use the static var keywords to declare a:1.

Type property.1.
Instance property.2.
Read-only computed instance property.3.

You use the static let keywords to declare a:2.
Mutable type property.1.
Immutable instance property.2.
Immutable type property.3.

Encapsulation of Data with Properties

[107]

An instance-stored property:3.
Has its own independent value for each instance of a class.1.
Has the same value for all the instances of a class.2.
Has the same value for all the instances of a class, unless it is accessed3.
through the class name followed by a dot and the property name.

A class that exposes mutable properties will:4.
Generate immutable instances.1.
Generate mutable instances.2.
Generate mutable classes but immutable instances.3.

An instance method:5.
Cannot access instance properties.1.
Can access instance properties.2.
Can access only type properties.3.

Based on Swift API Design Guidelines, which is the most convenient name for a6.
mutable or mutating instance method naturally described by the calculate
verb?

calculate.1.
calculated.2.
calculation.3.

Based on Swift API Design Guidelines, which is the most convenient name for an7.
immutable or nonmutating instance method naturally described by the
calculate verb?

calculate.1.
calculated.2.
calculation.3.

By default, Swift 3:8.
Externalizes the first parameter in methods and functions.1.
Doesn't externalize the first parameter in methods and functions.2.
Externalizes the first parameter in methods but doesn't externalize the3.
first parameter in functions.

Encapsulation of Data with Properties

[108]

Summary
In this chapter, you learned about the different members of a class or blueprint. We worked
with instance properties, type properties, instance methods, and type methods. We worked
with stored properties, getters, setters, and property observers, and we took advantage of
access modifiers to hide data.

We worked with superheroes and defined the shared properties of a specific type of lion
superhero using type properties. We also worked with mutable and immutable versions of
a 3D vector, following the recommendations included in the Swift API Design Guidelines.
You also understood the difference between mutable and immutable classes.

Now that you have learned to encapsulate data with properties, you are ready to create
class hierarchies to abstract and specialize behavior, which is the topic of the next chapter.

4
Inheritance, Abstraction, and

Specialization
In this chapter, you will learn about one of the most important topics of object-oriented
programming: inheritance. We will work with examples on how to create class hierarchies,
override methods, overload methods, work with inherited initializers, and overload
operators. In addition, you will learn about polymorphism and basic typecasting.

Creating class hierarchies to abstract and
specialize behavior
So far, we have created classes to generate blueprints for real-life objects. Now, it is time to
take advantage of the more advanced features of object-oriented programming and start
designing a hierarchy of classes instead of working with isolated classes. First, we will
design all the classes that we need based on the requirements, and then, we will use the
features available in Swift to code the design.

We worked with classes to represent superheroes. Now, let's imagine that we have to
develop a very complex app that requires us to work with hundreds of types of domestic
animals. We already know that the app will start working with the following four domestic
animal species:

Dog (Canis lupus familiaris)
Guinea pig (Cavia porcellus)
Domestic canary (Serinus canaria domestica)
Cat (Felis silvestris catus)

Inheritance, Abstraction, and Specialization

[110]

The previous list provides the scientific names for each domestic animal species. Of course,
we will work with the most common name for each species and just have the scientific
name as a type property. Thus, we won't have a complex class name, such as
CanisLupusFamiliaris, but we will use Dog instead.

Initially, we'll have to work with a limited number of breeds for the previously enumerated
four domestic animal species. Additionally, in the future, it will be necessary to work with
other members of the listed domestic animal species, other domestic mammals, and even
reptiles and birds that don't belong to the domestic animal species. Thus, our object-
oriented design must be ready to be expanded for future requirements. In fact, you will
understand how object-oriented programming makes it easy to expand an existing design
for future requirements.

Of course, we don't want our object-oriented design to model a complete representation of
the animal kingdom and its classification. We just want to create the necessary classes to
have a flexible model that can be easily expanded. The animal kingdom is extremely
complex, and we will keep our focus in just a few members of this huge family.

The examples will also allow you to understand that object-oriented
programming doesn't sacrifice flexibility. We can start with a simple class
hierarchy that can be expanded as the application's complexity increases
and we have more information about new requirements.

In this case, we will need many classes to represent a complex classification of animals and
their breeds. The following list enumerates the classes that we will create and their
descriptions:

Animal: This is a class that generalizes all the members of the animal kingdom.
Dogs, guinea pigs, domestic canaries, cats, reptiles, and birds have one thing in
common: they are animals. Thus, it makes sense to create a class that will be the
baseline for the different classes of animals that we may have to represent in our
object-oriented design.
Mammal: This is a class that generalizes all the mammalian animals. Mammals are
different from reptiles, amphibians, birds, and insects. As we already know that
we will also have to model reptiles and birds, we will create a Mammal class at
this level.
Bird: This is a class that generalizes all birds. Birds are different from mammals,
reptiles, amphibians, and insects. We already know that we will also have to
model reptiles and birds. In fact, a domestic canary is a bird, so we will create a
Bird class at the same level as Mammal.

Inheritance, Abstraction, and Specialization

[111]

DomesticMammal: This is a subclass of Mammal. The tiger (Panthera tigris) is the
largest and heaviest living species of the cat family. A tiger is a cat, but it is
completely different from a domestic cat. The initial requirements tell us that we
will work with both domestic and wild animals, so we will create a class that
generalizes all domestic mammal animals. In the future, we will have a
WildMammal subclass that will generalize all the wild mammalian animals.
DomesticBird: The ostrich (Struthio camelus) is the largest living bird. However,
obviously, an ostrich is completely different from a domestic canary. As we will
work with both domestic and wild birds, we will create a class that generalizes all
domestic birds. In the future, we will have a WildBird class that will generalize
all wild birds.
Dog: We could go on specializing the DomesticMammal class with additional
subclasses until we reach a Dog class. For example, we might create a
CanisCarnivorianDomesticMammal subclass and then make the Dog class
inherit from it. However, the kind of app we have to develop doesn't require any
intermediary class between DomesticMammal and Dog. At this level, we will also
have a Cat class. The Dog class generalizes the properties and methods required
for a dog in our application. Subclasses of the Dog class will represent the
different families of the dog breed. For example, one of the main differences
between a dog and a cat in our application domain is that a dog barks and a cat
meows.
Cat: The Cat class generalizes the properties and methods required for a cat in
our application. Subclasses of the Cat class will represent the different families of
the cat breed. In this case, we create a class to represent domestic cats, so Cat is a
subclass of DomesticMammal.
GuineaPig: The GuineaPig class generalizes all the properties and methods
required for a guinea pig in our application.
TerrierDog: Each dog breed belongs to a family. We will work with a huge
amount of dog breeds, and some profile values determined by their family are
very important for our application. Thus, we will create a subclass of Dog for each
family. In this case, the sample TerrierDog class represents the Terrier family.

Inheritance, Abstraction, and Specialization

[112]

SmoothFoxTerrier: Finally, a subclass of a dog breed family class will represent
a specific dog breed that belongs to the family. Its breed determines the dog's
looks and behavior. A dog that belongs to the Smooth Fox Terrier breed is
completely different from a dog that belongs to the Tibetan Spaniel breed. Thus,
we will create instances of the classes at this level to give life to each dog in our
application. In this case, the SmoothFoxTerrier class models an animal, a
mammal, domestic mammal, dog, and terrier family dog, specifically, a dog that
belongs to the Smooth Fox Terrier breed.
DomesticCanary: The DomesticCanary class generalizes the properties and
methods required for a domestic canary in our application.

Each class listed in the previous list represents a specialization of the previous class–that is,
its superclass, parent class, or superset–as shown in the following table:

Superclass, parent class, or superset Subclass, child class, or subset

Animal Mammal

Animal Bird

Mammal DomesticMammal

Bird DomesticBird

DomesticMammal Dog

DomesticMammal Cat

DomesticMammal GuineaPig

DomesticBird DomesticCanary

Dog TerrierDog

TerrierDog SmoothFoxTerrier

Our application requires many members of the Terrier family, so the SmoothFoxTerrier
class will not be the only subclass of TerrierDog. In the future, we will have the following
three additional subclasses of TerrierDog:

AiredaleTerrier: This is the Airedale Terrier breed
BullTerrier: This is the Bull Terrier breed
CairnTerrier: This is the Cairn Terrier breed

Inheritance, Abstraction, and Specialization

[113]

The following UML diagram shows the previous classes organized in a class hierarchy:

Inheritance, Abstraction, and Specialization

[114]

Understanding inheritance
When a class inherits from another class, it inherits all the elements that compose the parent
class, which is also known as a superclass. The class that inherits the elements is known as a
subclass. For example, the Mammal subclass inherits all the properties, instance fields or
instance attributes, and class fields or class attributes defined in the Animal superclass.

The Animal abstract class is the baseline for our class hierarchy. We say that it is an abstract
class because we shouldn't create instances of the Animal class; instead, we must create
instances of the specific subclasses of Animal. However, we must take into account that
Swift doesn't allow us to declare a class as an abstract class.

We require each Animal to specify its age, so we will have to specify the age when we
create any Animal, that is, any instance of any Animal subclass. The class will define an age
property and display a message whenever an animal is created. The class defines three type
properties that specify the number of legs, the average number of children, and the ability
to fly. The first two type properties will be initialized to 0 and the last one to false. The
subclasses will have to set appropriate values for these type properties. The Animal class
defines the following three instance methods:

Print legs: This prints a representation of the specified number of legs. Guinea
pigs have legs that are very different from the ones that dogs have.
Print children: This prints a representation of the specific average number of
children.
Print age: This prints the animal's age.

In addition, we want to be able to compare the age of the different Animal instances using
the following operators:

Less than (<)
Less than or equal to (<=)
Greater than (>)
Greater than or equal to (>=)

Inheritance, Abstraction, and Specialization

[115]

We have to print a message whenever we create any Animal instance. We won't create
instances of the Animal class but those of its different subclasses. When we inherit from a
class, we also inherit its initializer, so we can call the inherited initializer to run the
initialization code for the base class. This way, it is possible to know when an instance of
Animal is created, even when it is a class that we don't use to create instances. In fact, all the
instances of the subclasses of Animal will be instances of Animal too.

The Mammal class inherits from Animal. We require each Mammal class to specify its age and
whether it is pregnant or not when creating an instance. The class inherits the age property
from the Animal superclass, so it is only necessary to add a property to specify whether it is
pregnant or not. Note that we will not specify the gender at any time in order to keep things
simple. If we added gender, we would need a validation to avoid a male being pregnant.
Right now, our focus is on inheritance. The class displays a message whenever a
mammalian animal is created, that is, whenever its initializer is executed.

Each class inherits from one class, so each new class we will define has just
one superclass. In this case, we will always work with single inheritance.

The DomesticMammal class inherits from Mammal. We require each DomesticMammal class
to specify its name and favorite toy. Any domestic mammal has a name and it always picks
a favorite toy. Sometimes, the favorite toy is not exactly the toy we would like them to pick
(our shoes, sneakers, or electronic devices), but let's keep the focus on our classes. It is
necessary to add a read-only property to allow access to the name and a read/write
property for the favorite toy. You never change the name of a domestic mammal, but you
can force it to change its favorite toy. The class displays a message whenever a domestic
mammalian animal is created.

The talk instance method will display a message indicating the domestic mammal's name
concatenated with the word talk. Each subclass must make the specific domestic mammal
talk in a different way. A parrot can really talk, but we will consider a dog's bark and a cat's
meow as if they were talking.

The Dog class inherits from DomesticMammal and specifies 4 as the value of the number of
legs. The Animal class, that is, the Mammal superclass, defines this type attribute with 0 as
the value, but Dog overwrites the inherited attribute with 4. The class displays a message
whenever a dog is created. The average number of children will be specified in each
subclass of Dog that determines a dog breed.

Inheritance, Abstraction, and Specialization

[116]

We want the dogs to be able to bark, so we need a bark method. The method has to allow a
dog to do the following things:

Bark happily just once
Bark happily a specific number of times
Bark happily at another domestic mammal with a name just once
Bark happily at another domestic mammal with a name a specific number of
times
Bark angrily just once
Bark angrily a specific number of times
Bark angrily at another domestic mammal with a name just once
Bark angrily at another domestic mammal with a name a specific number of
times

We can have just one bark method with optional arguments or many bark methods. Swift
provides many mechanisms to solve the challenges of the different ways in which a dog
must be able to bark.

When we call the talk method for any dog, we want it to bark happily once. We don't want
to display the message defined in the talk method introduced in the DomesticMammal
class. Thus, the Dog class must overwrite the inherited talk method with its own
definition.

We want to know the breed and breed family to which a dog belongs. Thus, we will define
both the breed and breed family type properties. Each subclass of Dog must specify the
appropriate values for these type properties. In addition, two type methods will allow us to
print the dog's breed and breed family.

The TerrierDog class inherits from Dog and specifies Terrier as the value for the breed
family. The class displays a message whenever a TerrierDog class is created.

Finally, the SmoothFoxTerrier class inherits from TerrierDog and specifies Smooth Fox
Terrier as the value for the breed. The class displays a message whenever a
SmoothFoxTerrier class is created.

First, we will create a base Animal class in Swift, and then, we will use simple inheritance to
create the subclasses. We will override methods and overload comparison operators to be
able to compare different instances of a specific class and its subclasses. We will take
advantage of polymorphism, which is a very important feature in object-oriented
programming.

Inheritance, Abstraction, and Specialization

[117]

Declaring classes that inherit from another
class
The following lines show the code for the Animal base class in Swift. The class header
doesn't specify a base class, so this class will become our base class for the other classes. The
code file for the sample is included in the swift_3_oop_chapter_04_01 folder:

 open class Animal {
 open static var numberOfLegs: Int {
 get {
 return 0;
 }
 }
 open static var averageNumberOfChildren: Int {
 get {
 return 0;
 }
 }
 open static var abilityToFly: Bool {
 get {
 return false;
 }
 }
 open var age: Int
 init(age : Int) {
 self.age = age
 print("Animal created")
 }
 open static func printALeg() {
 preconditionFailure("The pringALeg method must be overriden")
 }
 open func printLegs() {
 for _ in 0..<type(of: self).numberOfLegs {
 type(of: self).printALeg()
 }
 print(String())
 }
 open static func printAChild() {
 preconditionFailure("The printChild method must be overriden")
 }
 open func printChildren() {
 for _ in 0..<type(of: self).averageNumberOfChildren {
 type(of: self).printAChild()
 }
 print(String())
 }

Inheritance, Abstraction, and Specialization

[118]

 open func printAge() {
 print("I am (age) years old.")
 }
 }

The preceding class declares two read-only type computed properties and both return 0 as
their value: numberOfLegs and averageNumberOfChildren. In addition, the class
declares another read-only type computed property that returns false as its value:
abilityToFly. We will be able to return different values for these properties in the
different subclasses of Animal.

The initializer requires an age value to create an instance of the class and prints a message
indicating that an animal is created. The class declares an age stored instance property. It
defines the following three instance methods:

printAge: This displays the age based on the age value
printALeg: This uses preconditionFailure to indicate that each subclass
must override this type method with a specific implementation that prints a
single leg for the animal
printAChild: This uses preconditionFailure to indicate that each subclass
must override this type method with a specific implementation that prints a
single child for the animal

In addition, the class declares the following two type methods:

printLegs: This calls the printALeg method the number of times specified in
the numberOfLegs type property. The method uses the type function with self
as the value for the of argument to retrieve the runtime type as a value and
access the type property for the specific type that we used to create the instance.
printChildren: This calls the printAChild method the number of times
specified in the averageNumberOfChildren type property. As it happened in
the pringLegs property, the code uses the type function with self as the value
for the of argument to access the necessary type property.

Inheritance, Abstraction, and Specialization

[119]

If we execute the following line in the Playground after declaring the Animal class, Swift
will generate a fatal error and indicate that the printAChild type method must be
overridden, as shown in the subsequent screenshot. We will see similar error messages in
the Swift REPL and in the Swift Sandbox. The code file for the sample is included in the
swift_3_oop_chapter_04_02 folder:

 Animal.printAChild()

We have to add additional functions to allow us to compare the ages of different Animal
instances using operators. We will add the necessary code to perform this task later.

The following lines show the code for the Mammal class that inherits from Animal. Note the
class keyword followed by the class name Mammal, a colon (:), and Animal, which is the
superclass from which it inherits, in the class definition. The code file for the sample is
included in the swift_3_oop_chapter_04_03 folder:

 open class Mammal: Animal {
 open var isPregnant: Bool = false
 private func initialize(isPregnant: Bool) {
 self.isPregnant = isPregnant
 print("Mammal created")
 }

Inheritance, Abstraction, and Specialization

[120]

 override init(age: Int) {
 super.init(age: age)
 initialize(isPregnant: false)
 }
 init(age: Int, isPregnant: Bool) {
 super.init(age: age)
 initialize(isPregnant: isPregnant)
 }
 }

The Mammal class inherits the members from the previously declared Animal class and adds
a new Bool stored property initialized with the default false value. Note that this class
declares two designated initializers. One of the initializers requires an age value to create
an instance of the class, as it happened with the Animal initializer. The other initializer
requires the age and isPregnant values. If we create an instance of this class with just one
age argument, Swift will use the first initializer. If we create an instance of this class with
two arguments–an Int value for age and a Bool value for isPregnant–Swift will use the
second initializer. Thus, we have overloaded the initializer and provided two different
initializers. Of course, we could also take advantage of optional parameters. However, in
this case, we want to overload initializers.

The two initializers use the super keyword to call the inherited init method from the base
class or superclass, that is, the init method defined in the Animal class. Once the
superclass's initializer finishes its execution, each initializer calls the initialize private
method that initializes the isPregnant stored property with the value received as an
argument or the default false value in case it isn't specified.

We use super to reference the superclass.

One of the initializers uses the override keyword to override the initializer with the same
declaration that is included in the superclass. We already had an initializer with an age
argument of type Int in the Animal superclass. The other initializer doesn't require the
override keyword because there is no initializer declared in the Animal superclass with the
same arguments.

Inheritance, Abstraction, and Specialization

[121]

The following lines create an instance of the Mammal class in the Playground using the
designated initializer that just requires an age argument. The code file for the sample is
included in the swift_3_oop_chapter_04_03 folder:

 var bat = Mammal(age: 3)
 bat.printAge()
 print(bat.isPregnant)

The following lines show the results of the preceding lines. When the superclass initializer
is executed, it prints Animal created, and after this happens, the initializer defined in the
Mammal class prints Mammal created. The call to the printAge method defined in the
Animal superclass prints the actual value of the age property in this instance of the Mammal
class. Finally, a line prints the value of the isPregnant property that was initialized with
false because we didn't specify a value for it:

 Animal created
 Mammal created
 I am 3 years old.
 false

The following lines create another instance of the Mammal class in the Playground using the
initializer that requires two arguments: age and isPregnant. The code file for the sample
is included in the swift_3_oop_chapter_04_03 folder:

 var cat = Mammal(age: 6, isPregnant: true)
 cat.printAge()
 print(cat.isPregnant)

The following lines show the results of the preceding lines. The last line prints the value of
the isPregnant property that was initialized with true in the initializer defined in the
Mammal class:

 Animal created
 Mammal created
 I am 6 years old.
 true

Inheritance, Abstraction, and Specialization

[122]

The following screenshot shows the results of executing the preceding code in the
Playground:

Overriding and overloading methods
Swift allows us to define a method with the same name many times with different
arguments. This feature is known as method overloading. In some cases, as in our previous
example, we can overload the designated initializer. However, it is very important to
mention that a similar effect might be achieved with optional parameters or default values
for specific arguments.

For example, we can take advantage of method overloading to define multiple versions of
the bark method that we have to define in the Dog class. However, it is very important to
avoid code duplication when we overload methods.

Inheritance, Abstraction, and Specialization

[123]

Sometimes, we define a method in a class, and we know that a subclass might need to
provide a different version of the method. When a subclass provides a different
implementation of the method defined in a superclass, with the same name, arguments, and
return type, we say that we are overriding a method. When we override a method, the
implementation in the subclass overwrites the code provided in the superclass.

It is also possible to override methods related to properties, such as getters
and setters, and the other members of a class in the subclasses.

The following lines show the code for the DomesticMammal class that inherits from
Mammal. Note the class keyword followed by the class name DomesticMammal, a colon
(:), and Mammal, which is the superclass from which it inherits, in the class definition. The
code file for the sample is included in the swift_3_oop_chapter_04_04 folder:

 open class DomesticMammal: Mammal {
 open var name = String()
 open var favoriteToy = String()
 private func initialize(name: String, favoriteToy: String) {
 self.name = name
 self.favoriteToy = favoriteToy
 print("DomesticMammal created")
 }
 init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age)
 initialize(name: name, favoriteToy: favoriteToy)
 }
 init(age: Int, isPregnant: Bool, name: String, favoriteToy:
 String) {
 super.init(age: age, isPregnant: isPregnant)
 initialize(name: name, favoriteToy: favoriteToy)
 }
 open func talk() {
 print("(name): talks")
 }
 }

Inheritance, Abstraction, and Specialization

[124]

The preceding class declares two designated initializers. One of them requires age, name,
and favoriteToy to create an instance of a class. The other initializer adds an isPregnant
argument. As it happened in the Mammal class, the code within each initializer uses
super.init to call the appropriate superclass' initializer. In one case, we just need the age
value received as an argument, and in the other case, it is also necessary to add the
isPregnant value. Once the superclass's initializer finishes its execution, the initializers
call the initialize private method that initializes the name and favoriteToy properties.
After the method finishes initializing the properties, it prints a message indicating that a
DomesticMammal class is created. The following lines show both initializer declarations:

 init(age: Int, name: String, favoriteToy: String) {
 init(age: Int, isPregnant: Bool, name: String, favoriteToy: String)
 {

The class defines two stored properties: name and favoriteToy. The talk instance method
displays a message with the name value followed by a colon (:) and talks. Note that we
will be able to override this method in any subclass of DomesticMammal because each
domestic mammal has a different way of talking.

The following lines create an instance of the DomesticMammal class in the Playground
using the initializer that requires three arguments: age, name, and favoriteToy. The code
file for the sample is included in the swift_3_oop_chapter_04_04 folder:

 var scooby = DomesticMammal(age: 5, name: "Scooby", favoriteToy:
 "Scarf")
 scooby.printAge()
 scooby.talk()
 print(scooby.favoriteToy)
 print(scooby.isPregnant)

The following lines show the results of the preceding lines. We can detect the chained
execution of the initializers in the base class (Animal), the superclass (Mammal), and the
class (DomesticMammal). The first line displays Animal created, the second line displays
Mammal created, and the third line displays Domestic Mammal created. The call to the
printAge method defined in the base class (Animal) prints the actual value of the age
property in this instance of the DomesticMammal class. The call to the talk method
displays the message that starts with the name value.

Inheritance, Abstraction, and Specialization

[125]

A line prints the value of the favoriteToy property that is defined in this class, and then,
another line prints the value of the inherited isPregnant property. In this case, the value of
the isPregnant property was initialized with false because we didn't specify a value for
it:

 Animal created
 Mammal created
 DomesticMammal created
 I am 5 years old.
 Scooby: talks
 Scarf
 false

The following lines create another instance of the DomesticMammal class in the Playground
using the initializer that requires four arguments: age, isPregnant, name, and
favoriteToy:

 var lady = DomesticMammal(age: 6, isPregnant: true, name: "Lady",
 favoriteToy: "Teddy")
 lady.printAge()
 lady.talk()
 print(lady.favoriteToy)
 print(lady.isPregnant)

The following lines show the results of the preceding lines. The last line prints the value of
the isPregnant property that was initialized with true in the initializer defined in the
Mammal class and called through the initializers' chain:

 Animal created
 Mammal created
 DomesticMammal created
 I am 6 years old.
 Lady: talks
 Teddy
 true

Inheritance, Abstraction, and Specialization

[126]

The following screenshot shows the results of executing the preceding code in the
Playground:

Dogs are domestic mammals that have four legs, and so far, nobody has discovered a dog
breed with the ability to fly. When we define the Dog class that inherits from
DomesticMammal, we will want to override the numberOfLegs type property to make its
getter return 4 and make sure that the abilityToFly type property will always return
false in Dog and any of its subclasses.

Inheritance, Abstraction, and Specialization

[127]

Overriding properties
First, we will try to override the numberOfLegs type property that the Dog class will inherit
from the Animal base class. We will face an issue and solve it. The following lines show the
code for a simplified version of the Dog class that inherits from DomesticMammal and just
tries to override the numberOfLegs type property:

 open class Dog: DomesticMammal {
 open static override var numberOfLegs: Int {
 get {
 return 4;
 }
 }
 }

After we enter the previous lines in the Playground, we will see the following error message
in the line that tries to override the numberOfLegs type property: error: cannot
override static var. The following screenshot shows the error in the Playground. We
will see similar error messages in the Swift REPL and in the Swift Sandbox. The code file for
the sample is included in the swift_3_oop_chapter_04_05 folder:

When we declare either a type property or a method with the static
keyword in a base class, it isn't possible to override it in a subclass. Thus, if
we want to enable either a type property or a method to be overridden in
the subclasses, it is necessary to use the class keyword instead of static
when we declare them in the base class.

Inheritance, Abstraction, and Specialization

[128]

We have to change the declaration of the type properties declared in the Animal class to use
the class keyword instead of the static keyword. The following lines show the first lines
of code of the new version of the Animal class that replaces the declaration of the type
properties to make it possible to override them in its subclasses. Note that the rest of the
code for the class after the declaration of the three type properties (numberOfLegs,
averageNumberOfChildren, and abilityToFly) remains without changes. The code file
for the sample is included in the swift_3_oop_chapter_04_06 folder:

 open class Animal {
 open class var numberOfLegs: Int {
 get {
 return 0;
 }
 }

 open class var averageNumberOfChildren: Int {
 get {
 return 0;
 }
 }
 open class var abilityToFly: Bool {
 get {
 return false;
 }
 }
 ...
 }

After we make the preceding changes to the Animal class, we will notice that the
Playground will remove the error message in the declaration of the type property we
declared in the Dog class. In fact, we didn't have to make changes to the type property
declaration in the Dog class to remove the error. However, we must take into account that
the usage of the static keyword when declaring the numberOfLegs type property in the
Dog class that overrides the inherited property from the Animal class prevents subclasses of
Dog from overriding this property. When we use static for overridden type properties,
we are indicating to Swift that we don't want the type property to be overridden any more.
In this case, it makes sense because so far, all the dogs that have been discovered have four
legs. Thus, any Dog subclass won't need to specify a different value for this type property.

The following line prints the value for the overridden type property. The code file for the
sample is included in the swift_3_oop_chapter_04_06 folder:

 print(Dog.numberOfLegs)

Inheritance, Abstraction, and Specialization

[129]

The next screenshot shows the results of printing the overridden type property in the
Playground after we edited the type properties declarations in the Animal class:

Controlling whether subclasses can or
cannot override members
The following lines show the code for the complete Dog class that inherits from
DomesticMammal. Note that the following code replaces the previous Dog class that just
declared an overridden type property. The code file for the sample is included in the
swift_3_oop_chapter_04_07 folder:

 open class Dog: DomesticMammal {
 open static override var numberOfLegs: Int {
 get {
 return 4;
 }
 }
 open static override var abilityToFly: Bool {
 get {
 return false;
 }
 }
 open var breed: String {
 get {
 return "Just a dog"
 }
 }

Inheritance, Abstraction, and Specialization

[130]

 open var breedFamily: String {
 get {
 return "Dog"
 }
 }
 private func initializeDog() {
 print("Dog created")
 }
 override init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeDog()
 }
 override init(age: Int, isPregnant: Bool, name: String,
 favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
 favoriteToy: favoriteToy)
 initializeDog()
 }
 public final func printBreed() {
 print(breed)
 }
 public final func printBreedFamily() {
 print(breedFamily)
 }
 open func printBark(times: Int, otherDomesticMammal:
 DomesticMammal?, isAngry: Bool) {
 var bark = "(name)"
 if let unwrappedOtherDomesticMammal = otherDomesticMammal {
 bark += " to (unwrappedOtherDomesticMammal.name): "
 } else {
 bark += ": "
 }
 if isAngry {
 bark += "Grr "
 }
 for _ in 0 ..< times {
 bark += "Woof "
 }
 print(bark)
 }
 open func bark() {
 printBark(times: 1, otherDomesticMammal: nil, isAngry: false)
 }
 open func bark(times: Int) {
 printBark(times: times, otherDomesticMammal: nil,
 isAngry: false)
 }

Inheritance, Abstraction, and Specialization

[131]

 open func bark(times: Int, otherDomesticMammal: DomesticMammal) {
 printBark(times: times, otherDomesticMammal: herDomesticMammal,
 isAngry: false)
 }

 open func bark(times: Int, otherDomesticMammal: DomesticMammal,
 isAngry: Bool) {
 printBark(times: times, otherDomesticMammal:
 otherDomesticMammal, isAngry: isAngry)
 }
 open override func talk() {
 bark()
 }
 }

The Dog class overrides the talk method inherited from DomesticMammal. As it happened
with the overridden properties in other subclasses, we just add the override keyword to
the method declaration. The method doesn't invoke the method with the same name for its
superclass, that is, we don't use the super keyword to invoke the talk method defined in
DomesticMammal. The talk method in the Dog class invokes the bark method without
parameters because dogs don't talk; they bark.

The bark method is overloaded with four declarations with different arguments. The
following lines show the four different declarations included within the class body:

 open func bark()
 open func bark(times: Int)
 open func bark(times: Int, otherDomesticMammal: DomesticMammal)
 open func bark(times: Int, otherDomesticMammal: DomesticMammal,
 isAngry: Bool)

This way, we can call any of the defined bark methods based on the provided arguments.
The four methods end up invoking the printBark open method with different default
values for the arguments not provided in the call to bark. The method builds and prints a
message according to the specified number of times (times), the optional destination
domestic mammal (otherDomesticMammal), and whether the dog is angry or not
(isAngry).

The Dog class overrides the abilityToFly type property with the static keyword. This
way, subclasses of dog won't be able to override this type property to return a different
value because there is no known dog breed that can fly.

Inheritance, Abstraction, and Specialization

[132]

The class also declares two read-only computed properties: breed and breedFamily. We
will override their getters in the subclasses of Dog. The printBreed instance method
displays the value of the breed computed property, and the printBreedFamily instance
method displays the value of the breedFamily computed property.
We won't override these instance methods in the subclasses because we just need to
override the values of the properties to achieve our goals; therefore, we declared both the
methods with the final keyword.

Those methods use the public access level because they are accessible but
not overridable outside the defining module. The open access level is both
accessible and overridable; therefore, it cannot be used in conjunction with
the final keyword, which makes the methods non-overridable.

The following lines show the declarations of both methods with the final keyword, which
prevents the subclasses from overriding these methods:

 public final func printBreed()
 public final func printBreedFamily()

If we call these instance methods from an instance of a subclass of Dog, they will execute the
code specified in the Dog class, but the code will use the value of the properties overridden
in the subclasses. Thus, we will see the messages displaying the values of the properties as
defined in the subclasses.

We want to override both the printALeg and printAChild type methods inherited from
Animal in a subclass of Dog. We declared both properties with the static keyword, so we
will only be able to override them if we replace this keyword with class. The following
lines show the code that replaces the declaration of both the properties in the Animal class.
Note that the rest of the code for the Animal class remains without changes. The code file
for the sample is included in the swift_3_oop_chapter_04_08 folder:

 open class func printALeg() {
 preconditionFailure("The pringALeg method must be overriden")
 }
 open class func printAChild() {
 preconditionFailure("The printChild method must be overriden")
 }

Inheritance, Abstraction, and Specialization

[133]

The following lines show the code for the TerrierDog class that inherits from Dog. The
code file for the sample is included in the swift_3_oop_chapter_04_08 folder:

 open class TerrierDog: Dog {
 open override class var averageNumberOfChildren: Int {
 get {
 return 5;
 }
 }
 open override var breed: String {
 get {
 return "Terrier dog"
 }
 }
 open override var breedFamily: String {
 get {
 return "Terrier"
 }
 }
 private func initializeTerrierDog() {
 print("TerrierDog created")
 }
 override init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeTerrierDog()
 }
 override init(age: Int, isPregnant: Bool, name: String,
 favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
 favoriteToy: favoriteToy)
 initializeTerrierDog()
 }
 open override class func printALeg() {
 print("|", terminator: String())
 }
 open override class func printAChild() {
 // Print a dog's face emoji
 print(String(UnicodeScalar(0x01f436)!), terminator: String())
 }
 }

Inheritance, Abstraction, and Specialization

[134]

As it happened in the other subclasses that we coded, we have more than one initializer
defined for the class. In this case, one of the initializers requires age, name, and
favoriteToy to create an instance of the TerrierDog class, and we also have an initializer
that adds an isPregnant argument. Both initializers invoke the superclass's initializer and
then call the private initializeTerrierDog method. This method prints a message
indicating that a TerrierDog class is created. The class overrides the getter methods to
return "Terrier dog" and "Terrier" as the values for the breed and breedFamily
computed properties that were defined in the superclass and overridden in this class.

In addition, the class overrides the getter method for the averageNumberOfChildren type
property. However, in this case, the overridden type property declaration uses the class
keyword because we want to enable the subclasses of TerrierDog to be able to override
this type property. The Terrier family is huge, and some of the members of this family
have a different average number of children.

The class also overrides both the printALeg and printAChild type methods inherited
from Animal. The printALeg method prints a pipe symbol (|), and the printAChild
method prints a dog's face emoji.

Working with typecasting and polymorphism
We can use the same method to cause different things to happen according to the class on
which we invoke the method. In object-oriented programming, this feature is known as
polymorphism.

For example, consider that we defined a talk method in the Animal class. The different
subclasses of Animal must override this method to provide their own implementation of
talk.

The Dog class overrode this method to print the representation of a dog barking, that is, a
Woof message. On the other hand, a Cat class will override this method to print the
representation of a cat meowing, that is, a Meow message.

Now, let's think about a CartoonDog class that represents a dog that can really talk as part
of a cartoon. The CartoonDog class would override the talk method to print a Hello
message because the dog can really talk.

Thus, depending on the type of instance, we will see a different result after invoking the
same method with the same arguments even when all of them are subclasses of the same
base class, that is, the Animal class.

Inheritance, Abstraction, and Specialization

[135]

The following lines show the code for the SmoothFoxTerrier class that inherits from
TerrierDog. The code file for the sample is included in the
swift_3_oop_chapter_04_08 folder:

 open class SmoothFoxTerrier: TerrierDog {
 open override class var averageNumberOfChildren: Int {
 get {
 return 6;
 }
 }
 open override var breed: String {
 get {
 return "Smooth Fox Terrier dog"
 }
 }
 private func initializeSmoothFoxTerrier() {
 print("SmoothFoxTerrier created")
 }
 override init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeSmoothFoxTerrier()
 }
 override init(age: Int, isPregnant: Bool, name: String,
 favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
 favoriteToy: favoriteToy)
 initializeSmoothFoxTerrier()
 }
 open override class func printALeg() {
 print("!", terminator: String())
 }
 open override class func printAChild() {
 // Print Dog's face emoji
 print(String(UnicodeScalar(0x01f415)!), terminator: String())
 }
 }

The class has the same initializers that we coded for its superclass. Both initializers invoke
the initializers defined in the superclass and then call the initializeSmoothFoxTerrier
private method. The method prints a message indicating that a SmoothFoxTerrier class is
created. The class overrides the getter method to return "Smooth Fox Terrier" for the
breed computed property that was defined in the Dog superclass, and was overridden in
the TerrierDog superclass and also in this class. In addition, the class overrides the getter
method for the averageNumberOfChildren type property to return 6.

Inheritance, Abstraction, and Specialization

[136]

The class also overrides both the printALeg and printAChild type methods inherited
from Animal and overridden in the TerrierDog superclass. The printALeg method prints
an exclamation mark symbol (!). The printAChild method prints a dog emoji. This emoji
is different from the dog's face emoji that the superclass method printed.

After we code all the classes, we can write code in the Playground to create instances of
both the TerrierDog and SmoothFoxTerrier classes. The following are the first lines that
create an instance of the SmoothFoxTerrier class named tom and use one of its initializers
that doesn't require the isPregnant argument. The code file for the sample is included in
the swift_3_oop_chapter_04_08 folder:

 var tom = SmoothFoxTerrier(age: 5, name: "Tom",
 favoriteToy: "Sneakers")
 tom.printBreed()
 tom.printBreedFamily()

The following lines show the messages displayed in the Playground after we enter the
previous code:

 Animal created
 Mammal created
 DomesticMammal created
 Dog created
 TerrierDog created
 SmoothFoxTerrier created
 Smooth Fox Terrier dog
 Terrier

First, the Playground prints the messages displayed by each initializer that is called.
Remember that each initializer calls its base class initializer and prints a message indicating
that an instance of the class is created. We don't have six different instances; we just have
one instance that calls the chained initializers of six different classes to perform all the
necessary initialization to create an instance of SmoothFoxTerrier. If we execute the
following lines in the Playground, all of them will display true as a result, because tom
belongs to the Animal, Mammal, DomesticMammal, Dog, TerrierDog, and
SmoothFoxTerrier classes. The code file for the sample is included in the
swift_3_oop_chapter_04_08 folder:

 print(tom is Animal)
 print(tom is Mammal)
 print(tom is DomesticMammal)
 print(tom is Dog)
 print(tom is TerrierDog)
 print(tom is SmoothFoxTerrier)

Inheritance, Abstraction, and Specialization

[137]

The following screenshot shows the results of executing the previous lines in the
Playground. Note that the Playground uses an icon to let us know that all the is tests will
always evaluate to true:

We coded the printBreed and printBreedFamily methods within the Dog class, and we
didn't override these methods in any of the subclasses. However, we overrode the
properties whose content these methods display: breed and breedFamily. The
TerrierDog class overrode both properties, and the SmoothFoxTerrier class overrode
the breed property again.

The following line creates an instance of the TerrierDog class named vanessa. Note that
in this case, we will create an instance of the superclass of the SmoothFoxTerrier class and
use the initializer that requires the isPregnant argument. The code file for the sample is
included in the swift_3_oop_chapter_04_08 folder:

 var vanessa = TerrierDog(age: 6, isPregnant: true, name: "Vanessa",
 favoriteToy: "Soda bottle")

Inheritance, Abstraction, and Specialization

[138]

The next lines call the printLegs and printChildren instance methods for tom, the
instance of SmoothFoxTerrier, and vanessa, which is the instance of TerrierDog. The
code file for the sample is included in the swift_3_oop_chapter_04_08 folder:

 tom.printLegs()
 tom.printChildren()
 vanessa.printLegs()
 vanessa.printChildren()

We coded these methods in the Animal class, and we didn't override them in any of its
subclasses. Thus, when we call these methods for either tom or vanessa, Swift will execute
the code defined in the Animal class. The printLegs method calls the printALeg type
method for the type retrieved from the instance in which we will call it as many times as the
value of the numberOfLegs type property. The printChildren method calls the
printAChild type method for the type retrieved from the instance in which we will call it
as many times as the value of the averageNumberOfChildren type property.

Both the TerrierDog and SmoothFoxTerrier classes overrode the printALeg and
printAChild type methods, and the averageNumberOfChildren type property. Thus,
our call to the same methods will produce different results. The following screenshot shows
the output generated for tom and vanessa. Note that tom prints four exclamation marks (!)
to represent its legs, while vanessa prints four pipes (|). Regarding children, tom prints six
dog emoji icons, while vanessa prints four dog's face emoji icons. Both instances run the
same code for the two type methods that we called. However, each class overrode type
properties that provide different values and cause the differences in the output:

Inheritance, Abstraction, and Specialization

[139]

The following lines call the bark method for the instance named tom with a different
number of arguments. This way, we take advantage of the bark method that we overloaded
four times with different arguments. Remember that we coded the four bark methods in
the Dog class and the SmoothFoxTerrier class inherits the overloaded methods from this
superclass through its hierarchy tree:

 tom.bark()
 tom.bark(times: 2)
 tom.bark(times: 2, otherDomesticMammal: vanessa)
 tom.bark(times: 3, otherDomesticMammal: vanessa, isAngry: true)

The following lines show the results of calling the methods with different arguments:

 Tom: Woof
 Tom: Woof Woof
 Tom to Vanessa: Woof Woof
 Tom to Vanessa: Grr Woof Woof Woof

If we go back to the code that declared the bark method in the Dog class in the Playground,
we will notice that the SmoothFoxTerrier class name is displayed on the right-hand side
for each method that we used from the Dog class:

Inheritance, Abstraction, and Specialization

[140]

The following lines show the code for the Cat class that inherits from DomesticMammal.
The code file for the sample is included in the swift_3_oop_chapter_04_09 folder:

 open class Cat: DomesticMammal {
 open static override var numberOfLegs: Int {
 get {
 return 4;
 }
 }
 open static override var abilityToFly: Bool {
 get {
 return false;
 }
 }
 open override class var averageNumberOfChildren: Int {
 get {
 return 6;
 }
 }
 private func initializeCat() {
 print("Cat created")
 }
 override init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeCat()
 }
 override init(age: Int, isPregnant: Bool, name: String,
 favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
 favoriteToy: favoriteToy)
 initializeCat()
 }
 open func printMeow(times: Int) {
 var meow = "(name): "
 for _ in 0 ..< times {
 meow += "Meow "
 }
 print(meow)
 }
 open override func talk() {
 printMeow(times: 1)
 }
 open override class func printALeg() {
 print("*_*", terminator: String())
 }

Inheritance, Abstraction, and Specialization

[141]

 open override class func printAChild() {
 // Print grinning cat face with smiling eyes emoji
 print(String(UnicodeScalar(0x01F638)!), terminator: String())
 }
 }

The Cat class overrides the talk method inherited from DomesticMammal. As it happened
with the overridden properties in other subclasses, we just added the override keyword to
the method declaration. The method doesn't invoke the method with the same name for its
superclass, that is, we don't use the super keyword to invoke the talk method defined in
DomesticMammal. The talk method in the Cat class invokes the meow method with 1 as
the number of times. The meow method prints the representation of a cat meowing–that is, a
Meow message–the number of times specified in its times argument. We will learn how to
code this method with a functional programming approach in the forthcoming chapters. In
this case, we use a simple for loop.

As it happened with other classes that we analyzed before, the class overrides the getter
method for the averageNumberOfChildren type property. The class also overrides both
the printALeg and printAChild type methods inherited from Animal. The printALeg
method prints *_*, and the printAChild method prints a grinning cat face with smiling
eyes emoji.

The following lines show the code for the Bird class that inherits from Animal. The code
file for the sample is included in the swift_3_oop_chapter_04_09 folder:

 open class Bird: Animal {
 open var feathersColor: String = String()
 open static override var numberOfLegs: Int {
 get {
 return 2;
 }
 }
 private func initializeBird(feathersColor: String) {
 self.feathersColor = feathersColor
 print("Bird created")
 }
 override init(age: Int) {
 super.init(age: age)
 initializeBird(feathersColor: "Undefined / Too many colors")
 }

Inheritance, Abstraction, and Specialization

[142]

 init(age: Int, feathersColor: String) {
 super.init(age: age)
 initializeBird(feathersColor: feathersColor)
 }
 }

The Bird class inherits the members from the previously declared Animal class and adds a
new String stored property initialized with the default empty string value. The class
overrides the numberOfLegs type property to return 2 and disables any subclass's chance
to override this type property again using the static keyword. Note that this class
declares two initializers, as it happened with the Mammal class that also inherited from
Animal. One of the initializers requires an age value to create an instance of the class, as it
happened with the Animal initializer. The other initializer requires the age and
feathersColor values. If we create an instance of this class with just one age argument,
Swift will use the first initializer. If we create an instance of this class with two arguments,
an Int value for age and a String value for feathersColor, Swift will use the second
initializer. Again, we overloaded the initializer and provided two different initializers.

The two initializers use the super keyword to call the inherited init method from the base
class or superclass, that is, the init method defined in the Animal class. Once the
initialized code in the superclass finishes its execution, each initializer calls the
initializeBird private method that initializes the feathersColor stored property with
the value received as an argument or the default "Undefined / Too many colors"
value in case it isn't specified.

The following lines show the code for the DomesticBird class that inherits from Bird. The
preceding class simply adds a name stored property and allows the initializers to specify the
desired name for the domestic bird. The code file for the sample is included in the
swift_3_oop_chapter_04_09 folder:

 open class DomesticBird: Bird {
 open var name = String()
 private func initializeDomesticBird(name: String) {
 self.name = name
 print("DomesticBird created")
 }
 init(age: Int, name: String) {
 super.init(age: age)
 initializeDomesticBird(name: name)
 }

Inheritance, Abstraction, and Specialization

[143]

 init(age: Int, feathersColor: String, name: String) {
 super.init(age: age, feathersColor: feathersColor)
 initializeDomesticBird(name: name)
 }
 }

The following lines show the code for the DomesticCanary class that inherits from
DomesticBird. The code file for the sample is included in the
swift_3_oop_chapter_04_09 folder:

 open class DomesticCanary: DomesticBird {
 open override class var averageNumberOfChildren: Int {
 get {
 return 5;
 }
 }
 private func initializeDomesticCanary() {
 print("DomesticCanary created")
 }
 override init(age: Int, name: String) {
 super.init(age: age, name: name)
 initializeDomesticCanary()
 }
 override init(age: Int, feathersColor: String, name: String) {
 super.init(age: age, feathersColor: feathersColor, name: name)
 initializeDomesticCanary()
 }
 open override class func printALeg() {
 print("^", terminator: String())
 }
 open override class func printAChild() {
 // Print bird emoji
 print(String(UnicodeScalar(0x01F426)!), terminator: String())
 }
 }

The class overrides the two initializers declared in the superclass to display a message
whenever we create an instance of the DomesticCanary class. In addition, the class
overrides the averageNumberOfChildren type property and the printALeg and
printAChild methods.

Inheritance, Abstraction, and Specialization

[144]

After we declare the new classes, we will create the following two functions outside any
class declaration that receives an Animal instance as an argument, that is, an Animal
instance or an instance of any subclass of Animal. Each function calls a different instance
method defined in the Animal class: printChildren and printLegs. The code file for the
sample is included in the swift_3_oop_chapter_04_09 folder:

 public func printChildren(animal: Animal) {
 animal.printChildren()
 }
 public func printLegs(animal: Animal) {
 animal.printLegs()
 }

Then, the following lines create instances of the next classes, which are TerrierDog, Cat,
and DomesticCanary. Then, the lines call the printChildren and printLegs functions
with the previously created instances as arguments. The code file for the sample is included
in the swift_3_oop_chapter_04_09 folder:

 var pluto = TerrierDog(age: 7, name: "Pluto",
 favoriteToy: "Teddy bear")
 var marie = Cat(age: 4, isPregnant: true, name: "Marie",
 favoriteToy: "Tennis ball")
 var tweety = DomesticCanary(age: 2, feathersColor: "Yellow",
 name: "Tweety")

 print("Meet their children")
 print(pluto.name)
 printChildren(animal: pluto)
 print(marie.name)
 printChildren(animal: marie)
 print(tweety.name)
 printChildren(animal: tweety)

 print("Look at their legs")
 print(pluto.name)
 printLegs(animal: pluto)
 print(marie.name)
 printLegs(animal: marie)
 print(tweety.name)
 printLegs(animal: tweety)

Inheritance, Abstraction, and Specialization

[145]

The following screenshot shows the results of executing the previous lines in the
Playground. The three instances become an Animal argument for the different methods.
However, the values used for the properties aren't those declared in the Animal class. The
call to the printChildren and printLegs methods take into account all the overridden
members because each instance is an instance of a subclass of Animal:

Both the functions can only access the members defined in the Animal
class for the instances that they receive as arguments because their type
within the function is Animal. We can unwrap TerrierDog, Cat, and
DomesticCanary that are received in the animal argument if necessary.
However, we will work with these scenarios later as we cover more
advanced topics.

Inheritance, Abstraction, and Specialization

[146]

Now, we will create another function outside any class declaration that receives a
DomesticMammal instance as an argument, that is, a DomesticMammal instance or an
instance of any subclass of DomesticMammal. The following function calls the talk
instance method defined in the DomesticMammal class. The code file for the sample is
included in the swift_3_oop_chapter_04_10 folder:

 public func forceToTalk(domesticMammal: DomesticMammal) {
 domesticMammal.talk()
 }

Then, the following few lines call the forceToTalk function with the TerrierDog and Cat
instances as arguments: pluto and marie. The code file for the sample is included in the
swift_3_oop_chapter_04_10 folder:

 forceToTalk(domesticMammal: pluto)
 forceToTalk(domesticMammal: marie)

The call to the same method for a DomesticMammal instance received as an argument
produces different results because dogs bark and cats meow. However, both are domestic
mammals, and they produce specific sounds instead of talking. We defined the
representation of the sounds they produce in the Dog and Cat classes. The following lines
show the results of the two function calls:

 Pluto: Woof
 Marie: Meow

Taking advantage of operator overloading
Swift allows us to redefine specific operators to work in a different way, based on the
classes to which we apply them. For example, we can make comparison operators, such as
less than (<) and greater than (>), and return the results of comparing the age value when
they are applied to instances of Dog.

The redefinition of operators to work in a specific way when applied to
instances of specific classes is known as operator overloading. Swift allows
us to overload operators through the usage of operator functions.

An operator that works in one way when applied to an instance of a class might work
differently on instances of another class. We can also redefine the overloaded operators to
work on specific subclasses. For example, we can make the comparison operators work in a
different way in a superclass and its subclass.

Inheritance, Abstraction, and Specialization

[147]

We want to be able to compare the age of the different Animal instances using the
following binary operators in Swift:

Less than (<)
Less than or equal to (<=)
Greater than (>)
Greater than or equal to (>=)

We can overload operators in Swift to achieve our goals by declaring operator functions
with function names that match the operators to be overloaded and receive Animal
instances as arguments. In this case, the four operators are binary operators; therefore, all
the operator functions receive two input parameters of the Animal type and return a Bool
value. Swift invokes these functions under the hood whenever we use the operators to
compare instances of Animal. We have to declare operator functions with the following
names and specify two Animal arguments:

<: This is invoked when we use the less than (<) operator
<=: This is invoked when we use the less than or equal to (<=) operator
>: This is invoked when we use the greater than (>) operator
>=: This is invoked when we use the greater than or equal to (>=) operator

All the operator functions have the same declaration. Swift passes the instance specified on
the left-hand side of the operator as the first argument, usually named left, and the
instance on the right-hand side of the operator as the second argument, which is usually
named right. Thus, we have left and right as the arguments for the operator functions,
and we must return a Bool value with the result of the application of the operator, in our
case, with the result of the comparison operator applied to the age property of each
instance.

Let's consider that we have two instances of Animal, or any of its subclasses, named
animal1 and animal2. If we enter print(animal1 < animal2) in the Playground, Swift
will invoke the < operator function with left equal to animal1 and right equal to
animal2. Thus, we must return a Bool value indicating whether left.age < right.age
is equivalent to animal1.age < animal2.age.

Inheritance, Abstraction, and Specialization

[148]

We must add the following lines to make it possible to compare the age of any animal using
the previously specified comparison operators. The code file for the sample is included in
the swift_3_oop_chapter_04_11 folder:

 public func < (left: Animal, right: Animal) -> Bool {
 return left.age < right.age
 }

 public func <= (left: Animal, right: Animal) -> Bool {
 return left.age <= right.age
 }

 public func > (left: Animal, right: Animal) -> Bool {
 return left.age > right.age
 }

 public func >= (left: Animal, right: Animal) -> Bool {
 return left.age >= right.age
 }

The following lines use the four operators that will work with the Animal class and its
subclasses: greater than (>), less than (<), greater than or equal to (>=), and less than or
equal to (<=). Remember that we created operator functions that Swift invokes under the
hood whenever we use the operators. In this case, we will apply the operators on instances
of TerrierDog and Cat. The operators return the results of comparing the age value of the
different instances. The code file for the sample is included in the
swift_3_oop_chapter_04_11 folder:

 print(pluto > marie)
 print(pluto < marie)
 print(pluto >= marie)
 print(pluto <= marie)

Inheritance, Abstraction, and Specialization

[149]

The following screenshot shows the four operator functions and the results of their
execution in the Playground when we use the operators in instances of TerrierDog and
Cat:

Declaring compound assignment operator
functions
We also want to be able to increase the value of the age property of the different Animal
instances by using the addition assignment operator (+=). This operator is one of the
compound assignment operators that Swift provides and it combines assignment (=) with
the addition operator (+).

Swift 3 removed both the pre-increment, post-increment, pre-decrement,
and post-decrement operators. In other words, we cannot use ++ and -- in
Swift 3. We might define a prefix increment and a postfix increment to
increase the value of the age property, but it doesn't make sense to define
an operator that Swift 3 has removed. Instead, we will use the addition
assignment operator.

Inheritance, Abstraction, and Specialization

[150]

We have to declare an operator function with += as its name, specify the Animal type for
the left argument, and specify the Int type for the right argument. Thus, we have left
and right as the arguments for the operator function. In this case, the function doesn't
return a value and only uses the += operator to the age property for the Animal instance
received in the left argument.

Let's consider that we have an instance of Animal, or any of its subclasses, named animal1.
If we enter animal1 += 2 in the Playground, Swift will invoke the += operator function
with left equal to animal1 and right equal to 2.

We must add the following lines to make it possible to use the addition assignment
operator to add an Int value to the value of the age property of an Animal instance. The
code file for the sample is included in the swift_3_oop_chapter_04_12 folder:

 public func += (left: Animal, right: Int) {
 left.age += right
 }

The following lines print the age for pluto–an instance of TerrierDog–and then apply the
+= operator and print the new age. Remember that we created an operator function that
Swift invokes under the hood whenever we use the operator with an Animal instance on
the left and an Int on the right. The code file for the sample is included in the
swift_3_oop_chapter_04_12 folder:

 pluto.printAge()
 pluto += 2
 pluto.printAge()

The following lines show the output generated by the preceding code:

 I am 7 years old.
 I am 9 years old.

Inheritance, Abstraction, and Specialization

[151]

Declaring unary operator functions
As previously explained, Swift 3 removed the prefix increment and postfix increment
operators. However, imagine that many members of our team have experience with other
programming languages that provide these operators and they want to use them to increase
the value of the age property of the different Animal instances. We can declare the
following unary operators to simplify their lives while coding:

Prefix increment (++): We will use the operator before the variable to which it is
applied (for example, ++pluto)
Postfix increment (++): We will use the operator after the variable to which it is
applied (for example, pluto++)

In this case, both the operators use exactly the same characters; therefore, we must use
either the prefix or postfix keywords in each operator's function declaration.

We have to declare operator functions with the following names and specify a single
Animal argument:

prefix ++: This is invoked when we use the prefix increment (++) operator
postfix ++: This is invoked when we use the postfix increment (++) operator

All the operator functions have the same declaration. For the prefix operator, Swift passes
the instance specified on the right-hand side of the operator as the argument. For the postfix
operator, Swift passes the instance specified on the left-hand side of the operator as the
argument. Let's consider that we have two instances of Animal, or any of its subclasses,
named animal1 and animal2. If we enter ++animal1 in the Playground, Swift will invoke
the prefix ++ operator function with the single argument equal to animal1. If we enter
animal2++ in the Playground, Swift will invoke the postfix ++ operator function with the
single argument equal to animal2.

Inheritance, Abstraction, and Specialization

[152]

We must add the following lines to make it possible to use prefix and postfix ++ operators
to increase the age of any animal. Each function uses the += operator to increase the age and
assign the result of the operation to the age property. The code file for the sample is
included in the swift_3_oop_chapter_04_13 folder:

 public prefix func ++ (animal: Animal) {
 animal.age += 1
 }

 public postfix func ++ (animal: Animal) {
 animal.age += 1
 }

The following lines print the age for marie–an instance of Cat–and then apply the prefix ++
operator, print the new age, apply the postfix ++ operator, and print the new age.
Remember that we created operator functions that Swift invokes under the hood whenever
we use these operators. The code file for the sample is included in the
swift_3_oop_chapter_04_13 folder:

 marie.printAge()
 marie++
 marie.printAge()
 ++marie
 marie.printAge()

The following lines show the output generated by the preceding code:

 I am 4 years old.
 I am 5 years old.
 I am 6 years old.

Declaring operator functions for specific
subclasses
We already declared an operator function that allows any instance of Animal or its
subclasses to use the postfix increment (++) operator. However, sometimes we want to
specify a different behavior for one of the subclasses and its subclasses.

Inheritance, Abstraction, and Specialization

[153]

For example, we might want to express the age of dogs in the age value that is equivalent to
humans. We can declare an operator function for the postfix increment (++) operator that
receives a Dog instance as an argument and increments the age value 7 years instead of just
one. The following lines show the code that achieves this goal. The code file for the sample
is included in the swift_3_oop_chapter_04_14 folder:

 public postfix func ++ (dog: Dog) {
 dog.age += 7
 }

The following lines create an instance of the SmoothFoxTerrier class named goofy, print
the age for goofy, apply the postfix ++ operator, and print the new age. Because
SmoothFoxTerrier is a subclass of Dog, Swift invokes the operator function that receives a
Dog instance instead of invoking the one that receives an Animal instance as an argument.
As a result of this, the operator function adds 7 to the age value instead of 1. The code file
for the sample is included in the swift_3_oop_chapter_04_14 folder:

 var goofy = SmoothFoxTerrier(age: 7, name: "Goofy",
 favoriteToy: "Scarf")
 goofy.printAge()
 goofy++
 goofy.printAge()

Then, the following lines create an instance of the Cat class named garfield, print the age,
apply the postfix ++ operator, and print the new age. In this case, garfield is a Cat
instance, and Cat isn't a subclass of Dog. For this reason, Swift invokes the operator
function that receives an Animal instance as an argument. Thus, the operator function just
adds 1 to the age value. The code file for the sample is included in the
swift_3_oop_chapter_04_15 folder:

 var garfield = Cat(age: 5, name: "Garfield",
 favoriteToy: "Lassagna")
 garfield.printAge()
 garfield++
 garfield.printAge()

Inheritance, Abstraction, and Specialization

[154]

The following lines show the results of the previous lines:

 Animal created
 Mammal created
 DomesticMammal created
 Dog created
 TerrierDog created
 SmoothFoxTerrier created
 I am 7 years old.
 I am 14 years old.
 Animal created
 Mammal created
 DomesticMammal created
 Cat created
 I am 5 years old.
 I am 6 years old.

Exercises
Create operator functions to allow us to determine whether two DomesticMammal instances
are equal or not with the == and != operators. We will consider the instances to be equal
when their age, name, and favoriteToy properties have the same value.

Create the following three new subclasses of the TerrierDog class:

AiredaleTerrier: This is an Airedale Terrier breed
BullTerrier: This is a Bull Terrier breed
CairnTerrier: This is a Cairn Terrier breed

Add the necessary code in these classes to print the text that represents the children in a
different way than we did for the SmoothFoxTerrier class. Test the results by creating an
instance of each of these classes and calling the printChildren method.

Inheritance, Abstraction, and Specialization

[155]

Test your knowledge
When you use the static var keywords to declare a type property:1.

You cannot override the type property in the subclasses.1.
You can override the type property in the subclasses.2.
You can override the type property only in the superclass.3.

When you use the class var keywords to declare a type property:2.
You cannot override the type property in the subclasses.1.
You can override the type property in the subclasses.2.
You can override the type property only in the superclass.3.

When you use the final keyword to declare an instance method:3.
You cannot override the instance method in the subclasses.1.
You can override the instance method in the subclasses.2.
You can override the instance method only once, that is, in just one3.
subclass.

Polymorphism means:4.
We can call the same method–that is, the same name and arguments–in1.
instances of classes that aren't included in the same hierarchy tree.
We can use the same method–that is, the same name and arguments–to2.
cause different things to happen according to the class on which we
invoke the method.
We must declare the same method–that is, the same name and3.
arguments–to enable a class to become a subclass of its superclass.

We can redefine specific operators by declaring:5.
A type method with a name that matches the operator symbols in the1.
appropriate class.
An instance method with a name that matches the operator symbols in2.
the appropriate class.
An operator function with a name that matches the operator symbols.3.

If the value for animal.age is 5, which of the following lines increases the value6.
of animal.age to 6 in Swift 3:

animal.age++1.
++animal.age2.
animal.age += 13.

Inheritance, Abstraction, and Specialization

[156]

Methods that use the public access level:7.
Are accesible but not overridable outside of the defining module.1.
Are accesible and overridable outside of the defining module.2.
Are neither accesible nor overridable outside of the defining module.3.

Methods that use the open access level:8.
Are accesible but not overridable outside the defining module.1.
Are accesible and overridable outside the defining module.2.
Are neither accesible nor overridable outside the defining module.3.

Summary
In this chapter, you learned how to take advantage of simple inheritance to specialize a base
class. We designed many classes from top to bottom using chained initializers, type
properties, computed properties, stored properties, and methods. Then, we coded most of
these classes in the interactive Playground, taking advantage of the different mechanisms
provided by Swift.

We took advantage of operator functions to overload operators that we could use with the
instances of our classes. In addition, we declared operator functions to create our own
operators. We overrode and overloaded initializers, type properties, and methods. We took
advantage of one of the most exciting object-oriented features: polymorphism.

Now that you have learned to work with inheritance, abstraction, and specialization, we are
ready to work with protocols, which is the topic of the next chapter.

5
Contract Programming with

Protocols
In this chapter, we will work with more complex scenarios in which we will have to use
instances that belong to more than one blueprint. We will use contract programming by
taking advantage of protocols.

We will work with examples on how to define protocols and their different kinds of
requirements, and then on how to declare classes that adopt the protocols. We will use
multiple inheritance of protocols and many useful ways of taking advantage of this object-
oriented concept, also known as interfaces in other programming languages such as Java
and C#.

Understanding how protocols work in
combination with classes
We have to work with two different types of characters: comic and game characters. A
comic character has a nickname and must be able to draw speech balloons and thought
balloons. The speech balloon might have another comic character as a destination.

Contract Programming with Protocols

[158]

A game character has a full name and must be able to perform the following tasks:

Draw itself at a specific 2D position indicated by the x and y coordinates
Move itself to a specific 2D position indicated by the x and y coordinates
Check whether it intersects with another game character

We will work with objects that can be both a comic character and a game character.
However, we will also work with objects that will just be either a comic or game character.
Neither the game character nor the comic character has a generic way of performing the
previously described tasks. Thus, each object that declares itself as a comic character must
define the tasks related to speech and thought balloons. Each object that declares itself as a
game character must define how to draw itself, move, and check whether it intersects with
another game character.

An angry dog, also known as grumpy dog, is a comic character that has a specific way of
drawing speech and thought balloons. An angry cat is both a comic and game character, so
it defines all the tasks required by both character types.

The angry cat, also known as grumpy cat, is a very versatile character, and it can use
different costumes to participate in either games or comics with different names. An angry
cat can also be an alien, a wizard, or a knight:

An alien has a specific number of eyes and must be able to appear and disappear.
A wizard has a spell power score and can make an alien disappear.
A knight has sword power and weight values, and can unsheathe his sword. A
common task for the knight is to unsheathe his sword and point it at an alien as a
target.

We need base blueprints to represent a comic character and a game character. Then, each
class that represents any of these types of characters can provide its implementation of the
methods. In this case, comic and game characters are very different, and they don't perform
similar tasks that might lead to confusion and problems for multiple inheritance. Thus, we
can use multiple inheritance to create an angry cat class that implements both comic and
game character blueprints. In some cases, multiple inheritance is not convenient because
similar blueprints might have methods with the same names, and it can therefore be
extremely confusing to use multiple inheritance.

Contract Programming with Protocols

[159]

In addition, we can use multiple inheritance to combine the angry cat class with alien,
wizard, and knight. This way, we will have an angry cat alien, an angry cat wizard, and an
angry cat knight. We will be able to use any of them, the angry cat alien, angry cat wizard,
or angry cat knight, as either a comic or game character.

Our goals are simple, but we face a little problem: Swift doesn't support the multiple
inheritance of classes. Instead, we can use multiple inheritance with protocols or combine
protocols with classes. So, we will use protocols and classes to fulfill our previous
requirements.

You can think of a protocol as a special case of an abstract class that defines the initializers,
properties, and methods that a class must implement to be considered a member of the
group identified with the protocol name.

If you have worked with other programming languages, such as Java and
C#, you can think of protocols as the Swift version of interfaces.

For example, we can create an Alien protocol that specifies the following elements:

A numberOfEyes property
A parameterless method named appear
A parameterless method named disappear

Once we define a protocol, we create a new type; therefore, we can use it to specify the
required type for an argument. This way, instead of using classes as types, we will use
protocols as types, and we can use an instance of any class that conforms to the specific
protocol as an argument. For example, if we use Alien as the required type for an
argument, we can pass an instance of any class that conforms to the Alien protocol as an
argument.

Contract Programming with Protocols

[160]

However, you must take into account some limitations of protocols when compared with
classes. Protocols cannot specify accessibility modifiers to any member. Protocols can
declare requirements for the following members:

Properties
Methods
Mutating methods
Initializers
Failable initializers

Declaring protocols
Now, it is time to code the protocols in Swift. We will code the following five protocols:

ComicCharacter

GameCharacter

Alien

Wizard

Knight

The following UML diagram shows the five protocols that we will code in Swift, with their
required properties and methods included in the diagram. In this case, the diagram shows
only protocols and we don't use any mark above the protocol name. However, in other
diagrams in which we will mix protocols with classes, we will add procotol after the protocol
name. UML diagrams have specifications for interfaces, but we will use our own
mechanism to identify protocols:

Contract Programming with Protocols

[161]

Contract Programming with Protocols

[162]

The following lines show the code for the ComicCharacter protocol. The public modifier
followed by the protocol keyword and the protocol name, ComicCharacter, makes up
the protocol declaration. As happens with class declarations, the protocol body is enclosed
in curly brackets ({}). The code file for the sample is included in the
swift_3_oop_chapter_05_01 folder:

 public protocol ComicCharacter {
 var nickName: String { get set }

 func drawSpeechBalloon(message: String)
 func drawSpeechBalloon(destination: ComicCharacter,
 message: String)
 func drawThoughtBalloon(message: String)
 }

In Swift 3, only classes and overridable class members can be declared
with the open access modifier; therefore, we use the public access
modifier for the protocols that we want to be accessed outside of the
module that defines them.

Protocols declare a nickName read/write String stored property requirement, a
drawSpeechBaloon method requirement, overloaded twice, and a drawThoughtBalloon
method requirement. The protocol includes only the method declaration because the classes
that implement the ComicCharacter protocol will be responsible for providing the
implementation of the two overloads of the drawSpeechBalloon and
drawThoughtBalloon methods. Note that there is no method body.

The following lines show the code for the GameCharacter protocol. The code file for the
sample is included in the swift_3_oop_chapter_05_01 folder:

 public protocol GameCharacter {
 var fullName: String { get set }
 var score: UInt { get set }
 var x: UInt { get set }
 var y: UInt { get set }

 func drawAt(x: UInt, y: UInt)
 func moveTo(x: UInt, y: UInt)
 func intersects(character: GameCharacter) -> Bool
 }

In this case, the protocol declaration includes four read/write stored property requirements:
fullName, score, x, and y. In addition, the declaration includes three method
requirements: drawAt, moveTo, and intersects. Note that we don't include access
modifiers in either the properties or the methods.

Contract Programming with Protocols

[163]

We cannot add either access modifiers or observers to the different
members of a protocol.

The following lines show the code for the Alien protocol. The code file for the sample is
included in the swift_3_oop_chapter_05_01 folder:

 public protocol Alien {
 var numberOfEyes: Int { get set }
 func appear()
 func disappear()
 }

In this case, the protocol declaration includes a property requirement, numberOfEyes, and
two method requirements: appear and disappear. Note that we don't include the code for
either the getter or the setter method of the numberOfEyes property. As happens with
methods, the classes that implement the Alien protocol are responsible for providing the
implementation of the getter and setter methods for the numberOfEyes property. We will
create classes that implement the Alien protocol later in this chapter.

The following lines show the code for the Wizard protocol. The code file for the sample is
included in the swift_3_oop_chapter_05_01 folder:

 public protocol Wizard {
 var spellPower: Int { get set }
 func disappear(alien: Alien)
 }

In this case, the protocol declaration includes a property requirement, spellPower, and a
method requirement, disappear. As with the other method requirement declarations
included in the previously declared protocols, we use the protocol name as a type of an
argument within a method requirement declaration. In this case, the alien argument for
the disappear method requirement declaration is Alien. Thus, we will be able to call the
method with any class that conforms to the Alien protocol.

The following lines show the code for the Knight protocol. The code file for the sample is
included in the swift_3_oop_chapter_05_01 folder:

 public protocol Knight {
 var swordPower: Int { get set }
 var swordWeight: Int { get set }
 func unsheathSword()
 func unsheathSword(target: Alien)
 }

Contract Programming with Protocols

[164]

In this case, the protocol declaration includes two property requirements, swordPower and
swordWeight, and an unsheathSword method requirement, overloaded twice.

Declaring classes that adopt protocols
Now, we will declare a class that specifies that it conforms to the ComicCharacter protocol
in its declaration in the Playground. Instead of specifying a superclass, the class declaration
includes the name of the previously declared ComicCharacter protocol after the class
name (AngryDog) and the colon (:). We can read the class declaration as “the AngryDog
class conforms to the ComicCharacter protocol.”

However, the class doesn't implement any of the required properties and methods specified
in the protocol, so it doesn't really conform to the ComicCharacter protocol, as shown in
the following code. The code file for the sample is included in the
swift_3_oop_chapter_05_02 folder:

 open class AngryDog: ComicCharacter {

 }

The Playground execution will fail because the AngryDog class doesn't conform to the
ComicCharacter protocol, so the Swift compiler generates the following errors and notes.
We will see similar error messages in the Swift REPL and in the Swift Sandbox:

error: type 'AngryDog' does not conform to protocol 'ComicCharacter'
public class AngryDog: ComicCharacter {
 ^
note: protocol requires property 'nickName' with type 'String'; do you want
to add a stub?
 var nickName: String { get set }
 ^
note: protocol requires function 'drawSpeechBalloon(message:)' with type
'(String) -> ()'; do you want to add a stub?
func drawSpeechBalloon(message: String)
 ^
note: protocol requires function 'drawSpeechBalloon(destination:message:)'
with type '(ComicCharacter, String) -> ()'; do you want to add a stub?
func drawSpeechBalloon(destination: ComicCharacter, message: String)
 ^
note: protocol requires function 'drawThoughtBalloon(message:)' with type
'(String) -> ()'; do you want to add a stub?
func drawThoughtBalloon(message: String)
 ^

Contract Programming with Protocols

[165]

Now, we will replace the previous declaration of the empty AngryDog class with a class
that tries to conform to the ComicCharacter protocol, but it still doesn't achieve its goal.
The following lines show the new code for the AngryDog class. The code file for the sample
is included in the swift_3_oop_chapter_05_03 folder:

 open class AngryDog: ComicCharacter {
 var nickName: String = String()
 func speak(message: String) {
 print("\(nickName) -> "\(message)"")
 }
 func think(message: String) {
 print("\(nickName) -> ***\(message)***")
 }

 func drawSpeechBalloon(message: String) {
 speak(message: message);
 }
 func drawSpeechBalloon(destination: ComicCharacter,
 message: String) {
 speak(message: "\(destination.nickName), \(message)")
 }
 func drawThoughtBalloon(message: String) {
 think(message: message)
 }

 init (nickName: String) {
 self.nickName = nickName
 }
 }

The Playground execution will fail because the AngryDog class doesn't conform to the
ComicCharacter protocol; therefore, the Swift compiler generates the following errors and
notes:

error: property 'nickName' must be declared public because it matches a
requirement in public protocol 'ComicCharacter'
var nickName: String = String()
 ^
public
error: method 'drawSpeechBalloon(message:)' must be declared public because
it matches a requirement in public protocol 'ComicCharacter'
func drawSpeechBalloon(message: String) {
 ^
public

Contract Programming with Protocols

[166]

error: method 'drawSpeechBalloon(destination:message:)' must be declared
public because it matches a requirement in public protocol 'ComicCharacter'
func drawSpeechBalloon(destination: ComicCharacter, message: String) {
 ^
public
error: method 'drawThoughtBalloon(message:)' must be declared public
because it matches a requirement in public protocol 'ComicCharacter'
func drawThoughtBalloon(message: String) {
 ^
public

The public ComicCharacter protocol specifies property and method requirements. Thus,
when we declare a class that doesn't declare the required properties and methods at least as
public, the Swift compiler generates errors and indicates that they have to be declared at
least as public to match the protocol requirements. We can declare the required properties
and methods with the open access modifier because members declared as open have the
same accesibility level as members declared as public and add the chance to be
overridden. Think about open as a superset of public.

Whenever we declare a class that specifies that it conforms to a protocol, it
must fulfill all the requirements specified in the protocol. If it doesn't, the
Swift compiler will throw errors indicating which requirements aren't
fulfilled, like what happened in the previous example. When we work
with protocols, the Swift compiler makes sure that the requirements
specified in protocols are honored in any class that conforms to them.
Hence, when we modify a protocol, the Swift compiler needs to recompile
the classes that conform to this protocol.

Finally, we will replace the previous declaration of the AngryDog class with a class that
really conforms to the ComicCharacter protocol. The following lines show the new code
for the AngryDog class. The code file for the sample is included in the
swift_3_oop_chapter_05_04 folder:

 open class AngryDog: ComicCharacter {
 open var nickName: String = String()
 fileprivate func speak(message: String) {
 print("\(nickName) -> "\(message)"")
 }
 fileprivate func think(message: String) {
 print("\(nickName) -> ***\(message)***")
 }
 open func drawSpeechBalloon(message: String) {
 speak(message: message);
 }

Contract Programming with Protocols

[167]

 open func drawSpeechBalloon(destination: ComicCharacter,
 message: String) {
 speak(message: "\(destination.nickName), \(message)")
 }
 open func drawThoughtBalloon(message: String) {
 think(message: message)
 }
 init (nickName: String) {
 self.nickName = nickName
 }
 }

The AngryDog class declares an initializer that assigns the value of the required nickName
argument to the nickName stored property. In this case, the ComicCharacter protocol
doesn't include any initializer requirement, so the AngryDog class can specify any desired
initializer without restrictions.

The class declares the code for the two versions of the drawSpeechBalloon method. Both
methods call the private speak method that prints a message with a specific format that
includes the nickName value as a prefix. In addition, the class declares the code for the
drawThoughtBalloon method, which invokes the private think method, which also
prints a message including the nickName value as a prefix.

The AngryDog class implements the property and methods declared in the
ComicCharacter protocol. However, the class also declares two fileprivate members,
specifically, two fileprivate methods. We will be able to access these two methods only
in its own defining source file.

As long as we implement all the members declared in the protocol or
protocols listed in the class declaration, we can add any desired additional
member to the class.

Now, we will declare another class that implements the same protocol that the AngryDog
class implemented, that is, the ComicCharacter protocol. The following lines show the
code for the AngryCat class. The code file for the sample is included in the
swift_3_oop_chapter_05_04 folder:

 open class AngryCat: ComicCharacter {
 open var nickName: String = String()
 open var age: UInt = 0
 open func drawSpeechBalloon(message: String) {

Contract Programming with Protocols

[168]

 if (age > 5) {
 print("\(nickName) -> "Meow \(message)"")
 } else {
 print("\(nickName) -> "Meeeooow Meeeooow \(message)"")
 }
 }
 open func drawSpeechBalloon(destination: ComicCharacter,
 message: String)
 {
 print("\(destination.nickName) === \(nickName) --->
 "\(message)"")
 }
 open func drawThoughtBalloon(message: String) {
 print("\(nickName) thinks: \(message)")
 }
 init (nickName: String, age: UInt) {
 self.nickName = nickName
 self.age = age
 }
 }

The AngryCat class declares an initializer that assigns the value of the required nickName
and age arguments to the nickName and age stored properties. The class declares the code
for the two versions of the drawSpeechBalloon method. The version that requires only a
message argument uses the value of the age property to generate a different message when
the age value is greater than 5. In addition, the class declares the code for the
drawThoughtBalloon method.

The AngryCat class implements the property and method requirements declared in the
ComicCharacter protocol. However, the class also declares an additional property that
isn't required by the protocol: age.

If we remove the open keyword in the line that declares the nickName stored property
within the AngryCat class, the class won't implement all the required members of the
ComicCharacter protocol, at least as public members; therefore, it won't conform to the
protocol anymore. The code file for the sample is included in the
swift_3_oop_chapter_05_05 folder:

 var nickName: String = String()

Contract Programming with Protocols

[169]

The Playground execution will fail because the AngryCat class doesn't conform to the
ComicCharacter protocol anymore, so the Swift compiler generates the following error:

error: property 'nickName' must be declared public because it matches a
requirement in public protocol 'ComicCharacter'
var nickName: String = String()
 ^
public

Thus, the compiler forces us to implement all the members of a protocol in all the classes
that we indicate as conforming to a protocol. If we add the open keyword again to the line
that declares the nickName property, we will be able to execute the code in the Playground
without compiler errors. The code file for the sample is included in the
swift_3_oop_chapter_05_06 folder:

 open var nickName: String = String()

Protocols in Swift allow us to make sure that the classes that implement
them define all the members specified in the protocol. If they don't, the
code won't compile.

In this case, the ComicCharacter protocol didn't specify any initializer requirements, so
each class that conforms to the protocol can define its initializer without any constraint.
AngryDog and AngryCat declare initializers with a different number of arguments.

Taking advantage of the multiple inheritance
of protocols
Swift doesn't allow us to declare a class with multiple base classes or superclasses, so there
is no support for multiple inheritance of classes. A subclass can inherit just from one class.
However, a class can conform to one or more protocols. In addition, we can declare classes
that inherit from a superclass and conform to one or more protocols. Thus, we can combine
class-based inheritance with protocols.

We want the AngryCat class to conform to both the ComicCharacter and GameCharacter
protocols. Thus, we want to use any AngryCat instance as both a comic character and a
game character. In order to do so, we must change the class declaration and add the
GameCharacter protocol to the list of protocols that the class conforms to and declare all
the members included in this added protocol within the class.

Contract Programming with Protocols

[170]

The following lines show the new class declaration that specifies that the AngryCat class
conforms to both the ComicCharacter and GameCharacter protocols. The code file for the
sample is included in the swift_3_oop_chapter_05_07 folder:

 open class AngryCat: ComicCharacter, GameCharacter {

After changing the class declaration, the Playground execution will fail because the
AngryCat class doesn't implement the members required by the GameCharacter protocol.
The Swift compiler generates the following errors and notes:

error: type 'AngryCat' does not conform to protocol 'GameCharacter'
open class AngryCat: ComicCharacter, GameCharacter {
 ^
note: protocol requires property 'fullName' with type 'String'; do you want
to add a stub?
var fullName: String { get set }
 ^
note: protocol requires property 'score' with type 'UInt'; do you want to
add a stub?
var score: UInt { get set }
 ^
note: protocol requires property 'x' with type 'UInt'; do you want to add a
stub?
var x: UInt { get set }
 ^
note: protocol requires property 'y' with type 'UInt'; do you want to add a
stub?
var y: UInt { get set }
 ^
note: protocol requires function 'drawAt(x:y:)' with type '(UInt, UInt) ->
()'; do you want to add a stub?
func drawAt(x: UInt, y: UInt)
 ^
note: protocol requires function 'moveTo(x:y:)' with type '(UInt, UInt) ->
()'; do you want to add a stub?
func moveTo(x: UInt, y: UInt)
 ^
note: protocol requires function 'intersects(character:)' with type
'(GameCharacter) -> Bool'; do you want to add a stub?
func intersects(character: GameCharacter) -> Bool
 ^

Contract Programming with Protocols

[171]

We have to add the following lines to the body of the AngryCat class to implement the
stored properties specified in the GameCharacter protocol. The code file for the sample is
included in the swift_3_oop_chapter_05_08 folder:

 open var score: UInt = 0
 open var fullName: String = String()
 open var x: UInt = 0
 open var y: UInt = 0

In addition, we have to add the following lines to the body of the AngryCat class to
implement the methods specified in the GameCharacter protocol. The code file for the
sample is included in the swift_3_oop_chapter_05_08 folder:

 open func drawAt(x: UInt, y: UInt) {
 self.x = x
 self.y = y
 print("Drawing AngryCat \(fullName) at x: \(x), y: \(y)")
 }

 open func moveTo(x: UInt, y: UInt) {
 self.x = y
 self.y = y
 print("Moving AngryCat \(fullName) to x: \(x), y: \(y)")
 }

 open func intersects(character: GameCharacter) -> Bool {
 return ((x == character.x) && (y == character.y))
 }

Now, the AngryCat class declares the code for the three methods required to conform to
the GameCharacter protocol: draw, move, and intersects. The code declares the three
methods with the open access modifier. Finally, it is necessary to replace the previous
initializer with a new one, which requires additional arguments and sets the initial values of
the recently added stored properties. The following lines show the code for the new
initializer. The code file for the sample is included in the swift_3_oop_chapter_05_08
folder:

 init (nickName: String, age: UInt, fullName: String, initialScore:
 UInt, x: UInt, y: UInt) {
 self.nickName = nickName
 self.age = age
 self.fullName = fullName
 self.score = initialScore
 self.x = x
 self.y = y
 }

Contract Programming with Protocols

[172]

The new initializer assigns the value of the additional required fullName, initialScore,
x, and y arguments to the fullName, score, x, and y properties. Thus, we will need to
specify these additional arguments whenever we want to create an instance of the
AngryCat class.

Combining inheritance and protocols
We can combine class inheritance with protocol conformance. The following lines show the
code for a new AngryCatAlien class that inherits from the AngryCat class and conforms
to the Alien protocol. Note that the class declaration includes the superclass (AngryCat)
and the implemented protocol (Alien) separated by a comma after the colon (:). The code
file for the sample is included in the swift_3_oop_chapter_05_09 folder:

 open class AngryCatAlien : AngryCat, Alien {
 open var numberOfEyes: Int = 0
 init (nickName: String, age: UInt, fullName: String,
 initialScore: UInt, x: UInt, y: UInt, numberOfEyes: Int) {
 super.init(nickName: nickName, age: age, fullName: fullName,
 initialScore: initialScore, x: x, y: y)
 self.numberOfEyes = numberOfEyes
 }
 open func appear() {
 print("I'm \(fullName) and you can see my \(numberOfEyes)
 eyes.")
 }
 open func disappear() {
 print("\(fullName) disappears.")
 }
 }

As a result of the previous code, we have a new class named AngryCatAlien that conforms
to the following three protocols:

ComicCharacter: This is implemented by the AngryCat superclass and
inherited by AngryCatAlien
GameCharacter: This is implemented by the AngryCat superclass and inherited
by AngryCatAlien
Alien: This is implemented by AngryCatAlien

Contract Programming with Protocols

[173]

The initializer adds a numberOfEyes argument to the argument list defined in the base
initializer, that is, the initializer defined in the AngryCat superclass. In this case, the
initializer calls the base initializer (self.init) and then initializes the numberOfEyes
property with the value received in the numberOfEyes argument. The class implements the
appear and disappear methods required by the Alien protocol.

The following lines show the code for a new AngryCatWizard class that inherits from the
AngryCat class and implements the Wizard protocol. Note that the class declaration
includes the superclass (AngryCat) and the implemented protocol (Wizard) separated by a
comma after the colon (:). The code file for the sample is included in the
swift_3_oop_chapter_05_09 folder:

 open class AngryCatWizard: AngryCat, Wizard {
 open var spellPower: Int = 0

 open func disappear(alien: Alien) {
 print("\(fullName) uses his \(spellPower) spell power to make
 the alien with \(alien.numberOfEyes) eyes disappear.")
 }
 init (nickName: String, age: UInt, fullName: String,
 initialScore: UInt, x: UInt, y: UInt, spellPower: Int) {
 super.init(nickName: nickName, age: age, fullName: fullName,
 initialScore: initialScore, x: x, y: y)
 self.spellPower = spellPower
 }
 }

As with the AngryCatAlien class, the new AngryCatWizard class implements three
protocols. Two of these protocols are implemented by the AngryCat superclass and
inherited by AngryCatWizard: ComicCharacter and GameCharacter. The
AngryCatWizard class adds the implementation of the Wizard protocol.

The initializer adds a spellPower argument to the argument list defined in the base
constructor (super.init), which is the constructor defined in the AngryCat superclass.
The constructor calls the base constructor and then initializes the spellPower property
with the value received in the spellPower argument. The class implements the disappear
method, which receives an Alien instance as an argument, required by the Wizard
protocol.

Contract Programming with Protocols

[174]

The disappear method receives an Alien as an argument. Thus, any instance of
AngryCatAlien would qualify as an argument for this method, that is, any instance of any
class that conforms to the Alien protocol.

The following lines show the code for a new AngryCatKnight class, which inherits from
the AngryCat class and implements the Knight protocol. Note that the class declaration
includes the superclass (AngryCat) and implemented protocol (Knight) separated by a
comma after the colon (:). The code file for the sample is included in the
swift_3_oop_chapter_05_09 folder:

 open class AngryCatKnight : AngryCat, Knight {
 open var swordPower: Int = 0
 open var swordWeight: Int = 0
 private func writeLinesAboutTheSword() {
 print("\(fullName) unsheaths his sword.")
 print("Sword power: \(swordPower). Sword weight: \
 (swordWeight).")
 }
 open func unsheathSword() {
 writeLinesAboutTheSword()
 }
 open func unsheathSword(target: Alien) {
 writeLinesAboutTheSword()
 print("The sword targets an alien with \(target.numberOfEyes)
 eyes.")
 }
 init (nickName: String, age: UInt, fullName: String,
 initialScore: UInt, x: UInt, y: UInt, swordPower: Int,
 swordWeight: Int) {
 super.init(nickName: nickName, age: age, fullName: fullName,
 initialScore: initialScore, x: x, y: y)
 self.swordPower = swordPower
 self.swordWeight = swordWeight
 }
 }

Contract Programming with Protocols

[175]

As with the two previously coded classes inherited from the AngryCat class and
conforming to the protocols, the new AngryCatKnight class implements three protocols.
Two of these protocols are implemented by the AngryCat superclass and inherited by
AngryCatKnight: ComicCharacter and GameCharacter. The AngryCatKnight class
adds the implementation of the Knight protocol.

The initializer adds the swordPower and swordWeight arguments to the argument list
defined in the base initializer (base.init), which is the constructor defined in the
AngryCat superclass. The initializer calls the base initializer (base.init) and then
initializes the swordPower and swordWeight properties with the values received in the
swordPower and swordHeight arguments.

The class implements the two versions of the unsheathSword method required by the
Knight protocol. Both methods call the private writeLinesAboutTheSword method, and
the overloaded version that receives Alien as an argument prints an additional message
about the alien that the sword has as a target—specifically, the number of eyes.

The following table summarizes the list of protocols to which each of the classes we created
conform:

Class name Conforms to the following protocol(s)

AngryDog ComicCharacter

AngryCat ComicCharacter and GameCharacter

AngryCatAlien ComicCharacter, GameCharacter, and Alien

AngryCatWizard ComicCharacter, GameCharacter, and Wizard

AngryCatKnight ComicCharacter, GameCharacter, and Knight

Contract Programming with Protocols

[176]

The following simplified UML diagram shows the hierarch tree for the classes and their
relationships with protocols:

Contract Programming with Protocols

[177]

The following UML diagram shows the protocols and the classes with their properties and
methods. We can use the diagram to understand all the things that we will analyze with the
next code samples based on the usage of these classes and the previously defined protocols:

Contract Programming with Protocols

[178]

The following lines create one instance of each of the previously created classes. The code
file for the sample is included in the swift_3_oop_chapter_05_09 folder:

 var angryDog1 = AngryDog(nickName: "Bailey")
 var angryCat1 = AngryCat(nickName: "Bella", age: 3,
 fullName: "Mrs. Bella", initialScore: 20, x: 10, y: 10)
 var angryCatAlien1 = AngryCatAlien(nickName: "Lucy", age: 4,
 fullName: "Mrs. Lucy", initialScore: 50, x: 20, y: 10,
 numberOfEyes: 3)
 var angryCatWizard1 = AngryCatWizard(nickName: "Daisy", age: 4,
 fullName: "Mrs. Daisy", initialScore: 50, x: 20, y: 10,
 spellPower: 6)
 var angryCatKnight1 = AngryCatKnight(nickName: "Maggie", age: 3,
 fullName: "Mrs. Maggy", initialScore: 1300, x: 40, y: 10,
 swordPower: 7, swordWeight: 5)

The following table summarizes the instance name and its class name:

Instance name Class name

angryDog1 AngryDog

angryCat1 AngryCat

angryCatAlien1 AngryCatAlien

angryCatWizard1 AngryCatWizard

angryCatKnight AngryCatKnight

Now, we will evaluate many expressions that use the is keyword to determine whether the
instances are an instance of the specified class or conform to a specific protocol. Note that all
the expressions are evaluated to true because every instance is of the type specified on the
right-hand side after the is keyword. The specified types are the main class for the instance,
its superclass, or a class that conforms to the protocol.

Contract Programming with Protocols

[179]

For example, angryCatWizard1 is an instance of AngryCatWizard. In addition,
angryCatWizard1 belongs to AngryCat because AngryCat is the superclass of the
AngryCatWizard class. It is also true that angryCatWizard1 conforms to three protocols:
ComicCharacter, GameCharacter, and Wizard. The superclass of
AngryCatWizard—that is, AngryCat—conforms to two of these protocols:
ComicCharacter and GameCharacter. Therefore, AngryCatWizard inherits the protocol
conformance. Finally, the AngryCatWizard class not only inherits from AngryCat but also
conforms to the Wizard protocol. If we execute the following lines in the Playground, all of
them will print true as a result. The code file for the sample is included in the
swift_3_oop_chapter_05_09 folder:

 print(angryDog1 is AngryDog)
 print(angryDog1 is ComicCharacter)

 print(angryCat1 is AngryCat)
 print(angryCat1 is ComicCharacter)
 print(angryCat1 is GameCharacter)

 print(angryCatAlien1 is AngryCat)
 print(angryCatAlien1 is AngryCatAlien)
 print(angryCatAlien1 is ComicCharacter)
 print(angryCatAlien1 is GameCharacter)
 print(angryCatAlien1 is Alien)

 print(angryCatWizard1 is AngryCat)
 print(angryCatWizard1 is AngryCatWizard)
 print(angryCatWizard1 is ComicCharacter)
 print(angryCatWizard1 is GameCharacter)
 print(angryCatWizard1 is Wizard)

 print(angryCatKnight1 is AngryCat)
 print(angryCatKnight1 is AngryCatKnight)
 print(angryCatKnight1 is ComicCharacter)
 print(angryCatKnight1 is GameCharacter)
 print(angryCatKnight1 is Knight)

Contract Programming with Protocols

[180]

The following screenshot shows the result of executing the previous lines in the
Playground. Note that the Playground uses a warning icon to let us know that all the
expressions that include the is keyword will always be evaluated to true. In these cases,
the compiler generates a warning:

Working with methods that receive protocols
as arguments
Now, we will create additional instances of the previous classes and call methods that have
specified their required arguments with protocol names instead of class names. We will
understand what happens under the hood when we use protocols as types for arguments.

Contract Programming with Protocols

[181]

In the following code, the first two lines of code create two instances of the AngryDog class
named brian and merlin. Then, the code calls the two versions of the
drawSpeechBalloon method for brian. The second call to this method passes merlin as
the ComicCharacter argument because merlin is an instance of AngryDog, which is a
class that implements the ComicCharacter protocol. The code file for the sample is
included in the swift_3_oop_chapter_05_10 folder:

 var brian = AngryDog(nickName: "Brian")
 var merlin = AngryDog(nickName: "Merlin")
 brian.drawSpeechBalloon(message: "Hello, my name is \
 (brian.nickName)")
 brian.drawSpeechBalloon(destination: merlin, message:
 "How do you do?")
 merlin.drawThoughtBalloon(message: "Who are you? I think.")

Bear in mind that when we work with protocols, we use them to specify
argument types instead of using class names. Multiple classes might
implement a single protocol, so instances of different classes might qualify
as an argument of a specific protocol.

The following code creates an instance of the AngryCat class named garfield. Its
nickName value is "Garfield". The next line calls the drawSpeechBalloon method for
the new instance to introduce Garfield in the comic, and then brian calls the
drawSpeechBalloon method and passes garfield as the ComicCharacter argument
because garfield is an instance of AngryCat, which is a class that implements the
ComicCharacter protocol. Thus, we can also use instances of AngryCat whenever we
need a ComicCharacter argument. The code file for the sample is included in the
swift_3_oop_chapter_05_10 folder:

 var garfield = AngryCat(nickName: "Garfield", age: 10, fullName:
 "Mr. Garfield", initialScore: 0, x: 10, y: 20)
 garfield.drawSpeechBalloon(message: "Hello, my name is \
 (garfield.nickName)")
 brian.drawSpeechBalloon(destination: garfield, message: "Hello \
 (garfield.nickName)")

Contract Programming with Protocols

[182]

The following code creates an instance of the AngryCatAlien class named misterAlien.
Its nickName value is "Alien". The next line checks whether the call to the intersects
method with garfield as a parameter returns true. The method requires a
ComicCharacter argument, so we can use garfield. The method will return true
because the x and y properties of both instances have the same value. The line within the if
block calls the moveTo method for misterAlien. Then, the code calls the appear method.
The code file for the sample is included in the swift_3_oop_chapter_05_10 folder:

 var misterAlien = AngryCatAlien(nickName: "Alien", age: 120,
 fullName: "Mr. Alien", initialScore: 0, x: 10, y: 20,
 numberOfEyes: 3)
 if (misterAlien.intersects(character: garfield)) {
 misterAlien.moveTo(x: garfield.x + 20, y: garfield.y + 20)
 }
 misterAlien.appear()

The following code creates an instance of the AngryCatWizard class named gandalf. Its
nickName value is "Gandalf". The next lines call the draw method and then the
disappear method with misterAlien as the alien argument. The method requires an
Alien argument, so we can use misterAlien, which is the previously created instance of
AngryCatAlien that implements the Alien protocol. Then, a call to the Appear method for
misterAlien makes the alien with three eyes appear again. The code file for the sample is
included in the swift_3_oop_chapter_05_10 folder:

 var gandalf = AngryCatWizard(nickName: "Gandalf", age: 75,
 fullName: "Mr. Gandalf", initialScore: 10000, x: 30, y: 40,
 spellPower: 100)
 gandalf.drawAt(x: gandalf.x, y: gandalf.y)
 gandalf.disappear(alien: misterAlien)
 misterAlien.appear()

The following code creates an instance of the AngryCatKnight class named camelot. Its
nickName value is "Camelot". The next lines call the draw method and then the
unsheathSword method with misterAlien as a parameter. The method requires an
Alien argument, so we can use misterAlien, the previously created instance of
AngryCatAlien that implements the Alien protocol. The code file for the sample is
included in the swift_3_oop_chapter_05_10 folder:

 var camelot = AngryCatKnight(nickName: "Camelot", age: 35,
 fullName: "Sir Camelot", initialScore: 5000, x: 50, y: 50,
 swordPower: 100, swordWeight: 30)
 camelot.drawAt(x: camelot.x, y: camelot.y)
 camelot.unsheathSword(target: misterAlien)

Contract Programming with Protocols

[183]

Finally, the code calls the drawThoughtBalloon and drawSpeechBalloon methods for
misterAlien. We can do this because misterAlien is an instance of AngryCatAlien, and
this class inherits the conformance to the ComicCharacter protocol from its AngryCat
superclass. The call to the drawSpeechBalloon method passes camelot as the
ComicCharacter argument because camelot is an instance of AngryCatKnight, which is
a class that also inherits the conformance to the ComicCharacter protocol from its
AngryCat superclass. Thus, we can also use instances of AngryCatKnight whenever we
need a ComicCharacter argument, as follows. The code file for the sample is included in
the swift_3_oop_chapter_05_10 folder:

 misterAlien.drawThoughtBalloon(message:
 "I must be friendly or I'm dead...");
 misterAlien.drawSpeechBalloon(destination: camelot, message:
 "Pleased to meet you, Sir.");

After you execute the previous lines in the Playground, you will see the following text
output:

Brian -> "Hello, my name is Brian"
Brian -> "Merlin, How do you do?"
Merlin -> ***Who are you? I think.***
Garfield -> "Meow Hello, my name is Garfield"
Brian -> "Garfield, Hello Garfield"
Moving AngryCat Mr. Alien to x: 30, y: 40
I'm Mr. Alien and you can see my 3 eyes.
Drawing AngryCat Mr. Gandalf at x: 30, y: 40
Mr. Gandalf uses his 100 spell power to make the alien with 3 eyes
disappear.
I'm Mr. Alien and you can see my 3 eyes.
Drawing AngryCat Sir Camelot at x: 50, y: 50
Sir Camelot unsheaths his sword.
Sword power: 100. Sword weight: 30.
The sword targets an alien with 3 eyes.
Alien thinks: I must be friendly or I'm dead...
Camelot === Alien ---> "Pleased to meet you, Sir."

Contract Programming with Protocols

[184]

The next screenshot shows the code and the result of executing it in the Playground:

Downcasting with protocols and classes
The ComicCharacter protocol defines one of the method requirements for the
drawSpeechBalloon method with destination as an argument of the ComicCharacter
type, which is the same type that the protocol defines. The following is the first line in our
sample code that called this method:

 brian.drawSpeechBalloon(destination: merlin, message: "How do you do?")

Contract Programming with Protocols

[185]

We called the method defined within the AngryDog class because brian is an instance of
AngryDog. We passed an AngryDog instance, merlin, to the destination argument. The
method works with the destination argument as an instance that conforms to the
ComicCharacter protocol; therefore, whenever we reference the destination variable, we
will only be able to see what the ComicCharacter type defines.

We can easily understand what happens under the hood when Swift downcasts a type from
its original type to a target type, such as a protocol to which the class conforms. In this case,
AngryDog is downcasted to ComicCharacter. If we enter the following code in the
Playground, Xcode will enumerate the members for the AngryDog instance named merlin:

 merlin.

Xcode will display the following members:

 Void drawSpeechBalloon(destination: ComicCharacter,
 message: String)
 Void drawSpeechBalloon(message: String)
 Void drawThoughtBalloon(message: String)
 String nickName
 Void speak(message: String)
 Void think(message: String)

The following screenshot shows the members enumerated in the Playground for merlin,
which is an AngryDog instance:

If we enter the following code in the Playground, the as downcast operator forces the
downcast to the ComicCharacter protocol type; therefore, Xcode will only enumerate the
members for the AngryDog instance named merlin that are required members in the
ComicCharacter protocol:

 (merlin as ComicCharacter).

Contract Programming with Protocols

[186]

Xcode will display the following members:

 Void drawSpeechBalloon(destination: ComicCharacter,
 message: String)
 Void drawSpeechBalloon(message: String)
 Void drawThoughtBalloon(message: String)
 String nickName

Note that the two methods that are defined in the AngryDog class but aren't required in the
ComicCharacter protocol aren't visible: speak and think. The following screenshot
shows the members enumerated in the Playground for the merlin instance's downcast to
ComicCharacter:

Now, let's analyze another scenario in which an instance is downcasted to one of the
protocols to which it conforms. The GameCharacter protocol defines a method
requirement for the intersects method with character as an argument of the
GameCharacter type, which is the same type that the protocol defined. The following is the
first line in our sample code that called this method:

 if (misterAlien.intersects(character: garfield)) {

We called the method defined within the AngryCat class because misterAlien is an
instance of AngryCatAlien, which inherits the method implementation from the
AngryCat class. We passed an AngryCat instance, garfield, to the character argument.
The method works with the character argument as an instance that conforms to the
GameCharacter protocol; therefore, whenever we reference the destination variable, we
will only be able to see what the GameCharacter type defines.

In this case, AngryCat is downcasted to GameCharacter. If we enter the following code in
the Playground, Xcode will enumerate the members for the AngryCat instance named
garfield:

 garfield.

Contract Programming with Protocols

[187]

Xcode will display the following members:

 UInt age
 Void drawAt(x: UInt, y: UInt)
 Void drawSpeechBalloon(destination: ComicCharacter,
 message: String)
 Void drawSpeechBalloon(message: String)
 Void drawThoughtBalloon(message: String)
 String fullName
 Bool intersects(character: GameCharacter)
 Void moveTo(x: UInt, y: UInt)
 String nickName
 UInt score
 UInt x
 UInt y

The following screenshot shows the first members enumerated in the Playground for
garfield, which is an AngryCat instance:

If we enter the following code in the Playground, the as downcast operator forces the
downcast to the GameCharacter protocol type; therefore, Xcode will only enumerate those
members for the AngryCat instance named garfield that are required members in the
GameCharacter protocol:

 (garfield as GameCharacter).

Xcode will display the following members:

 Void drawAt(x: UInt, y: UInt)
 String fullName
 Bool intersects(character: GameCharacter)
 Void moveTo(x: UInt, y: UInt)
 UInt score
 UInt x
 UInt y

Contract Programming with Protocols

[188]

Note that the list of members has been reduced to the properties and members required in
the GameCharacter protocol. The following screenshot shows the members enumerated in
the Playground for the garfield instance's downcast to GameCharacter:

We can use the as operator to force a cast of the previous expression to the original type,
that is, to the AngryCat type. This way, Xcode will enumerate all the members of the
AngryCat instance again:

 ((garfield as GameCharacter) as AngryCat).

Xcode will display the following members—that is, all the members that Xcode enumerated
when we worked with garfield—without any kind of casting:

 UInt age
 Void drawAt(x: UInt, y: UInt)
 Void drawSpeechBalloon(destination: ComicCharacter,
 message: String)
 Void drawSpeechBalloon(message: String)
 Void drawThoughtBalloon(message: String)
 String fullName
 Bool intersects(character: GameCharacter)
 Void moveTo(x: UInt, y: UInt)
 String nickName
 UInt score
 UInt x
 UInt y

Contract Programming with Protocols

[189]

The following screenshot shows the first members enumerated in the Playground for
garfield downcast to GameCharacter and when it is casted back to an AngryCat
instance:

Treating instances of a protocol type as a
different subclass
Now, we will take advantage of the capability that Swift offers us to extend an existing class
to add specific members. In this case, we will add an instance method to the previously
defined AngryCat class. The following lines add the doSomethingWith method to the
existing AngryCat class. The code file for the sample is included in the
swift_3_oop_chapter_05_11 folder:

 public extension AngryCat {
 public func doSomethingWith(cat: AngryCat) {
 if let angryCatAlien = cat as? AngryCatAlien {
 angryCatAlien.appear()
 } else if let angryCatKnight = cat as? AngryCatKnight {
 angryCatKnight.unsheathSword()
 } else if let angryCatWizard = cat as? AngryCatWizard {
 print("My spell power is \(angryCatWizard.spellPower)")
 } else {
 print("This AngryCat doesn't have cool skills.")
 }
 }
 }

Take into account that extensions cannot use open as their default access.
When we want them to be accessible outside the module that defines
them, we must use the public access modifier.

Contract Programming with Protocols

[190]

The doSomethingWith method receives an AngryCat instance (cat) and uses the
conditional type casting operator (as?) to return an optional value of the type that it tries to
cast cat to. In case cat is an instance of AngryCatAlien or of any potential subclass of
AngryCatAlien, the first type cast succeeds and the code calls the appear method for the
cat type cast to an AngryCatAlien instance, which is saved in the angryCatAlien
reference constant, as follows:

 if let angryCatAlien = cat as? AngryCatAlien {
 angryCatAlien.appear()

In case the conditional type cast to AngryCatAlien fails, the code uses the conditional type
casting operator (as?) and tries to cast cat to AngryCatKnight. In case cat is an instance
of AngryCatKnight or an instance of any potential subclass of AngryCatKnight, the
conditional type cast succeeds, and the code calls the unsheathSword method for the cat
type cast to an AngryCatKnight instance, which is saved in the angryCatKnight
reference constant:

 } else if let angryCatKnight = cat as? AngryCatKnight {
 angryCatKnight.unsheathSword()

In case the conditional type cast to AngryCatKnight fails, the code uses the conditional
type casting operator (as?) and tries to cast cat to AngryCatWizard. In case cat is an
instance of AngryCatWizard or of any potential subclass of AngryCatWizard, the
conditional type cast succeeds, and the code prints a message indicating the spellPower
value for the cat type cast to an AngryCatWizard instance, which is saved in the
angryCatWizard reference constant, as follows:

 } else if let angryCatWizard = cat as? AngryCatWizard {
 print("My spell power is \(angryCatWizard.spellPower)")

Finally, if the last conditional type cast to AngryCatKnight fails, it means that the cat
instance just belongs to AngryCat, so the code prints a message indicating that AngryCat
doesn't have cool skills.

Whenever type casting fails, we must use the conditional form (as?) of the
type cast operator.

Contract Programming with Protocols

[191]

Now, we will take advantage of the doSomethingWith instance method added to the
AngryCat class and call it in instances of AngryCat and its subclasses, which we
created before we declared the extension. We will call the doSomethingWith method for
the AngryCat instance named garfield and use it the following arguments:

misterAlien: This is an instance of the AngryCatAlien class
camelot: This is an instance of the AngryCatKnight class
gandalf: This is an instance of the AngryCatWizard class
garfield: This is an instance of the AngryCat class

The following four lines call the doSomethingWith method in the Playground with the
previously enumerated arguments. The code file for the sample is included in the
swift_3_oop_chapter_05_11 folder:

 garfield.doSomethingWith(cat: misterAlien)
 garfield.doSomethingWith(cat: camelot)
 garfield.doSomethingWith(cat: gandalf)
 garfield.doSomethingWith(cat: garfield)

The next lines show the output generated in the Playground. Each call triggers a different
type cast and calls a method of the type cast instance:

 I'm Mr. Alien and you can see my 3 eyes.
 Sir Camelot unsheaths his sword.
 Sword power: 100. Sword weight: 30.
 My spell power is 100
 This AngryCat doesn't have cool skills.

Contract Programming with Protocols

[192]

The following screenshot shows that the execution of the four methods generates the
doSomethingWith method to execute code in each usage of the conditional type cast
operator. Note the values displayed on the right-hand side of each line included within the
curly braces after each conditional type cast. The lines that call the methods just display the
type cast instance types, AngryCatAlien and AngryCatKnight, and the lines that call the
print method display the generated output on the right-hand side:

Specifying requirements for properties
In Chapter 4, Inheritance, Abstraction, and Specialization, we worked with simple inheritance
to specialize animals. Now, we will go back to this example and refactor it to use protocols
that allow us to take advantage of multiple inheritance.

Contract Programming with Protocols

[193]

The decision to work with contract-based programming appears with a new requirement,
which is the need to make domestic birds and other domestic animals different from
domestic mammals that talk and have a favorite toy. We already had a talk method and a
favoriteToy property defined in the DomesticMammal class. However, now that we
know how to work with protocols, we don't want to introduce duplicate code, and we want
to be able to generalize what is required to be domestic, with a specific protocol for this.

We will define the following six protocols and take advantage of inheritance in protocols;
that is, we will have protocols that inherit from other protocols, as follows:

AnimalProtocol: This defines the requirements for an animal.
DomesticProtocol: This defines the requirements that make an animal be
considered a domestic one. However, it doesn't inherit from AnimalProtocol
because it just specifies the requirements: anything that can be domestic.
MammalProtocol: This defines the requirements for a mammal. The protocol
inherits from AnimalProtocol.
BirdProtocol: This defines the requirements for birds. The protocol inherits
from AnimalProtocol.
DogProtocol: This defines the requirements for dogs. The protocol inherits from
MammalProtocol.
CatProtocol: This defines the requirements for cats. The protocol inherits from
MammalProtocol.

In this case, we will use the Protocol suffix to differentiate protocols from classes. All the
protocols' names end with Protocol. However, take into account that this is not a common
convention in Swift. The recommended convention is to use an ing or able form of a verb,
such as Equatable, Comparable, and Locking. However, in this case, the protocol names
are best described with a noun and we will have classes with the same names in case we
don't add the Protocol suffix. We want to create an Animal class, so we cannot have a
protocol with the same name.

The following lines show the code that declares the AnimalProtocol protocol. The code
file for the sample is included in the swift_3_oop_chapter_05_12 folder:

 public protocol AnimalProtocol {
 static var numberOfLegs: Int { get }
 static var averageNumberOfChildren: Int { get }
 static var abilityToFly: Bool { get }

Contract Programming with Protocols

[194]

 var age: Int { get set }
 static func printALeg()
 static func printAChild()

 func printLegs()
 func printChildren()
 func printAge()
 }

The AnimalProtocol protocol requires type properties, stored properties, type methods,
and instance methods. First, we will focus on both the type and stored property
requirements. The first lines define the type property requirements. We can only use the
static keyword to specify a type property requirement, but we can use either static or
class when we implement the type property in the class that conforms to the protocol. The
usage of the static keyword doesn't have the same meaning that this keyword has when
we use it in classes; that is, we can still declare type properties that can be overridden in the
classes that conform to the protocol. In fact, this is exactly what we will do when we create
the class that conforms to the AnimalProtocol protocol.

In this case, we want the three type properties to be in a read-only format, so we only
include the get keyword after the desired type for the type property. The following line
shows the type property requirement for numberOfLegs with the get keyword, which
makes it a read-only type property:

 static var numberOfLegs: Int { get }

We always have to specify the required type in each property
requirement.

The protocol defines a stored property requirement named age with both the get and set
keywords; therefore, this stored property must be a read-write stored property. Each class
that conforms to the protocol can decide whether it is convenient to declare explicit getter
and setter methods or just declare a stored property without providing these methods. Both
cases are valid implementations because the protocol just requires a read/write stored
property. The following line shows the stored property requirement for age:

 var age: Int { get set }

Contract Programming with Protocols

[195]

Specifying requirements for methods
The AnimalProtocol protocol requires two type methods: printALeg and printAChild.
As explained with the type property requirements, we can only use the static keyword to
specify a type method requirement, but we can use either static or class when we
implement the type method in the class that conforms to the protocol. The usage of the
static keyword doesn't have the same meaning that this keyword has when we use it in
classes; that is, we can still declare type methods that can be overridden in the classes that
conform to the protocol by declaring them with the class keyword in the respective
classes. The following line shows the type method requirement for printALeg:

 static func printALeg()

The protocol defines three parameterless methods: printLegs, printChildren, and
printAge. The method requirements use the func keyword followed by the method name
and its arguments, as if we were writing the method declaration for a class but without the
method body. The following line shows the method requirement for printLegs:

 func printLegs()

The following lines show the code that declares the DomesticProtocol protocol. The code
file for the sample is included in the swift_3_oop_chapter_05_12 folder:

 public protocol DomesticProtocol {
 var name: String { get set }
 var favoriteToy: String { get set }
 func talk()
 }

The DomesticProtocol protocol requires two read/write stored properties: name and
favoriteToy. In addition, the protocol defines a method requirement for a parameterless
talk instance method. Note that the DomesticProtocol protocol doesn't inherit from the
AnimalProtocol protocol, so we can combine the conformance to other protocols with
DomesticProtocol to create a specific domestic version.

The following lines show the code that declares the MammalProtocol protocol. The code
file for the sample is included in the swift_3_oop_chapter_05_12 folder:

 public protocol MammalProtocol: AnimalProtocol {
 var isPregnant: Bool { get set }
 }

The MammalProtocol protocol inherits from the AnimalProtocol protocol and just adds
the requirement for a single read/write stored property: isPregnant.

Contract Programming with Protocols

[196]

The following lines show the code that declares the DogProtocol protocol. The code file for
the sample is included in the swift_3_oop_chapter_05_12 folder:

 public protocol DogProtocol: MammalProtocol {
 var breed: String { get }
 var breedFamily: String { get }
 func printBreed()
 func printBreedFamily()
 func bark()
 func bark(times: Int)
 func bark(times: Int, otherDomestic: DomesticProtocol)
 func bark(times: Int, otherDomestic: DomesticProtocol,
 isAngry: Bool)
 func printBark(times: Int, otherDomestic: DomesticProtocol?,
 isAngry: Bool)
 }

The DogProtocol protocol inherits from the MammalProtocol protocol and adds two
read-only stored properties: breed and breedFamily. In addition, the protocol adds many
method requirements. There are many overloaded method requirements with the same
name (bark) and different arguments. Thus, the class or classes that implement the
DogProtocol protocol must implement all the specified overloads for the bark method.
Note that the otherDomestic argument is of a protocol type (DomesticProtocol), so any
instance of a class that conforms to this protocol can be used as an argument.

The following lines show the code that declares the CatProtocol protocol. The code file for
the sample is included in the swift_3_oop_chapter_05_12 folder:

 public protocol CatProtocol: MammalProtocol {
 func printMeow(times: Int)
 }

The CatProtocol protocol inherits from the MammalProtocol protocol and adds a
printMeow method requirement that receives a times Int argument.

The following lines show the code that declares the BirdProtocol protocol. The code file
for the sample is included in the swift_3_oop_chapter_05_12 folder:

 public protocol BirdProtocol: AnimalProtocol {
 var feathersColor: String { get set }
 }

Contract Programming with Protocols

[197]

The BirdProtocol protocol inherits from the AnimalProtocol protocol and adds a
feathersColor read/write stored property requirement. However, wait; we said that we
needed birds to talk and have a favorite toy. The BirdProtocol class doesn't include a
requirement for either a talk method or a favoriteToy property, and it doesn't inherit.
However, we will create a class that implements both the BirdProtocol and the
DomesticProtocol protocols, and we will be able to use a domestic bird that talks as an
argument in any method that requires DomesticProtocol.

Combining class inheritance with protocol
inheritance
So far, we have created many protocols for our animals. Some of these protocols inherit
from other protocols; therefore, we have a protocol hierarchy tree. Now, it is time to
combine class inheritance with protocol inheritance to recreate our animal classes.

The following lines show the new version of the Animal class that conforms to the
AnimalProtocol protocol. The code file for the sample is included in the
swift_3_oop_chapter_05_12 folder:

 open class Animal: AnimalProtocol {
 open class var numberOfLegs: Int {
 get {
 return 0;
 }
 }
 open class var averageNumberOfChildren: Int {
 get {
 return 0;
 }
 }
 open class var abilityToFly: Bool {
 get {
 return false;
 }
 }
 open var age: Int
 init(age : Int) {
 self.age = age
 print("Animal created")
 }

Contract Programming with Protocols

[198]

 open class func printALeg() {
 preconditionFailure("The pringALeg method must be overriden")
 }
 open func printLegs() {
 for _ in 0..<type(of: self).numberOfLegs {
 type(of: self).printALeg()
 }
 print(String())
 }
 open class func printAChild() {
 preconditionFailure("The printChild method must be overriden")
 }
 public func printChildren() {
 for _ in 0..<type(of: self).averageNumberOfChildren {
 type(of: self).printAChild()
 }
 print(String())
 }
 public func printAge() {
 print("I am \(age) years old.")
 }
 }

The following lines show the new version of the Mammal class that inherits from the Animal
class and conforms to the MammalProtocol protocol. The code file for the sample is
included in the swift_3_oop_chapter_05_12 folder:

 open class Mammal: Animal, MammalProtocol {
 open var isPregnant: Bool = false
 private func initialize(isPregnant: Bool) {
 self.isPregnant = isPregnant
 print("Mammal created")
 }
 override init(age: Int) {
 super.init(age: age)
 initialize(isPregnant: false)
 }
 init(age: Int, isPregnant: Bool) {
 super.init(age: age)
 initialize(isPregnant: isPregnant)
 }
 }

Contract Programming with Protocols

[199]

The following lines show the new version of the DomesticMammal class that inherits from
the Mammal class and conforms to the DomesticProtocol protocol. Remember that the
DomesticProtocol protocol doesn't inherit from any other protocol. The code file for the
sample is included in the swift_3_oop_chapter_05_12 folder:

 open class DomesticMammal: Mammal, DomesticProtocol {
 open var name = String()
 open var favoriteToy = String()
 private func initialize(name: String, favoriteToy: String) {
 self.name = name
 self.favoriteToy = favoriteToy
 print("DomesticMammal created")
 }
 init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age)
 initialize(name: name, favoriteToy: favoriteToy)
 }
 init(age: Int, isPregnant: Bool, name: String,
 favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant)
 initialize(name: name, favoriteToy: favoriteToy)
 }
 public func talk() {
 print("\(name): talks")
 }
 }

The following lines show the new version of the Dog class that inherits from the
DomesticMammal class and conforms to the DogProtocol protocol. The code file for the
sample is included in the swift_3_oop_chapter_05_12 folder:

 open class Dog: DomesticMammal, DogProtocol {
 open static override var numberOfLegs: Int {
 get {
 return 4;
 }
 }
 open static override var abilityToFly: Bool {
 get {
 return false;
 }
 }
 open var breed: String {
 get {
 return "Just a dog"
 }
 }

Contract Programming with Protocols

[200]

 open var breedFamily: String {
 get {
 return "Dog"
 }
 }
 private func initializeDog() {
 print("Dog created")
 }
 override init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeDog()
 }
 override init(age: Int, isPregnant: Bool, name: String,
 favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
 favoriteToy: favoriteToy)
 initializeDog()
 }
 public final func printBreed() {
 print(breed)
 }
 public final func printBreedFamily() {
 print(breedFamily)
 }
 open func printBark(times: Int, otherDomestic: DomesticProtocol?,
 isAngry: Bool) {
 var bark = "\(name)"
 if let unwrappedOtherDomestic = otherDomestic {
 bark += " to \(unwrappedOtherDomestic.name): "
 } else {
 bark += ": "
 }
 if isAngry {
 bark += "Grr "
 }
 for _ in 0 ..< times {
 bark += "Woof "
 }
 print(bark)
 }
 open func bark() {
 printBark(times: 1, otherDomestic: nil, isAngry: false)
 }
 open func bark(times: Int) {
 printBark(times: times, otherDomestic: nil, isAngry: false)
 }

Contract Programming with Protocols

[201]

 open func bark(times: Int, otherDomestic: DomesticProtocol) {
 printBark(times: times, otherDomestic: otherDomestic,
 isAngry: false)
 }
 open func bark(times: Int, otherDomestic: DomesticProtocol,
 isAngry: Bool) {
 printBark(times: times, otherDomestic: otherDomestic,
 isAngry: isAngry)
 }
 open override func talk() {
 bark()
 }
 }

The previous version overloaded bark methods, which required an
otherDomesticMammal argument of the DomesticMammal type. The printBark method
required an optional otherDomesticMammal argument of the DomesticMammal? type. The
new version of the overloaded bark methods replaces the otherDomesticMammal
argument with otherDomestic of the DomesticProtocol type. This way, it is possible to
pass any class that implements the DomesticProtocol protocol. The new version of the
printBark method requires an optional otherDomestic argument of the
DomesticProtocol type. These changes allow dogs to bark at any other domestic animal,
just like the domestic bird we will create later. The previous version was only capable of
barking at other domestic mammals. However, in real-life scenarios, dogs do bark at birds.

It is not necessary to make any changes to the classes that inherit from Dog: TerrierDog
and SmoothFoxTerrier. These classes remain with the same code that we introduced in
Chapter 4, Inheritance, Abstraction, and Specialization.

The following lines show the new version of the Cat class that inherits from the
DomesticMammal class and conforms to the CatProtocol protocol. The code file for the
sample is included in the swift_3_oop_chapter_05_12 folder:

 open class Cat: DomesticMammal, CatProtocol {
 open static override var numberOfLegs: Int {
 get {
 return 4;
 }
 }
 open static override var abilityToFly: Bool {
 get {
 return false;
 }
 }

Contract Programming with Protocols

[202]

 open override class var averageNumberOfChildren: Int {
 get {
 return 6;
 }
 }
 private func initializeCat() {
 print("Cat created")
 }
 override init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeCat()
 }
 override init(age: Int, isPregnant: Bool, name: String,
 favoriteToy: String) {
 super.init(age: age, isPregnant: isPregnant, name: name,
 favoriteToy: favoriteToy)
 initializeCat()
 }
 open func printMeow(times: Int) {
 var meow = "\(name): "
 for _ in 0 ..< times {
 meow += "Meow "
 }
 print(meow)
 }
 open override func talk() {
 printMeow(times: 1)
 }
 open override class func printALeg() {
 print("*_*", terminator: String())
 }
 open override class func printAChild() {
 // Print grinning cat face with smiling eyes emoji
 print(String(UnicodeScalar(0x01F638)!), terminator: String())
 }
 }

Contract Programming with Protocols

[203]

The following lines show the new version of the Bird class, which inherits from the Animal
class and conforms to the BirdProtocol protocol. The code file for the sample is included
in the swift_3_oop_chapter_05_12 folder:

 open class Bird: Animal, BirdProtocol {
 open var feathersColor: String = String()
 open static override var numberOfLegs: Int {
 get {
 return 2;
 }
 }
 private func initializeBird(feathersColor: String) {
 self.feathersColor = feathersColor
 print("Bird created")
 }
 override init(age: Int) {
 super.init(age: age)
 initializeBird(feathersColor: "Undefined / Too many colors")
 }
 init(age: Int, feathersColor: String) {
 super.init(age: age)
 initializeBird(feathersColor: feathersColor)
 }
 }

The following lines show the new version of the DomesticBird class, which inherits from
the Bird class and conforms to the DomesticProtocol protocol. Remember that the
DomesticProtocol protocol doesn't inherit from any other protocol. The code file for the
sample is included in the swift_3_oop_chapter_05_12 folder:

 open class DomesticBird: Bird, DomesticProtocol {
 open var name = String()
 open var favoriteToy = String()
 private func initializeDomesticBird(name: String,
 favoriteToy: String) {
 self.name = name
 self.favoriteToy = favoriteToy
 print("DomesticBird created")
 }
 open func talk() {
 print("\(name): Tweet Tweet")
 }
 init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age)
 initializeDomesticBird(name: name, favoriteToy: favoriteToy)
 }

Contract Programming with Protocols

[204]

 init(age: Int, feathersColor: String, name: String,
 favoriteToy: String) {
 super.init(age: age, feathersColor: feathersColor)
 initializeDomesticBird(name: name, favoriteToy: favoriteToy)
 }
 }

The new DomesticBird class adds the favoriteToy stored property and the talk
method to conform to the DomesticProtocol protocol. In addition, the initializers add
new parameters to make it possible to assign an initial value to favoriteToy.

The following lines show the new version of the DomesticCanary class, which inherits
from the DomesticBird class. The code file for the sample is included in the
swift_3_oop_chapter_05_12 folder:

 open class DomesticCanary: DomesticBird {
 open override class var averageNumberOfChildren: Int {
 get {
 return 5;
 }
 }
 private func initializeDomesticCanary() {
 print("DomesticCanary created")
 }
 override init(age: Int, name: String, favoriteToy: String) {
 super.init(age: age, name: name, favoriteToy: favoriteToy)
 initializeDomesticCanary()
 }
 override init(age: Int, feathersColor: String, name: String,
 favoriteToy: String) {
 super.init(age: age, feathersColor: feathersColor, name: name,
 favoriteToy: favoriteToy)
 initializeDomesticCanary()
 }
 open override class func printALeg() {
 print("^", terminator: String())
 }
 open override class func printAChild() {
 // Print bird emoji
 print(String(UnicodeScalar(0x01F426)!), terminator: String())
 }
 }

The DomesticCanary class changes the initializers to match the edits made in its
superclass: DomesticBird.

Contract Programming with Protocols

[205]

The following table summarizes the list of protocols to which each of the new versions of
the classes we created conforms:

Class name Conforms to the following protocol(s)

Animal AnimalProtocol

Mammal AnimalProtocol and MammalProtocol

DomesticMammal AnimalProtocol, MammalProtocol, and DomesticProtocol

Dog AnimalProtocol, MammalProtocol, DomesticProtocol, and
DogProtocol

TerrierDog AnimalProtocol, MammalProtocol, DomesticProtocol, and
DogProtocol

SmoothFoxTerrier AnimalProtocol, MammalProtocol, DomesticProtocol, and
DogProtocol

Cat AnimalProtocol, MammalProtocol, DomesticProtocol, and
CatProtocol

Bird AnimalProtocol and BirdProtocol

DomesticBird AnimalProtocol, BirdProtocol, and DomesticProtocol

DomesticCanary AnimalProtocol, BirdProtocol, DomesticProtocol

Contract Programming with Protocols

[206]

The following simplified UML diagram shows the hierarchy tree for the protocols and
classes and their relationship:

Contract Programming with Protocols

[207]

The following lines create an instance of Dog named pluto, an instance of Cat named
marie, and an instance of DomesticCanary named tweety. Then, the next lines call the
talk method for the three instances and make pluto bark at tweety. It is possible to use
tweety as the otherDomestic argument for the bark method because it is an instance of
DomesticCanary, and it conforms to the DomesticProtocol protocol. The code file for
the sample is included in the swift_3_oop_chapter_05_12 folder:

 var pluto = Dog(age: 7, name: "Pluto", favoriteToy: "Teddy bear")
 var marie = Cat(age: 4, isPregnant: true, name: "Marie",
 favoriteToy: "Tennis ball")
 var tweety = DomesticCanary(age: 2, feathersColor: "Yellow",
 name: "Tweety", favoriteToy: "Small bell")

 tweety.talk()
 pluto.bark(times: 3, otherDomestic: tweety)
 marie.talk()
 pluto.talk()

The following lines show the output generated by the last four lines of code:

 Tweety: Tweet Tweet
 Pluto to Tweety: Woof Woof Woof
 Marie: Meow
 Pluto: Woof

If we execute the following lines in the Playground, all of them will display true as a result
because tweety is an instance of a class that conforms to three protocols: AnimalProtocol,
BirdProtocol, and DomesticProtocol. In addition, tweety belongs to Animal, Bird,
DomesticBird, and DomesticCanary:

print(tweety is AnimalProtocol)
print(tweety is BirdProtocol)
print(tweety is DomesticProtocol)
print(tweety is Animal)
print(tweety is Bird)
print(tweety is DomesticBird)
print(tweety is DomesticCanary)

Contract Programming with Protocols

[208]

The following screenshot shows the results of executing the previous lines in the
Playground. Note that the Playground uses an icon to let us know that all the is tests will
always be evaluated to true:

Exercises
Create the following protocols to solve the problem explained in Chapter 1, Objects from the
Real-World to the Playground:

AbstractShape

AbstractRegularPolygon

AbstractEllipse

AbstractRectangle

AbstractCircle

Contract Programming with Protocols

[209]

After you create the protocols, create classes that implement them based on the
specifications explained in Chapter 1, Objects from the Real-World to the Playground.

The following table summarizes the list of protocols to which each of the classes you must
create will conform:

Class name Conforms to the following protocol(s)

Shape AbstractShape

Rectangle AbstractRectangle and AbstractShape

RegularPolygon AbstractRegularPolygon and AbstractShape

Ellipse AbstractEllipse and AbstractShape

Circle AbstractCircle and AbstractShape

EquilateralTriangle AbstractRegularPolygon and AbstractShape

Square AbstractRegularPolygon and AbstractShape

RegularHexagon AbstractRegularPolygon and AbstractShape

Test your knowledge
A class can conform to:1.

Only one protocol1.
One or more protocols2.
A maximum of two protocols3.

When a class conforms to a protocol:2.
It cannot inherit from a class5.
It can inherit from an abstract class6.
It can also inherit from a class7.

A protocol:3.
Can inherit from another protocol1.
Can inherit from a class2.
Cannot inherit from another protocol3.

A protocol:4.
Is a type1.
Is a method2.
Is the base class for other classes3.

Contract Programming with Protocols

[210]

When we specify a protocol as the type for an argument:5.
We can use any type method that conforms to the specified protocol as1.
an argument
We can use any protocol that conforms to the specified protocol as an2.
argument
We can use any instance of a class that conforms to the specified3.
protocol as an argument

If we want a protocol to be accessed outside of the module that defines it, which6.
access modifier should we use to declare it?

open1.
public2.
filepublic3.

Summary
In this chapter, you learned about the declaration and combination of multiple blueprints to
generate a single instance. We declared protocols with different types of requirements.
Then, we created many classes that conformed to these protocols.

We worked with type casting to understand how protocols work as types. Finally, we
combined protocols with classes to take advantage of multiple inheritance in Swift 3. We
combined inheritance for protocols and classes.

Now that you have learned about protocols, multiple inheritance, and contract-based
programming, we are ready to maximize code reuse with generic code and parametric
polymorphism.

6
Maximization of Code Reuse

with Generic Code
In this chapter, you will learn about parametric polymorphism and how Swift implements
this object-oriented concept through the possibility of writing generic code. We will use
classes that work with one and two constrained generic types.

In addition, you will learn to combine the generic code with inheritance and multiple
inheritance to demonstrate the usage of generic code in real-life situations, in which the
code becomes more complex than the usage of a simple generic class.

Understanding parametric polymorphism
and generic code
Let's imagine we want to organize a party for specific animals. We don't want to mix cats
with dogs because the party would end up with the dogs chasing cats. We want a party,
and we don't want intruders. However, at the same time, we want to take advantage of the
procedures we create to organize the party and replicate them with frogs in another party; it
would be a party of frogs. We want to reuse the procedures for either dogs or frogs.
However, in future, we will probably want to use them with other animals, such as parrots,
lions, tigers, and horses.

In the previous chapter, you learned how to work with protocols. We can declare a protocol
to specify the requirements for an animal and then take advantage of Swift features to write
a generic code that works with any class that implements the protocol. Parametric
polymorphism allows us to write generic and reusable code that can work with values
without depending on the type, while keeping the full static-type safety.

Maximization of Code Reuse with Generic Code

[212]

We can take advantage of parametric polymorphism in Swift through generics, also known
as generic programming. Once we declare a protocol that specifies the requirements for an
animal, we can create a class that works with any instance that conforms to this protocol.
This way, we can reuse the code that generates a party of dogs and create a party of frogs,
parrots, or any other animal, that is, a party of any instance of a class that conforms to the
animal protocol.

Other strongly typed programming languages, such as C# and Java, allow
us to work with parametric polymorphism through generics. In case
you've worked with these programming languages, you will find that the
Swift syntax is very similar. The main difference is that Swift uses
protocols instead of interfaces.

Other programming languages work with a different philosophy known as duck typing,
where the presence of certain attributes or properties and methods make an object suitable
to its usage as a specific animal. With duck typing, if we require animals to have a name
property and we provide sing and dance methods, we can consider any object an animal as
long as it provides the required name property and both the sing and dance methods. Any
instance that provides the required property and methods can be used as an animal.

Let's think about the following situation: we see a bird. The bird quacks, swims, and walks
like a duck, so we can call this bird a duck. Very similar examples related to a bird and duck
generate the duck typing name. We don't need additional information to work with the bird
as a duck. Python, JavaScript, and Ruby are examples of languages where duck typing is
extremely popular.

We can also work with duck typing in Swift. However, it requires many
workarounds, and it is not the most natural way of working in Swift.
Thus, we will focus our efforts on writing a generic code with parametric
polymorphism through generics.

Declaring a protocol to be used as a
constraint
We will create an AnimalProtocol protocol to specify the requirements that a type must
meet in order to be considered an animal. Then, we will create an Animal base class that
conforms to this protocol, and then, we will specialize this class in three subclasses: Dog,
Frog, and Lion. Then, we will create a Party class that will be able to work with the
instances of any class that conforms to the AnimalProtocol protocol through generics. We
will work with a party of dogs, a party of frogs, and a party of lions.

Maximization of Code Reuse with Generic Code

[213]

Then, we will create a DeeJayProtocol protocol and generate a HorseDeeJay class that
conforms to this new protocol. We will create a subclass of the Party class named
PartyWithDeeJay, which will use generics to work with the instances of any type that
conforms to the AnimalProtocol protocol and the instances of any type that conforms to
the DeeJaypProtocol interface. We will work with a party of dogs with a DJ.

In this case, we will use the Protocol suffix to make it easy to
differentiate protocols from classes in our sample code for this chapter.
However, take into account that this is not a convention for Swift code. It
just makes it easier to understand how generics work.

Now, it is time to code one of the protocols that will be used as a constraint later when we
define the class that takes advantage of generics. The following lines show the code for the
AnimalProtocol protocol. The public modifier followed by the protocol keyword and
the protocol name, AnimalProtocol, composes the protocol declaration. The first line of
code imports Foundation because we will need this import for other classes that we will
add later. The code file for the sample is included in the swift_3_oop_chapter_06_01
folder:

 import Foundation

 public protocol AnimalProtocol {
 var name: String { get }

 init (name: String)

 func dance()
 func say(message: String)
 func sayGoodbyeTo(destination: AnimalProtocol)
 func sayWelcomeTo(destination: AnimalProtocol)
 func sing()
 }

The protocol declares a read-only name: String stored property and five method
requirements: dance, say, sayGoodbyeTo, sayWelcomeTo, and sing. As you learned in
the previous chapter, the protocol includes only the method declaration because the classes
that conform to AnimalProtocol are responsible for providing the implementation of the
name stored or computed property and the other five methods.

Maximization of Code Reuse with Generic Code

[214]

In addition, the protocol specifies an initializer requirement. The initializer requires a name
argument, so we will make sure that we will be able to create an instance of any class that
conforms to this protocol by providing a value to a name argument during initialization.
The following line specifies the initializer requirement:

 init (name: String)

Declaring a class that conforms to multiple
protocols
Now, we will declare a class named Animal that conforms to both the previously defined
AnimalProtocol and Equatable protocols. The latter is a fundamental type in Swift. In
order to conform to the Equatable protocol, we must implement the == operator function
for the Animal class to determine the equality of the instances after we declare the class.
This way, we will be able to determine the equality of the instances of classes that
implement the AnimalProtocol protocol. We can read the class declaration as “the Animal
class implements both the AnimalProtocol and Equatable protocols.” Take a look at the
following code. The code file for the sample is included in the
swift_3_oop_chapter_06_01 folder:

 open class Animal: AnimalProtocol, Equatable {
 open let name: String
 open var danceCharacters: String {
 get {
 return String()
 }
 }

 open var spelledSound1: String {
 get {
 return String()
 }
 }
 open var spelledSound2: String {
 get {
 return String()
 }
 }
 open var spelledSound3: String {
 get {
 return String()
 }
 }

Maximization of Code Reuse with Generic Code

[215]

 public required init(name: String) {
 self.name = name
 }
 open func dance() {
 print("(name) dances (danceCharacters)")
 }
 open func say(message: String) {
 print("(name) says: (message)")
 }
 open func sayGoodbyeTo(destination: AnimalProtocol) {

 print("(name) says goodbye to (destination.name):
 (spelledSound1) (spelledSound2) (spelledSound3)")
 }
 open func sayWelcomeTo(destination: AnimalProtocol) {
 print("(name) welcomes (destination.name): (spelledSound2)")
 }

 open func sing() {
 let spelledSingSound = spelledSound1 + " ";
 let separator = ". "
 var song = "(name) sings: "
 for _ in 1...3 {
 song += spelledSingSound
 }
 song += separator
 for _ in 1...2 {
 song += spelledSingSound
 }
 song += separator
 song += spelledSingSound
 song += separator
 print(song)
 }
 }
 public func ==(left: Animal, right: Animal) -> Bool {
 return ((type(of: left) == type(of: left)) && (left.name ==
 right.name))
 }

Maximization of Code Reuse with Generic Code

[216]

The Animal class declares an initializer that assigns the value of the required name
argument to the read-only name stored property. Note that the initializer declaration uses
the required keyword because it implements the initializer requirement specified in the
AnimalProtocol protocol. A required initializer must be as accessible as its enclosing type.
In this case, the enclosing type is the Animal class, declared with the open access modifier.
We must use public to declare the required initializer because open cannot be used with
initializers:

 public required init(name: String) {

The class declared the following four String computed read-only properties. All of them
define a getter method that returns an empty string and that the subclasses will override,
with appropriate strings according to the animal:

danceCharacters

spelledSound1

spelledSound2

spelledSound3

The dance method uses the value retrieved from the danceCharacters property to print a
message indicating that the animal is dancing. The say method prints the message received
as an argument. Both the sayWelcomeTo and sayGoodbyeTo methods receive
AnimalProtocol as an argument, which they use to print the name of the destination of
the message. The sayWelcomeTo method uses a combination of the strings retrieved from
spelledSound1 and spelledSound3 to say welcome to another animal. The
sayGoodbyeTo method uses the string retrieved from spelledSound2 to say goodbye to
another animal.

The == operator function receives two Animal instances as arguments and checks whether
the value of the name property and type for both the instances are the same. In a more
complex scenario, we might want to code this method to compare the values of more
properties to determine the equality. In our case, we will assume that the same animal with
the same name is exactly the same animal. For example, two frogs named Kermit are
considered to be one frog. Remember that we need to write the == operator function to
make the Animal class conform to the Equatable protocol.

Maximization of Code Reuse with Generic Code

[217]

If we comment out the lines that declare the == operator function, the Animal class won't
conform to the Equatable protocol anymore. The code file for the sample is included in the
swift_3_oop_chapter_06_02 folder:

 /* public func ==(left: Animal, right: Animal) -> Bool {
 return ((left.dynamicType == right.dynamicType) && (left.name ==
 right.name))
 } */

After we comment out the previous lines, the execution in the Playground will fail, and we
will see the following error:

 error: type 'Animal' does not conform to protocol 'Equatable'
 open class Animal: AnimalProtocol, Equatable {
 ^

Swift indicates to us that the class doesn't conform to the Equatable protocol. The
following screenshot shows the Playground with the generated error after we comment out
the previous lines that declared the == operator function:

Maximization of Code Reuse with Generic Code

[218]

Now that we have checked the results of removing the lines that declared the == operator
function, we can uncomment it, and the Animal class will conform to the Equatable
protocol again. The code file for the sample is included in the
swift_3_oop_chapter_06_03 folder.

Declaring subclasses that inherit the
conformance to protocols
We have an Animal class that conforms to both the AnimalProtocol and Equatable
protocols. Now, we will create a subclass of Animal, a Dog class, which overrides the string
computed properties defined in the Animal class to provide the appropriate values for a
dog. The code file for the sample is included in the swift_3_oop_chapter_06_03 folder:

 open class Dog: Animal {
 open override var spelledSound1: String {
 get {
 return "Woof"
 }
 }
 open override var spelledSound2: String {
 get {
 return "Wooooof"
 }
 }
 open override var spelledSound3: String {
 get {
 return "Grr"
 }
 }
 open override var danceCharacters: String {
 get {
 return "/-\ \-\ /-/"
 }
 }
 }

Maximization of Code Reuse with Generic Code

[219]

With just a few additional lines of code, we will create another subclass of Animal, which is
a Frog class that also overrides the string's read-only properties defined in the Animal class
to provide the appropriate values for a frog, as follows. The code file for the sample is
included in the swift_3_oop_chapter_06_03 folder:

 open class Frog: Animal {
 open override var spelledSound1: String {
 get {
 return "Ribbit"
 }
 }
 open override var spelledSound2: String {
 get {
 return "Croak"
 }
 }
 open override var spelledSound3: String {
 get {
 return "Croooaaak"
 }
 }
 open override var danceCharacters: String {
 get {
 return "/|\ \|/ ^ ^ "
 }
 }
 }

Finally, we will create another subclass of Animal, which is a Lion class that also overrides
the string's read-only properties defined in the Animal class to provide the appropriate
values for a lion, as follows. The code file for the sample is included in the
swift_3_oop_chapter_06_03 folder:

 open class Lion: Animal {
 open override var spelledSound1: String {
 get {
 return "Roar"
 }
 }
 open override var spelledSound2: String {
 get {
 return "Rrroarrr"
 }
 }

Maximization of Code Reuse with Generic Code

[220]

 open override var spelledSound3: String {
 get {
 return "Rrrrrrroarrrrrr"
 }
 }
 open override var danceCharacters: String {
 get {
 return "*-* ** *|* ** "
 }
 }
 }

We have three classes that inherit the conformance to protocols from its base class, which is
Animal. The following three classes conform to both the AnimalProtocol and Equatable
protocols, without including the conformance within the class declaration, but inheriting it:

Dog

Frog

Lion

Declaring a class that works with a
constrained generic type
The following lines declare a PartyError enum that conforms to the ErrorType protocol.
This way, we will be able to throw a specific exception in the next class that we will create.
The code file for the sample is included in the swift_3_oop_chapter_06_03 folder:

 public enum PartyError: Error {
 case insufficientMembersToRemoveLeader
 case insufficientMembersToVoteLeader
 }

In case you worked with previous Swift versions, take into account that
Swift 3 renamed ErrorType to Error. Swift 3 uses lowerCamelCase for
enumeration values.

Maximization of Code Reuse with Generic Code

[221]

The following lines declare a Party class that takes advantage of generics to work with
many types. The class name is followed by a less than sign (<), an AnimalElement name
that identifies the generic type parameter, a colon (:), and a protocol name that the
AnimalElement generic type parameter must conform to, which is the AnimalProtocol
protocol. The greater than sign (>) ends the type constraint declaration that is included
within angle brackets (< >). Then, we follow it with the where keyword, followed by
AnimalElement (which identified the type) and a colon (:) that indicates that the
AnimalElement generic type parameter has to be of a type that also conforms to another
protocol, that is, the Equatable protocol. The following code highlights the lines that use
the AnimalElement generic type parameter. Remember that we imported Foundation in
the first line when we started creating the first protocol. We require the import for the
arc4random_uniform function. In case you work with the web-based sandbox or Linux,
the code won't use this function because it won't be easily available. In these cases, the code
will execute another line that generates an integer each time we run the code. It is not an
exactly equivalent line but it will provide us the results we need for this example. The code
file for the sample is included in the swift_3_oop_chapter_06_03 folder:

 open class Party<AnimalElement: AnimalProtocol> where
 AnimalElement: Equatable {
 private var members = [AnimalElement]()
 open var leader: AnimalElement
 init(leader: AnimalElement) {
 self.leader = leader
 members.append(leader)
 }
 open func add(member: AnimalElement) {
 members.append(member)
 leader.sayWelcomeTo(destination: member)
 }
 open func remove(member: AnimalElement) throws -> AnimalElement?
 {
 if (member == leader) {
 throw PartyError.insufficientMembersToRemoveLeader
 }
 if let memberIndex = members.index(of: member) {
 let removedMember = members.remove(at: memberIndex)
 removedMember.sayGoodbyeTo(destination: leader)
 return removedMember
 } else {
 return AnimalElement?.none
 }
 }

Maximization of Code Reuse with Generic Code

[222]

 open func dance() {
 for (_, member) in members.enumerated() {
 member.dance()
 }
 }
 open func sing() {
 for (_, member) in members.enumerated() {
 member.sing()
 }
 }
 open func voteLeader() throws {
 if (members.count == 1) {
 throw PartyError.insufficientMembersToVoteLeader
 }
 var newLeader = leader
 while (newLeader == leader) {
 #if os(Linux)
 // The following line of code will only be executed if the
 // underlying operating system is Linux
 // Only BSD-based operating systems provide
 // arc4random_uniform in Swift
 // However, take into account that the lines aren't
 // equivalent
 // We use this solution for this example only and to make it
 // possible
 // to run the code in either the Swift web-based sandbox or
 // Swift on Linux
 let randomLeaderIndex =
 Int(NSDate().timeIntervalSinceReferenceDate) % members.count
 #else
 // The following line runs on macOS, iOS, tvOS and watchOS
 let randomLeaderIndex =
 Int(arc4random_uniform(UInt32(members.count)))
 #endif
 newLeader = members[randomLeaderIndex]
 }
 leader.say(message: "(newLeader.name) has been voted as our
 new party leader.")
 newLeader.dance()
 leader = newLeader
 }
 }

Maximization of Code Reuse with Generic Code

[223]

Now, we will analyze many code snippets to understand how the code included in the
Party<AnimalElement> class works. The following line starts the class body, declares a
private Array<AnimalElement> of the type specified by AnimalElement, and initializes it
with an empty Array<AnimalElement>. Array uses generics to specify the type of the
elements that will be accepted and added to the array. In this case, we will use the array
shorthand [AnimalElement] that is equivalent to Array<AnimalElement>, that is, an
array of elements whose type is AnimalElement or conforms to the AnimalElement
protocol, as follows:

 private var members = [Animalelement]()

The previous line is equivalent to the following line:

 private var members = Array<AnimalElement>()

The following line declares an open Leader property whose type is AnimalElement:

 open var leader: AnimalElement

The following lines declare an initializer that receives a leader argument whose type is
AnimalElement. The argument specifies the first party leader and also the first member of
the party, that is, the first element added of members Array<AnimalElement>:

 init(leader: AnimalElement) {
 self.leader = leader
 members.append(leader)
 }

The following lines declare the add method, which receives a member argument whose type
is AnimalElement. The code adds the member received as an argument to
membersArray<AnimalElement> and calls the leader.sayWelcomeTo method with
member as an argument to make the party leader welcome the new member:

 open func add(member: AnimalElement) {
 members.append(member)
 leader.sayWelcomeTo(member)
 }

The following lines declare the remove method, which receives a member argument whose
type is AnimalElement, returns an optional AnimalElement (AnimalElement?), and
throws exceptions. The throws keyword after the method arguments and before the
returned type indicates that the method can throw exceptions. The code checks whether the
member to be removed is the party leader. The method throws a
PartyError.insufficientMembersToRemoveLeader exception in case the member is
the party leader.

Maximization of Code Reuse with Generic Code

[224]

The code returns an optional AnimalElement (AnimalElement?). The code calls retrives
the index for the member received as an argument and then calls the remove method for
the Array<AnimalElement> array with this index as an argument. Finally, the code calls
the sayGoodbyeTo method for the successfully removed member. This way, the member
that leaves the party says goodbye to the party leader. In case the member isn't removed,
the method returns none, specifically, AnimalElement?.none:

 open func remove(member: AnimalElement) throws -> AnimalElement? {
 if (member == leader) {
 throw PartyError.insufficientMembersToRemoveLeader
 }
 if let memberIndex = members.index(of: member) {
 let removedMember = members.remove(at: memberIndex)
 removedMember.sayGoodbyeTo(destination: leader)
 return removedMember
 } else {
 return AnimalElement?.none
 }
 }

The following lines declare the dance method, which calls the method with the same name
for each member of membersArray<AnimalElement>. As we declare the method as open,
we will be able to override this method in a future subclass:

 open func dance() {
 for (_, member) in members.enumerated() {
 member.dance()
 }
 }

The following lines declare the sing method, which calls the method with the same name
for each member of membersArray<AnimalElement>. We will also be able to override this
method in a future subclass:

 open func sing() {
 for (_, member) in members.enumerated() {
 member.sing()
 }
 }

Maximization of Code Reuse with Generic Code

[225]

Finally, the following lines declare the voteLeader method, which throws exceptions. As it
happened in another method, the throws keyword after the method arguments indicates
that the method can throw exceptions. The code makes sure that there are at least two
members in membersArray<AnimalElement> when we call this method. In case we just
have one member, the method throws a
PartyError.insufficientMembersToVoteLeader exception. If we have at least two
members, the code generates a new random leader for the party, which is different from the
existing one. The code calls the say method for the actual leader to explain to the

other party members that another leader is voted. Finally, the code calls the dance method
for the new leader and sets the new value to the leader stored property:

 open func voteLeader() throws {
 if (members.count == 1) {
 throw PartyError.insufficientMembersToVoteLeader
 }
 var newLeader = leader
 while (newLeader == leader) {
 #if os(Linux)
 // The following line of code will only be executed if the
 // underlying operating system is Linux
 // Only BSD-based operating systems provide arc4random_uniform
 // in Swift
 // However, take into account that the lines aren't equivalent
 // We use this solution for this example only and to make it
 // possible
 // to run the code in either the Swift web-based sandbox or
 // Swift on Linux
 let randomLeaderIndex =
 Int(NSDate().timeIntervalSinceReferenceDate) % members.count
 #else
 // The following line runs on macOS, iOS, tvOS and watchOS
 let randomLeaderIndex =
 Int(arc4random_uniform(UInt32(members.count)))
 #endif

 newLeader = members[randomLeaderIndex]
 }
 leader.say(message: "(newLeader.name) has been voted as our new
 party leader.")
 newLeader.dance()
 leader = newLeader
 }

Maximization of Code Reuse with Generic Code

[226]

Using a generic class for multiple types
We can create instances of the Party<AnimalElement> class by replacing the
AnimalElement generic type parameter with any type name that conforms to the
constraints specified in the declaration of the Party<AnimalElement> class. So far, we
have three concrete classes that implement both the AnimalProtocol and Equatable
protocols: Dog, Frog, and Lion. Thus, we can use Dog to create an instance of
Party<Dog>–that is, a Party instance of Dog objects. The following code shows the lines
that create four instances of the Dog class: jake, duke, lady, and dakota. Then, the code
creates a Party<Dog> instance named dogsParty and passes jake as the leader
argument to the initializer. This way, we will create a party of dogs, and Jake is the party
leader. The code file for the sample is included in the swift_3_oop_chapter_06_03
folder:

 var jake = Dog(name: "Jake")
 var duke = Dog(name: "Duke")
 var lady = Dog(name: "Lady")
 var dakota = Dog(name: "Dakota")
 var dogsParty = Party<Dog>(leader: jake)

The dogsParty instance will only accept a Dog instance for all the arguments in which the
class definition uses the generic type parameter named AnimalElement. The following
lines add the previously created three instances of Dog to the dogs' party by calling the add
method. The code file for the sample is included in the swift_3_oop_chapter_06_03
folder:

 dogsParty.add(member: duke)
 dogsParty.add(member: lady)
 dogsParty.add(member: dakota)

Maximization of Code Reuse with Generic Code

[227]

The following lines call the dance method to make all the dogs dance, remove a member
that isn't the party leader, vote a new leader, and finally call the sing method to make all
the dogs sing. We will add the try keyword before the calls to remove and voteLeader
because these methods can throw exceptions. In this case, we don't check the result
returned by remove. The code file for the sample is included in the
swift_3_oop_chapter_06_03 folder:

 dogsParty.dance()
 try dogsParty.remove(member: duke)
 try dogsParty.voteLeader()
 dogsParty.sing()

The following lines create an instance of the Dog class named coby. Then, the code calls the
removeMember method and prints a message in case the method returns an instance of Dog.
If the optional Dog (Dog?) returned by the method does not contain a value, the code prints
a message indicating that the dog isn't removed. Because we haven't added Coby to the
dog's party, it won't be removed. Then, we will use similar code to remove lady. In case
she was selected as the random leader, the method will throw an exception. In case she
wasn't selected, the code will print a message indicating that lady is removed. Remember
that the remove method returns AnimalElement?, which in this case is translated into a
Dog? return type. The code file for the sample is included in the
swift_3_oop_chapter_06_03 folder:

 var coby = Dog(name: "Coby")
 if let removedMember = try dogsParty.remove(member: coby) {
 print("(removedMember.name) has been removed")
 } else {
 print("(coby.name) hasn't been removed")
 }
 if let removedMember = try dogsParty.remove(member: lady) {
 print("(removedMember.name) has been removed")
 } else {
 print("(lady.name) hasn't been removed")
 }

Maximization of Code Reuse with Generic Code

[228]

The following lines show the output after we run the preceding code snippets in the
Playground. However, don't forget that there is a random selection of the new leader, and
the results will vary in each execution. In case you run the code in the web-based sandbox
or Swift on Linux, you will see a few warnings and a fatal error in case the execution
generates that the party leader has to be removed. Remember to run the code many times to
see the effects of the different flows:

Jake welcomes Duke: Wooooof
Jake welcomes Lady: Wooooof
Jake welcomes Dakota: Wooooof
Jake dances /- - /-/
Duke dances /- - /-/
Lady dances /- - /-/
Dakota dances /- - /-/
Duke says goodbye to Jake: Woof Wooooof Grr
Jake says: Dakota has been voted as our new party leader.
Dakota dances /- - /-/
Jake sings: Woof Woof Woof . Woof Woof . Woof .
Lady sings: Woof Woof Woof . Woof Woof . Woof .
Dakota sings: Woof Woof Woof . Woof Woof . Woof .
Coby hasn't been removed
Lady says goodbye to Dakota: Woof Wooooof Grr
Lady has been removed

Maximization of Code Reuse with Generic Code

[229]

The following screenshot shows the Playground with the execution results:

Maximization of Code Reuse with Generic Code

[230]

We can use Frog to create an instance of Party<Frog>. The following code creates four
instances of the Frog class: frog1, frog2, frog3, and frog4. Then, the code creates a
Party<Frog> instance named frogsParty and passes frog1 as the leader argument.
This way, we can create a party of frogs, and Frog #1 is their party leader. The code file for
the sample is included in the swift_3_oop_chapter_06_04 folder:

 var frog1 = Frog(name: "Frog #1")
 var frog2 = Frog(name: "Frog #2")
 var frog3 = Frog(name: "Frog #3")
 var frog4 = Frog(name: "Frog #4")
 var frogsParty = Party<Frog>(leader: frog1)

The frogsParty instance will only accept a Frog instance for all the arguments in which
the class definition uses the generic type parameter named T. The following lines add the
previously created three instances of Frog to the frogs' party by calling the add method.
The code file for the sample is included in the swift_3_oop_chapter_06_04 folder:

 frogsParty.add(member: frog2)
 frogsParty.add(member: frog3)
 frogsParty.add(member: frog4)

The following lines call the dance method to make all the frogs dance, remove a member
that isn't the party leader, vote a new leader, and finally call the sing method to make all
the frogs sing. The code file for the sample is included in the
swift_3_oop_chapter_06_04 folder:

 frogsParty.dance()
 try frogsParty.remove(member: frog3)
 try frogsParty.voteLeader()
 frogsParty.sing()

Maximization of Code Reuse with Generic Code

[231]

The following lines show the output after we run the preceding code snippets in the
Playground. However, don't forget that there is a random selection of the new frog's party
leader, and the results will vary in each execution:

Frog #1 welcomes Frog #2: Croak
Frog #1 welcomes Frog #3: Croak
Frog #1 welcomes Frog #4: Croak
Frog #1 dances /| |/ ^ ^
Frog #2 dances /| |/ ^ ^
Frog #3 dances /| |/ ^ ^
Frog #4 dances /| |/ ^ ^
Frog #3 says goodbye to Frog #1: Ribbit Croak Croooaaak
Frog #1 says: Frog #2 has been voted as our new party leader.
Frog #2 dances /| |/ ^ ^
Frog #1 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .
Frog #2 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .
Frog #4 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

The following screenshot shows the Playground with the execution results:

We can use Lion to create an instance of Party<Lion>. The following code creates three
instances of the Lion class: simba, nala, and mufasa. Then, the code creates a
Party<Lion> instance named lionsParty and passes simba as the leader argument.

Maximization of Code Reuse with Generic Code

[232]

This way, we can create a party of lions, and Simba is the party leader. The code file for the
sample is included in the swift_3_oop_chapter_06_05 folder:

 var simba = Lion(name: "Simba")
 var nala = Lion(name: "Nala")
 var mufasa = Lion(name: "Mufasa")
 var lionsParty = Party<Lion>(leader: simba)

The lionsParty instance will only accept a Lion instance for all the arguments in which
the class definition uses the generic type parameter named AnimalElement. The following
lines add the previously created two instances of Lion to the lions' party by calling the add
method. The code file for the sample is included in the swift_3_oop_chapter_06_05
folder:

 lionsParty.add(member: nala)
 lionsParty.add(member: mufasa)

The following lines call the sing method and then the dance method to make all the lions
sing and dance. Then, the code calls the voteLeader method to select a new random leader
and finally tries to remove nala from the party by calling the remove method. The code file
for the sample is included in the swift_3_oop_chapter_06_05 folder:

 lionsParty.sing()
 lionsParty.dance()
 try lionsParty.voteLeader()
 try lionsParty.remove(member: nala)

The following lines show the output after we run the preceding code snippets in the
Playground:

Simba welcomes Nala: Rrroarrr
Simba welcomes Mufasa: Rrroarrr
Simba sings: Roar Roar Roar . Roar Roar . Roar .
Nala sings: Roar Roar Roar . Roar Roar . Roar .
Mufasa sings: Roar Roar Roar . Roar Roar . Roar .
Simba dances *-* ** *|* **
Nala dances *-* ** *|* **
Mufasa dances *-* ** *|* **
Simba says: Mufasa has been voted as our new party leader.
Mufasa dances *-* ** *|* **
Nala says goodbye to Mufasa: Roar Rrroarrr Rrrrrrroarrrrrr

Maximization of Code Reuse with Generic Code

[233]

The following screenshot shows the Playground with the execution results:

If we try to call the add method with the wrong type in the member argument for an
instance of Party<Lion>, the code won't compile. For example, if we pass a Dog instance in
the member argument, Swift cannot convert an instance of Dog to the required argument
type (Lion). Thus, the following line won't be executed in the Playground because lady is
an instance of Dog. The code file for the sample is included in the
swift_3_oop_chapter_06_06 folder:

 lionsParty.add(member: lady)

The following lines show the error message indicating to us that Swift cannot convert Dog
to Lion:

error: cannot convert value of type 'Dog' to expected argument type 'Lion'
lionsParty.add(member: lady)
 ^~~~

Maximization of Code Reuse with Generic Code

[234]

Combining initializer requirements in
protocols with generic types
We included an initializer requirement when we declared the AnimalProtocol protocol,
so we know the necessary arguments to create an instance of any class that conforms to this
protocol. We will add a new method that creates an instance of the generic type
AnimalElement and adds it to the party members in the Party<AnimalElement> class.

The following lines show the code for the new createAndAddMember method that receives
a nameString argument and returns an instance of the generic type AnimalElement. We
add the method to the body of the Party<AnimalElement: AnimalProtocol> where
AnimalElement: Equatable open class declaration. The code file for the sample is
included in the swift_3_oop_chapter_06_07 folder:

 open func createAndAddMember(name: String) -> AnimalElement {
 let newMember = AnimalElement(name: name)
 add(member: newMember)
 return newMember
 }

The method uses the generic type AnimalElement and passes the name argument to create
a new instance called newMember. Then, the code calls the add method with newMember as
the member argument and finally returns the recently created instance.

The following lines call the recently added createAndAddMember method to create and
add a new Lion instance with the name initialized to King to the
lionsPartyParty<Lion> instance. Then, the next line calls the say method for the
returned instance. The code file for the sample is included in the
swift_3_oop_chapter_06_07 folder:

 let king = lionsParty.createAndAddMember(name: "King")
 king.say(message: "My name is King")

The next lines show the output generated when we enter the previous lines at the end of
our Playground:

Simba welcomes King: Rrroarrr
King says: My name is King

Maximization of Code Reuse with Generic Code

[235]

Declaring associated types in protocols
Now, we want to declare a PartyProtocol protocol and make the generic
Party<AnimalElement> class conform to this new protocol. The main challenge is to
specify the type for both the method arguments and returned values. In the generic class,
we will use the generic type parameter, but protocols don't allow us to use them.

Associated types allow us to solve the problem. We can declare one or more associated
types as part of the protocol definition. In this case, we just need one associated type to
provide us with a placeholder name—also known as alias—to a type that we will use as
part of the protocol and that will be specified during the protocol implementation, that is,
when we declare a class that conforms to the protocol. It is just necessary to use the
associatedtype keyword followed by the desired name for the associated type, and then,
we can use the name in our requirements' declarations.

The following lines show the declaration of the PartyProtocol protocol. We must declare
the protocol before the open class Party<AnimalElement: AnimalProtocol> where
AnimalElement: Equatable { line that starts the declaration of the
Party<AnimalElement> class that we want to edit to make it conform to this new
protocol. The code file for the sample is included in the swift_3_oop_chapter_06_08
folder:

 public protocol PartyProtocol {
 associatedtype MemberType
 init(leader: MemberType)
 func createAndAddMember(name: String) -> MemberType
 func add(member: MemberType)
 func remove(member: MemberType) throws -> MemberType?
 func dance()
 func sing()
 func voteLeader() throws
 }

The first line within the protocol body declares an associated type named MemberType.
Then, the initializer and method requirements use MemberType to specify the type that the
generic class that conforms to this protocol will replace with the generic type parameter
name.

Maximization of Code Reuse with Generic Code

[236]

The following code shows the first lines of the new declaration of the
Party<AnimalElement> class that conforms to the recently created PartyProtocol. After
the type constraint included within angle brackets (< >), the class declaration adds a colon
(:) followed by the protocol to which the generic class conforms: PartyProtocol. Then,
the declaration adds the where keyword followed by the additional type constraint
(AnimalElement: Equatable). As we specified an initializer requirement in the
PartyProtocol protocol, we have to add public required as a prefix before the init
declaration. The rest of the code for the class remains without changes. The following code
shows the first lines of the declaration with the two lines that were edited, highlighted:

 open class Party<AnimalElement: AnimalProtocol>:
 PartyProtocol where AnimalElement: Equatable {
 private var members = [AnimalElement]()
 open var leader: AnimalElement
 public required init(leader: AnimalElement) {
 self.leader = leader
 members.append(leader)
 }

 /* The rest of the code for the class remains without changes */

 }

The usage of an associated type in the protocol declaration allows us to
create a protocol that can be implemented with a class that uses generics.

Creating shortcuts with subscripts
We want to create a shortcut to access the members of the party. Subscripts are very useful
to generate shortcuts to access the members of any array, collection, list, or sequence.
Subscripts can define getter and/or setter methods, which receive the argument specified in
the subscript declaration. In this case, we will add a read-only subscript to allow us to
retrieve a member of the party through its index value indicated within square brackets.
Thus, the subscript will only define a getter method.

We will use UInt as the type for the index argument because we don't want negative
integer values, and the getter for the subscript will return an optional type. In case the index
value received is an invalid value, the getter will return none.

Maximization of Code Reuse with Generic Code

[237]

First, we will add the following line to the PartyProtocol protocol body. The code file for
the sample is included in the swift_3_oop_chapter_06_09 folder:

 subscript(index: UInt) -> MemberType? { get }

We included the subscript keyword followed by the argument name and its required
type–which is the returned type, MemberType?–and the requirement for just a getter
method, get. The requirements for the getter and/or setter methods are included with the
same syntax we used for properties' requirements in protocols. Remember that
MemberType is the associated type we added to the PartyProtocol protocol.

Now, we have to add the code that implements the previously defined subscript in the
Party<AnimalElement> class. We must add the following code after the open class
Party<AnimalElement: AnimalProtocol>: PartyProtocol where

AnimalElement: Equatable { line that starts the declaration of the
Party<AnimalElement> class that we want to edit to make it conform to the changes in
the PartyProtocol protocol. The code file for the sample is included in the
swift_3_oop_chapter_06_09 folder:

 open subscript(index: UInt) -> AnimalElement? {
 get {
 if (index <= UInt(members.count - 1)) {
 return members[Int(index)]
 } else {
 return AnimalElement?.none
 }
 }
 }

After making the preceding changes, we can specify an UInt value enclosed in square
brackets after an instance of Party<AnimalElement> to retrieve an instance of
AnimalElement–specifically AnimalElement?–from the party. The following lines show
examples of its usage with the Party<Lion> instance named lionsParty. The first two
lines retrieve a Lion instance and print the value for its name property because the array
has a member both at index 0 and index 1. However, the array doesn't have a member at
index 50, so the else condition will be executed in this case. The code file for the sample is
included in the swift_3_oop_chapter_06_09 folder:

 if let lion = lionsParty[0] {
 print(lion.name)
 }
 if let lion = lionsParty[1] {
 print(lion.name)
 }

Maximization of Code Reuse with Generic Code

[238]

 if let lion = lionsParty[50] {
 print(lion.name)
 } else {
 print("There is no lion with that index value")
 }

The following lines show the output generated in the Playground after making the changes
to the PartyProtocol protocol and the Party<AnimalElement> class and executing the
preceding code:

Simba
Nala
There is no lion with that index value

The following screenshot shows the Playground with the execution results:

Maximization of Code Reuse with Generic Code

[239]

Declaring a class that works with two
constrained generic types
Now, it is time to code another protocol that will be used as a constraint later, when we
define another class that takes advantage of generics with two constrained generic types.
The following lines show the code for the DeeJayProtocol protocol. The public modifier
followed by the protocol keyword and the protocol name, DeeJayProtocol, composes
the protocol declaration, as follows. The code file for the sample is included in the
swift_3_oop_chapter_06_10 folder:

 public protocol DeeJayProtocol {
 var name: String { get }
 init(name: String)
 func playMusicToDance()
 func playMusicToSing()
 }

The protocol declares a name: String read-only stored property and two method
requirements: playMusicToDance and playMusicToSing. As you

learned in the previous chapter, the protocol includes only the method declaration because
the classes that conform to the DeejayProtocol protocol will be responsible for providing
the implementation of the name stored property and the other two methods.

In addition, the protocol specifies an initializer requirement. The initializer requires a name
argument; therefore, we will make sure that we will be able to create an instance of any
class that conforms to this protocol by providing a value to a name argument during the
initialization.

Now, we will declare a class named HorseDeeJay that conforms to the previously defined
DeeJayProtocol protocol. We can read the class declaration as “The HorseDeeJay class
implements the DeeJayProtocol protocol.” Take a look at the following code. The code
file for the sample is included in the swift_3_oop_chapter_06_10 folder:

 open class HorseDeeJay: DeeJayProtocol {
 open let name: String
 public required init(name: String) {
 self.name = name
 }

Maximization of Code Reuse with Generic Code

[240]

 open func playMusicToDance() {
 print("My name is (name). Let's Dance.")
 // Multiple musical notes emoji icon
 print(String(UnicodeScalar(0x01F3B6)!))
 // Dancer emoji icon
 print(String(UnicodeScalar(0x01F483)!))
 }
 open func playMusicToSing() {
 print("Time to sing!")
 // Guitar emoji icon
 print(String(UnicodeScalar(0x01F3B8)!))
 }
 }

The HorseDeeJay class declares an initializer that assigns the value of the required name
argument to the name read-only stored property. The class declares a name read-only stored
property.

The playMusicToDance method prints a message that displays the horse DJ name and
invites the party members to dance. Then, it prints the multiple musical notes and dancer
emoji icons. The playMusicToSing method prints a message that invites the party
members to sing. Then, it prints a guitar emoji icon.

The following lines declare a subclass of the previously created Party<AnimalElement>
class that takes advantage of generics to work with two constrained types. The type
constraints declaration is included within angle brackets (< >). In this case, we have two
generic type parameters: AnimalElement and DeeJayElement. The generic type
parameter named AnimalElement must conform to the AnimalProtocol protocol and
also the Equatable protocol, as it happened in the Party<AnimalElement> superclass.
The generic type parameter named DeeJayElement must conform to the DeeJayProtocol
protocol. The where keyword allows us to add a second constraint to the generic type
parameter named AnimalElement. This way, the class specifies constraints for both the
AnimalElement and DeeJayElement generic type parameters.

Maximization of Code Reuse with Generic Code

[241]

Don't forget that we are talking about a subclass of Party<AnimalElement>; therefore, we
inherited a required initializer that only receives a leader argument. We overrode this
required initializer with code that calls the fatalErrorfunction to print a message and
stop execution. This way, we make sure that the inherited required initializer cannot be
used with this class. The following code highlights the lines that use the DeeJayElement
generic type parameter. The code file for the sample is included in the
swift_3_oop_chapter_06_10 folder:

 open class PartyWithDeeJay<AnimalElement:
 AnimalProtocol, DeeJayElement: DeeJayProtocol>:
 Party<AnimalElement> where AnimalElement: Equatable {
 public var deeJay: DeeJayElement
 init(leader: AnimalElement, deeJay: DeeJayElement) {
 self.deeJay = deeJay
 super.init(leader: leader)
 }

 public required init(leader: AnimalElement) {
 fatalError("init(leader:) has not been implemented")
 }
 open override func dance() {
 deeJay.playMusicToDance()
 super.dance()
 }
 open override func sing() {
 deeJay.playMusicToSing()
 super.sing()
 }
 }

Now, we will analyze many code snippets to understand how the code included in the
PartyWithDeeJay<AnimalElement, DeeJayElement> class works. The following line
starts the class body and declares a public deeJay stored property of the type specified by
DeeJayElement:

 public var deeJay: DeeJayElement

Maximization of Code Reuse with Generic Code

[242]

The following lines declare an initializer that receives two arguments–leader and
deeJay–whose types are AnimalElement and DeeJayElement. The arguments specify the
first party leader, the first member of the party, and the DJ that will make the party
members dance and sing. Note that the initializer calls the initializer defined in its
superclass–that is, the Party<AnimalElement> init method–with leader as an
argument:

 init(leader: T, deeJay: K) {
 self.deeJay = deeJay
 super.init(leader: leader)
 }

The following lines declare a dance method, which overrides the method with the same
declaration included in the superclass. The code calls the deeJay.playMusicToDance
method and then the super.dance method, that is, the dance method defined in the
Party<AnimalElement> superclass:

public override func dance() {
 deeJay.playMusicToDance()
 super.dance()
}

Finally, the following lines declare a sing method, which overrides the method with the
same declaration included in the superclass. The code calls the deeJay.PlayMusicToSing
method and then calls the super.sing method, that is, the sing method defined in the
Party<AnimalElement> superclass:

 public override func sing() {
 deeJay.playMusicToSing()
 super.sing()
 }

Maximization of Code Reuse with Generic Code

[243]

Using a generic class with two generic type
parameters
We can create instances of the PartyWithDeeJay<AnimalElement, DeeJayElement>
class by replacing both the AnimalElement and DeeJayElement generic type parameters
with any type names that conform to the constraints specified in the declaration of the
PartyWithDeeJay<AnimalElement, DeeJayElement> class. We have three concrete
classes that implement both the AnimalProtocol and Equatable protocols: Dog, Frog,
and Lion. We have one class that conforms to the DeeJayProtocol protocol:
HorseDeeJay. Thus, we can use Dog and HorseDeeJay to create an instance of
PartyWithDeeJay<Dog, HorseDeeJay>.
The following lines create a HorseDeeJay instance named silver. Then, the code creates a
PartyWithDeeJay<Dog, HorseDeeJay> instance named silverParty and passes jake
and silver as arguments. This way, we can create a party of dogs with a horse DJ, where
Jake is the party leader, and Silver is the DJ. The code file for the sample is included in the
swift_3_oop_chapter_06_10 folder:

 var silver = HorseDeeJay(name: "Silver")
 var silverParty = PartyWithDeeJay<Dog, HorseDeeJay>(leader: jake,
 deeJay: silver)

The silverParty instance will only accept a Dog instance for all the arguments in which
the class definition uses the generic type parameter named T. The following lines add the
previously created three instances of Dog to the party by calling the add method. The code
file for the sample is included in the swift_3_oop_chapter_06_10 folder:

 silverParty.add(member: duke)
 silverParty.add(member: lady)
 silverParty.add(member: dakota)

The following lines call the dance method to make the DJ invite all the dogs to dance and
then make them dance. Then, the code removes a member that isn't the party leader, votes
on a new leader, and finally calls the sing method to make the DJ invite all the dogs to sing
and then make them sing. The code file for the sample is included in the
swift_3_oop_chapter_06_10 folder:

 silverParty.dance()
 try silverParty.remove(member: duke)
 try silverParty.voteLeader()
 silverParty.sing()

Maximization of Code Reuse with Generic Code

[244]

The following lines show the generated output after we run the added code. The lines
include text with descriptions instead of the emoji icons:

Jake welcomes Duke: Wooooof
Jake welcomes Lady: Wooooof
Jake welcomes Dakota: Wooooof
My name is Silver. Let's Dance.
Multiple musical notes emoji icon
Dancer emoji icon
Jake dances /- - /-/
Duke dances /- - /-/
Lady dances /- - /-/
Dakota dances /- - /-/
Duke says goodbye to Jake: Woof Wooooof Grr
Jake says: Lady has been voted as our new party leader.
Lady dances /- - /-/
Time to sing!
Guitar emoji icon
Jake sings: Woof Woof Woof . Woof Woof . Woof .
Lady sings: Woof Woof Woof . Woof Woof . Woof .
Dakota sings: Woof Woof Woof . Woof Woof . Woof .

The following screenshot shows the Playground with the execution results, including the
emoji icons:

Maximization of Code Reuse with Generic Code

[245]

The following lines create a PartyWithDeeJay<Frog, HorseDeeJay> instance named
silverAndFrogsParty and passes frog1 and silver as arguments. This way, we can
create a party of frogs with a horse DJ, where Frog #1 is the party leader, and Silver is the
DJ. The code file for the sample is included in the swift_3_oop_chapter_06_11 folder:

 var silverAndFrogsParty = PartyWithDeeJay<Frog, HorseDeeJay>
 (leader: frog1, deeJay: silver)

The silverAndFrogsParty instance will only accept a Frog instance for all the arguments
in which the class definition uses the generic type parameter named T. The following lines
add the previously created two instances of Frog to the party by calling the add method.
The code file for the sample is included in the swift_3_oop_chapter_06_11 folder:

 silverAndFrogsParty.add(member: frog2)
 silverAndFrogsParty.add(member: frog3)

The following lines call the dance method to make the DJ invite all the dogs to dance and
then make them dance. Finally, the code calls the sing method to make the DJ invite all the
dogs to sing and then make them sing. The code file for the sample is included in the
swift_3_oop_chapter_06_11 folder:

 silverAndFrogsParty.dance()
 silverAndFrogsParty.sing()

The following lines show the generated output after we run the added code. The lines
include text with descriptions instead of the emoji icons:

Frog #1 welcomes Frog #2: Croak
Frog #1 welcomes Frog #3: Croak
My name is Silver. Let's Dance.
Multiple musical notes emoji icon
Dancer emoji icon
Frog #1 dances /| |/ ^ ^
Frog #2 dances /| |/ ^ ^
Frog #3 dances /| |/ ^ ^
Time to sing!
Guitar emoji icon
Frog #1 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .
Frog #2 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .
Frog #3 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Maximization of Code Reuse with Generic Code

[246]

The following screenshot shows the Playground with the execution results, including the
emoji icons:

Inheriting and adding associated types in
protocols
Now, we want to declare a PartyWithDeeJayProtocol protocol and make the generic
PartyWithDeeJay<AnimalElement, DeeJayElement> class conform to this new
protocol. We will make this protocol inherit from the previously created PartyProtocol
that defined a MemberType associated type. Thus, the PartyWithDeeJayProtocol
protocol will inherit this associated type. We have to specify another associated type that
will be specified during the protocol implementation, that is, when we declare the class that
conforms to the new protocol.

Maximization of Code Reuse with Generic Code

[247]

The following lines show the declaration of the PartyWithDeeJayProtocol protocol that
inherits from the PartyProtocol protocol. We must declare the protocol before the open
class PartyWithDeeJay<AnimalElement: AnimalProtocol, DeeJayElement:

DeeJayProtocol>: Party<AnimalElement> where AnimalElement: Equatable line
that starts the declaration of the PartyWithDeeJay<AnimalElement, DeeJayElement>
class that we want to edit to make it conform to this new protocol. The code file for the
sample is included in the swift_3_oop_chapter_06_12 folder:

 public protocol PartyWithDeeJayProtocol: PartyProtocol {
 associatedtype DeeJayType
 init(leader: MemberType, deeJay: DeeJayType)
 }

The first line within the protocol body declares an associated type named DeeJayType.
Then, the initializer requirement uses the inherited MemberType associatedtype and the
new DeeJayType associatedtype to specify the types that the generic class
conforming to this protocol will replace with the generic type parameter names.

The following code shows the first lines of the new declaration of the
Party<AnimalElement, DeeJayElement> class that conforms to the recently created
PartyWithDeeJayProtocol protocol. After the type constraints included within the angle
brackets (< >) and the semicolon (:) followed by the class from which the class inherits,
Party<AnimalElement>, the class declaration adds a comma (,), followed by the protocol
to which the generic class conforms: PartyWithDeeJayProtocol. As we specified an
initializer requirement in the PartyWithDeeJayProtocol protocol, we have to add
public required as a prefix before the init declaration that receives an
AnimalElement, leader, and a DeeJayElement, deeJay, as arguments. The rest of the
code for the class remains without changes. The code file for the sample is included in the
swift_3_oop_chapter_06_12 folder:

 open class PartyWithDeeJay<AnimalElement: AnimalProtocol,
 DeeJayElement: DeeJayProtocol>: Party<AnimalElement>,
 PartyWithDeeJayProtocol where AnimalElement: Equatable {
 public var deeJay: DeeJayElement
 public required init(leader: AnimalElement,
 deeJay: DeeJayElement) {
 self.deeJay = deeJay
 super.init(leader: leader)
 }

 public required init(leader: AnimalElement) {
 fatalError("init(leader:) has not been implemented")
 }

Maximization of Code Reuse with Generic Code

[248]

 open override func dance() {
 deeJay.playMusicToDance()
 super.dance()
 }
 open override func sing() {
 deeJay.playMusicToSing()
 super.sing()
 }
 }

Generalizing existing classes with generics
In Chapter 3, Encapsulation of Data with Properties, we created a class to represent a mutable
3D vector named MutableVector3D and a class to represent an immutable version of a 3D
vector named ImmutableVector3D.

Both the versions were capable of working with 3D vectors with Float values for x, y, and
z. We now realize that we also have to work with 3D vectors with Double values for x, y,
and z in both classes. We definitely don't want to create two new classes, such as
MutableDoubleVector3D and ImmutableDoubleVector3D. We can take advantage of
generics to create two classes capable of working with elements of any floating point type
supported in Swift–that is, either Float, Float80, or Double.

We want to create the following two classes:

MutableVector3D<T>

ImmutableVector3D<T>

It is a pretty simple task. We just have to replace Float with the generic type parameter, T,
and change the class declaration to include the necessary generic type constraint. In
previous Swift versions, we didn't have protocols that allowed us to easily build the generic
type constraint for this case because the FloatingPointType protocol didn't declare the
necessary arithmetic operations that we require in our class. However, in Swift 3, the
FloatingPointType protocol has been renamed to FloatingPoint and includes the
necessary arithmetic operations.

Maximization of Code Reuse with Generic Code

[249]

The following lines show the code for the new MutableVector3D<T> class, that is able to
work with any floating point numeric type that conforms to the FloatingPoint protocol,
such as Float and Double. The code file for the sample is included in the
swift_3_oop_chapter_06_13 folder:

 open class MutableVector3D<T: FloatingPoint> {
 open var x: T
 open var y: T
 open var z: T
 init(x: T, y: T, z: T) {
 self.x = x
 self.y = y
 self.z = z
 }
 open func sum(deltaX: T, deltaY: T, deltaZ: T) {
 x += deltaX
 y += deltaY
 z += deltaZ
 }
 open func printValues() {
 print("X: (self.x), Y: (self.y), Z: (self.z)")
 }
 }

Now, we will follow the same approach to generate an ImmutableVector3D<T> class. The
following lines show the code for the new ImmutableVector3D<T> class:

 open class ImmutableVector3D<T: FloatingPoint> {
 open let x: T
 open let y: T
 open let z: T
 init(x: T, y: T, z: T) {
 self.x = x
 self.y = y
 self.z = z
 }
 open func summed(deltaX: T, deltaY: T, deltaZ: T) ->
 ImmutableVector3D<T> {
 return ImmutableVector3D<T>(x: x + deltaX, y: y + deltaY, z:
 z + deltaZ)
 }
 open func printValues() {
 print("X: (self.x), Y: (self.y), Z: (self.z)")
 }

Maximization of Code Reuse with Generic Code

[250]

 open class func makeEqualElements(initialValue: T) ->
 ImmutableVector3D<T> {
 return ImmutableVector3D<T>(x: initialValue, y: initialValue,
 z: initialValue)
 }
 open class func makeOrigin() -> ImmutableVector3D<T> {
 return makeEqualElements(initialValue: 0)
 }
 }

Double, Float and Float80 conform to the FloatingPoint protocol. Thus, we can create
instances of any of the following:

MutableVector3D<Double>

MutableVector3D<Float>

MutableVector3D<Float80>

ImmutableVector3D<Double>

ImmutableVector3D<Float>

ImmutableVector3D<Float80>

The following lines create instances of the previously enumerated classes—that is, both
MutableVector3D and ImmutableVector3D—with the generic type parameter set to
Double, Float, and Float80. The code also calls the mutating sum or the nonmutating
summed method for each instance. Then, the code calls the printValues method. The code
file for the sample is included in the swift_3_oop_chapter_06_13 folder:

 let mutableVector0 = MutableVector3D<Double>(x: 10.1, y: 10.2,
 z: 10.3)
 mutableVector0.sum(deltaX: 3.4, deltaY: 4.52, deltaZ: 3.32)
 mutableVector0.printValues()

 let mutableVector1 = MutableVector3D<Float>(x: 3.456, y: 9.231,
 z: 3.324)
 mutableVector1.sum(deltaX: 3.411, deltaY: 4.232, deltaZ: 3.465)
 mutableVector1.printValues()

 let mutableVector2 = MutableVector3D<Float80>(x: 7.2345, y: 2.3489,
 z: 1.3485)
 mutableVector2.sum(deltaX: 3.4113, deltaY: 1.2332, deltaZ: 1.3482)
 mutableVector2.printValues()

Maximization of Code Reuse with Generic Code

[251]

 let immutableVector0 = ImmutableVector3D<Double>(x: 10.1, y: 10.2,
 z: 10.3)
 let immutableVector1 = immutableVector0.summed(deltaX: 3.4,
 deltaY: 4.52, deltaZ: 3.32)
 immutableVector1.printValues()
 let immutableVector2 = ImmutableVector3D<Float>(x: 3.456, y: 9.231,
 z: 3.324)
 let immutableVector3 = immutableVector2.summed(deltaX: 3.411,
 deltaY: 4.232, deltaZ: 3.465)
 immutableVector3.printValues()

 let immutableVector4 = ImmutableVector3D<Float80>(x: 7.2345,
 y: 2.3489, z: 1.3485)
 let immutableVector5 = immutableVector4.summed(deltaX: 3.4113,
 deltaY: 1.2332, deltaZ: 1.3482)
 immutableVector5.printValues()

The following lines show the output generated by the preceding code:

X: 13.5, Y: 14.72, Z: 13.62
X: 6.867, Y: 13.463, Z: 6.789
X: 10.6458, Y: 3.5821, Z: 2.6967
X: 13.5, Y: 14.72, Z: 13.62
X: 6.867, Y: 13.463, Z: 6.789
X: 10.6458, Y: 3.5821, Z: 2.6967

Maximization of Code Reuse with Generic Code

[252]

The following screenshot shows the Playground with the types generated in each line
specified on the right-hand side:

Maximization of Code Reuse with Generic Code

[253]

Extending base types to conform to custom
protocols
Now, we want to be able to use any of the integer types as types in our
MutableVector3D<T> and ImmutableVector3D<T> classes. We want to make the two
classes capable of working with elements of any integer type supported in Swift, that is, any
of the following types, in addition to the floating point types that the classes already
support:

Int

Int16

Int32

Int64

Int8

UInt

UInt16

UInt32

UInt64

UInt8

It seems to be a pretty simple task. We would just have to replace the generic type
constraint in each class declaration from FloatingPoint to a more generic protocol. We
need a protocol to which all the previously enumerated types conform to, and to which the
floating point types also conform. However, we will face a big problem: we don't have a
protocol that will allow us to easily build the generic type constraint and make the two
classes work. Let's analyze the problem first and then we will build a solution.

All the types we need to support conform to SignedNumber; therefore, our first approach
might be to replace FloatingPoint with SignedNumber in the generic type constraint.
This solution won't work in either the MutableVector3D<T> or
the ImmutableVector3D<T> class. However, it is important to understand why it doesn't
work. The following lines show the line that declares the MutableVector3D<T> class with
the edit; the body of the class remains without changes. The code file for the sample is
included in the swift_3_oop_chapter_06_14 folder:

 open class MutableVector3D<T: SignedNumber> {

Maximization of Code Reuse with Generic Code

[254]

After we enter the previous code in the Playground, it will generate the following errors:

error: binary operator '+=' cannot be applied to two 'T' operands
 x += deltaX
 ~ ^ ~~~~~~
error: binary operator '+=' cannot be applied to two 'T' operands
 y += deltaY
 ~ ^ ~~~~~~

error: binary operator '+=' cannot be applied to two 'T' operands
 z += deltaZ
 ~ ^ ~~~~~~

The following screenshot shows the Playground with the generated errors:

The generated errors make it easy to understand the problem. The SignedNumber protocol
doesn't require the += operator, so we cannot apply the += operator to the T operands that
just conform to this protocol.

Now, let's try to generate the ImmutableVector3D<T> class and check whether it works
with a similar approach. The following lines show the line that declares the
ImmutableVector3D<T> class with the edit; the body of the class remains without
changes. The code file for the sample is included in the swift_3_oop_chapter_06_15
folder:

 open class ImmutableVector3D<T: SignedNumber> {

Maximization of Code Reuse with Generic Code

[255]

After we enter the previous code in the Playground, it will generate the following error:

error: binary operator '+' cannot be applied to two 'T' operands
 return ImmutableVector3D(x: x + deltaX, y: y + deltaY, z: z +
deltaZ)
 ~ ^ ~~~~~~

The following screenshot shows the Playground with the generated error:

As in the previous case, the generated error makes it easy to understand the problem. The
SignedNumber protocol doesn't require the + operator, so we cannot apply the + operator
to the T operands that just conform to this protocol.

Basically, we need all the integer and floating point types to do the following:

Provide an initializer that creates an instance initialized to zero
Implement the + operator
Implement the += operator

We just need to create a protocol that specifies these requirements and extends all the
integer and floating point types we want to be used as types in our MutableVector3D<T>
and ImmutableVector3D<T> classes. We must extend these types to conform to the new
protocol.

Maximization of Code Reuse with Generic Code

[256]

The following lines show the code that declares the new NumericForVector protocol. We
must add these lines before the declaration of the existing classes. The code file for the
sample is included in the swift_3_oop_chapter_06_16 folder:

 public protocol NumericForVector {
 init()

 static func +(lhs: Self, rhs: Self) -> Self
 static func +=(lhs: inout Self, rhs: Self)
 }

The protocol declares an initializer without arguments. All the numeric types provide an
initializer without arguments to generate a value of the type initialized to zero. It is exactly
what we need to initialize our Immutable3DVector to an origin vector.

Then, the protocol declares the + static function that represents the + operator. The function
requires two arguments, lhs and rhs, which are acronyms for left-hand side and right-
hand side, to specify the values on the left-hand side and right-hand side of the operator.
Both arguments are of the Self type.

In protocols, Self means the actual type that implements the protocol,
and it is different from self with a lowercase s that we use in methods
and that refers to the actual instance. The + static function returns Self, so
the implementation of this function in Double receives two Double
arguments and returns a Double argument with the result of the sum of
the two received values. The implementation of this function in Int
receives two Int arguments and returns an Int argument with the result
of the sum of the the two received values.

Finally, the protocol declares the += function that represents the += operator. The function
requires two arguments: lhs and rhs. In this case, the first argument is an in/out parameter
as it includes the inout keyword at the start of the parameter definition. Thus, Swift passes
the value of lhs, and the function can modify it and pass it back out of the function to
replace the original value. Both arguments are of the Self type and the += function returns
Self.

Maximization of Code Reuse with Generic Code

[257]

Now, we have to extend all the floating point and integer types we want to be used as types
in our MutableVector3D<T> and ImmutableVector3D<T> classes to make it conform to
the recently created NumericForVector protocol, as follows. We must add these lines after
the declaration of the NumericForVector protocol and before the declaration of the
classes. The code file for the sample is included in the swift_3_oop_chapter_06_16
folder:

 // Floating point
 extension Double: NumericForVector { }
 extension Float: NumericForVector { }
 extension Float80: NumericForVector { }
 // Signed integers
 extension Int: NumericForVector { }
 extension UInt: NumericForVector { }
 extension Int16: NumericForVector { }
 extension Int32: NumericForVector { }
 extension Int64: NumericForVector { }
 extension Int8: NumericForVector { }

 // Unsigned integers
 extension UInt16: NumericForVector { }
 extension UInt32: NumericForVector { }
 extension UInt64: NumericForVector { }
 extension UInt8: NumericForVector { }

We don't need to add code to make any of the numeric types conform to the new
NumericForVector protocol because the types already implement the necessary actions to
conform to the protocol. We just need to have a protocol that groups all the requirements to
use it as a type constraint for the generic type in our two classes.

Now, we have to replace SignedNumber with NumericForVector in the generic type
constraint for the MutableVector3D<T> and ImmutableVector3D<T> classes. The
following lines show the line that declares the MutableVector3D<T> class with the edit;
the body of the class remains without changes. The code file for the sample is included in
the swift_3_oop_chapter_06_16 folder:

 open class MutableVector3D<T: NumericForVector> {

The class name is followed by a less than sign (<), a T that identifies the generic type
parameter, a colon (:), and a protocol name that the T generic type parameter must conform
to, that is, the NumericForVector protocol. The protocol specifies the requirement for a +=
function; therefore, the sum method can apply this operator to the stored properties (x, y,
and z) and delta arguments (deltaX, deltaY, and deltaZ), all of them of the T type.

Maximization of Code Reuse with Generic Code

[258]

The following lines show the code for the new ImmutableVector3D<T> class that works as
expected. The edited lines are highlighted. The code file for the sample is included in the
swift_3_oop_chapter_06_16 folder:

 open class ImmutableVector3D<T: NumericForVector> {
 open let x: T
 open let y: T
 open let z: T
 init(x: T, y: T, z: T) {
 self.x = x
 self.y = y
 self.z = z
 }
 open func summed(deltaX: T, deltaY: T, deltaZ: T) ->
 ImmutableVector3D<T> {
 return ImmutableVector3D<T>(x: x + deltaX, y: y + deltaY, z:
 z + deltaZ)
 }
 open func printValues() {
 print("X: (self.x), Y: (self.y), Z: (self.z)")
 }
 open class func makeEqualElements(initialValue: T) ->
 ImmutableVector3D<T> {
 return ImmutableVector3D<T>(x: initialValue, y: initialValue,
 z: initialValue)
 }
 open class func makeOrigin() -> ImmutableVector3D<T> {
 let zero = T()
 return makeEqualElements(initialValue: zero)
 }
 }

The class name is followed by a less than sign (<), a T that identifies the generic type
parameter, a colon (:), and a protocol name that the T generic type parameter must conform
to, that is, the NumericForVector protocol. The protocol specifies the requirement for a +
function, so the summed method can apply this operator to the stored properties (x, y, and
z) and delta arguments (deltaX, deltaY, and deltaZ) to use the results as arguments to
create a new instance of ImmutableVector3D<T>.

The originVector type method calls the initializer without arguments to create a value of
the T type initialized to zero. We can use this initializer because we specified it as a
requirement in the NumericForVector protocol.

Maximization of Code Reuse with Generic Code

[259]

Now, we can create instances of any of the following:

MutableVector3D<Double>

MutableVector3D<Float>

MutableVector3D<Float80>

MutableVector3D<Int>

MutableVector3D<Int16>

MutableVector3D<Int32>

MutableVector3D<Int64>

MutableVector3D<Int8>

MutableVector3D<UInt>

MutableVector3D<UInt16>

MutableVector3D<UInt32>

MutableVector3D<UInt64>

MutableVector3D<UInt8>

ImmutableVector3D<Double>

ImmutableVector3D<Float>

ImmutableVector3D<Float80>

ImmutableVector3D<Int>

ImmutableVector3D<Int16>

ImmutableVector3D<Int32>

ImmutableVector3D<Int64>

ImmutableVector3D<Int8>

ImmutableVector3D<UInt>

ImmutableVector3D<UInt16>

ImmutableVector3D<UInt32>

ImmutableVector3D<UInt64>

ImmutableVector3D<UInt8>

Maximization of Code Reuse with Generic Code

[260]

The following lines create instances of MutableVector3D<T> and
ImmutableVector3D<T> with the generic type parameter set to Int and UInt. The code
also calls the mutating sum or the nonmutating summed method for each instance. Then, the
code calls the printValues method. The code file for the sample is included in the
swift_3_oop_chapter_06_16 folder:

 let mutableVector4 = MutableVector3D<Int>(x: -10, y: -11, z: -12)
 mutableVector4.sum(deltaX: 7, deltaY: 8, deltaZ: 9)
 mutableVector4.printValues()
 let mutableVector5 = MutableVector3D<UInt>(x: 10, y: 11, z: 12)
 mutableVector5.sum(deltaX: 7, deltaY: 8, deltaZ: 9)
 mutableVector5.printValues()
 let immutableVector6 = ImmutableVector3D<Int>(x: -7, y: -2, z: -1)
 let immutableVector7 = immutableVector6.summed(deltaX: 3,
 deltaY: 12, deltaZ: 14)
 immutableVector7.printValues()

 let immutableVector8 = ImmutableVector3D<UInt>(x: 7, y: 2, z: 1)
 let immutableVector9 = immutableVector8.summed(deltaX: 3,
 deltaY: 12, deltaZ: 14)
 immutableVector9.printValues()

The following lines show the output generated by the preceding code:

X: -3, Y: -3, Z: -3
X: 17, Y: 19, Z: 21
X: -4, Y: 10, Z: 13
X: 10, Y: 14, Z: 15

The following screenshot shows the Playground with the types generated in each line
specified on the right-hand side:

Maximization of Code Reuse with Generic Code

[261]

Test your knowledge
When we declare protocols, the Self keyword signifies:1.

The type that implements the protocol.1.
The instance of a class that conforms to the protocol.2.
The instance of a struct that conforms to the protocol.3.

Generics allow us to declare a class that:2.
Can use a generic type only as the type for stored and type properties.1.
Can use a generic type only as an argument for its initializers.2.
Can work with many generic types.3.

The open class ImmutableVector3D<T: FloatingPoint> line means:3.
The generic type constraint specifies that T must conform to the1.
ImmutableVector3D protocol or belong to the ImmutableVector3D
class hierarchy.
The generic type constraint specifies that T must conform to the2.
FloatingPoint protocol or belong to the FloatingPoint class
hierarchy.
The class is a subclass of FloatingPoint.3.

The open class Party<T: AnimalProtocol> where T: Equatable line4.
means:

The generic type constraint specifies that T must conform to both the1.
AnimalProtocol and Equatable protocols.
The generic type constraint specifies that T must conform to either the2.
AnimalProtocol or Equatable protocol.
The class is a subclass of both the AnimalProtocol and Equatable3.
classes.

The associatedtype keyword followed by the desired name allows us to5.
declare:

The generic type constraints, which is equivalent to the where1.
keyword.
An associated type for a protocol.2.
An alias name for the protocol name.3.

Maximization of Code Reuse with Generic Code

[262]

Exercises
Add the following operators to work with both MutableVector3D<T> and
ImmutableVector3D<T>:

==: This determines whether all the elements that compose a 3D vector (x, y, and
z) are equal.
+: This sums each element that composes a 3D vector and saves the result in each
element or in the new returned instance according to the class version (mutable
or immutable). The new x must have the result of the left-hand side x + right-
hand side x, the new y must be that of the left-hand side y + right-hand side y,
and the new z must be that of the left-hand side z + right-hand side z.

In Chapter 4, Inheritance, Abstraction and Specialization, we created an Animal class and then
defined specific operator functions to allow us to use operators with instances of this class.
Redefine this class to conform to both the Comparable and Equatable protocols.

The following lines show the source code for the Equatable protocol:

 public protocol Equatable {
 static func ==(lhs: Self, rhs: Self) -> Bool
 }

The following lines show the source code for the Comparable protocol, which inherits from
the Equatable protocol:

 public protocol Comparable : Equatable {
 static func <(lhs: Self, rhs: Self) -> Bool
 static func <=(lhs: Self, rhs: Self) -> Bool
 static func >=(lhs: Self, rhs: Self) -> Bool
 static func >(lhs: Self, rhs: Self) -> Bool
 }

Implement all the necessary operator functions to make the Animal class conform to both
the protocols.

Maximization of Code Reuse with Generic Code

[263]

Summary
In this chapter, you learned how to maximize code reuse by writing code capable of
working with objects of different types, that is, instances of classes that conform to specific
protocols or whose class hierarchy includes specific superclasses. We worked with
protocols and generics. We created classes capable of working with one or two constrained
generic types.

We combined inheritance, protocols, and extensions to maximize the reusability of code.
We could make classes work with many different types.

Now that you have learned about parametric polymorphism and generics, we are ready to
combine object-oriented programming and functional programming, which is the topic of
the next chapter.

7
Object-Oriented and Functional

Programming
In this chapter, we will refactor existing code that doesn't use an object-oriented
programming approach and make it easier to understand, expand, and maintain. We will
discuss functional programming and how Swift implements many functional programming
concepts. We will work with many examples of how to mix functional programming with
object-oriented programming.

Refactoring code to take advantage of
object-oriented programming
Sometimes, we are extremely lucky and have the possibility to follow best practices as we
kick off a project. If we start writing object-oriented code from scratch, we can take
advantage of all the features that we used in our examples throughout this book. As the
requirements evolve, we might need to further generalize or specialize the blueprints.
However, as we started our project with an object-oriented approach and by organizing our
code, it is easier to make adjustments to the code.

Most of the time, we aren't extremely lucky and have to work on projects that don't follow
best practices, and we, in the name of agility, generate pieces of code that perform similar
tasks, but without decent organization. Instead of following the same bad practices that
generate error-prone, repetitive, and difficult-to-maintain code, we can use the features
provided by Xcode and additional helper tools to refactor existing code and generate object-
oriented code that promotes code reuse and allows us to reduce maintenance headaches.

Object-Oriented and Functional Programming

[265]

For example, imagine that we have to develop a universal app that allows us to work with
3D models and render them on the device screen. The requirements specify that the first 3D
models that we will have to render are two: a sphere and a cube. The application must
allow us to change the parameters of a perspective camera, which allows us to see a specific
part of the 3D world rendered on the 2D screen (refer to Figure 1 and Figure 2):

The X, Y, and Z positions
The X, Y, and Z directions
The X, Y, and Z up vectors

In addition, the application must allow us to change the values for the following
parameters:

The perspective field of view in degrees: This value determines the angle for the
perspective camera's lens. A low value for this angle narrows the view. Thus, the
models will appear larger in the lens with a perspective field of view of 45
degrees. A high value for this angle widens the view, so the models appear
smaller in the visible part of the 3D world.
The near clipping plane: The 3D region, which is visible on the 2D screen, is
formed by a clipped pyramid called a frustum. This value controls the position of
the plane that slices the top of the pyramid and determines the nearest part of the
3D world that the camera will render on the 2D screen. As the value is expressed
taking into account the Z axis, it is a good idea to add code to check whether we
are entering a valid value for this parameter.

Object-Oriented and Functional Programming

[266]

The far clipping plane: This value controls the position of the plane that slices
the back of the pyramid and determines the more distant part of the 3D world
that the camera will render on the 2D screen. The value is also expressed taking
into account the Z axis; therefore, it is a good idea to add code to check whether
we are entering a valid value for this parameter.

In addition, we can change the color of a directional light, that is, one that casts light in a
specific direction, similar to sunlight.

Imagine that other developers started working on the project and generated a single Swift
file with a class wrapper that declares many type methods that render a cube and a sphere.
These functions receive all the necessary parameters to render each 3D figure—including
the X, Y, and Z positions—determine the 3D figure's size, and configure the camera and
directional light:

Object-Oriented and Functional Programming

[267]

The following lines show an example of the declaration of a SphereAndCube class with two
type methods: renderSphere and renderCube. As we might guess from the type method
names, the first one renders a sphere, and the second one renders a cube. Take into account
that the sample code doesn't follow best practices and we will refactor it. The code file for
the sample is included in the swift_3_oop_chapter_07_01 folder:

 open class SphereAndCube {
 open static func renderSphere(
 x: Int, y: Int, z: Int, radius: Int,
 cameraX: Int, cameraY: Int, cameraZ: Int,
 cameraDirectionX: Int, cameraDirectionY: Int,
 cameraDirectionZ: Int,
 cameraVectorX: Int, cameraVectorY: Int, cameraVectorZ: Int,
 cameraPerspectiveFieldOfView: Int,
 cameraNearClippingPlane: Int,
 cameraFarClippingPlane: Int,
 directionalLightX: Int, directionalLightY: Int,
 directionalLightZ: Int,
 directionalLightColor: Int)
 {
 print("Creating camera at X:(cameraX), Y:(cameraY),
 Z:(cameraZ)")
 print("Setting camera direction to X:(cameraDirectionX),
 Y:(cameraDirectionY), Z:(cameraDirectionZ)")
 print("Setting camera vector to X:(cameraVectorX),
 Y:(cameraVectorY), Z:(cameraVectorZ)")
 print("Setting camera perspective field of view to:
 (cameraPerspectiveFieldOfView)")
 print("Setting camera near clipping plane to:
 (cameraNearClippingPlane)")
 print("Setting camera far clipping plane to:
 (cameraFarClippingPlane)")
 print("Creating directional light at X:(directionalLightX),
 Y:(directionalLightY), Z:(directionalLightZ). Light color is
 (directionalLightColor)")
 print("Drawing sphere at X:(x), Y:(y), Z:(z)")
 }
 open static func renderCube(
 x: Int, y: Int, z: Int, edgeLength: Int,
 cameraX: Int, cameraY: Int, cameraZ: Int,
 cameraDirectionX: Int, cameraDirectionY: Int,
 cameraDirectionZ: Int,
 cameraVectorX: Int, cameraVectorY: Int, cameraVectorZ: Int,
 cameraPerspectiveFieldOfView: Int,
 cameraNearClippingPlane: Int,
 cameraFarClippingPlane: Int,
 directionalLightX: Int, directionalLightY: Int,

Object-Oriented and Functional Programming

[268]

 directionalLightZ: Int,
 directionalLightColor: Int)
 {
 print("Creating camera at X:(cameraX), Y:(cameraY),
 Z:(cameraZ)")
 print("Setting camera direction to X:(cameraDirectionX),
 Y:(cameraDirectionY), Z:(cameraDirectionZ)")
 print("Setting camera vector to X:(cameraVectorX),
 Y:(cameraVectorY), Z:(cameraVectorZ)")
 print("Setting camera perspective field of view to:
 (cameraPerspectiveFieldOfView)")
 print("Setting camera near clipping plane to:
 (cameraNearClippingPlane)")
 print("Setting camera far clipping plane to:
 (cameraFarClippingPlane)")
 print("Creating directional light at X:(directionalLightX),
 Y:(directionalLightY), Z:(directionalLightZ).
 Light color is (directionalLightColor)")
 print("Drawing cube at X:(x), Y:(y), Z:(z)")
 }
 }

Each type method requires a huge number of parameters. Let's imagine that we have the
requirement to add code to render additional shapes and add different types of cameras
and lights. The code can easily become a really big mess, repetitive, and difficult to
maintain. In fact, the code is already difficult to maintain.

In Chapter 3, Encapsulation of Data with Properties, we worked with both mutable and
immutable versions of a class that represented a 3D vector. Then, we learned to overload
operators and take advantage of generics. We created an improved version of both the
mutable and immutable versions of the 3D vector in Chapter 6, Maximization of Code Reuse
with Generic Code.

The first change we can make is to work with MutableVector3D<Int> instead of working
with separate x, y, and z values. However, we won't use the same code we created in the
previous chapter because we want a different behavior. We will create a new version of the
NumericForVector protocol that will allow us to specify all the requirements that any
numeric type must implement in order to use it as the generic type parameter for the new
MutableVector3D class. In this case, we will just include a parameterless initializer.
However, we will need to add many operators as we expand the ImmutableVector3D
class. Therefore, in this case, we will just include the protocol to have our code ready for
future requirements.

Object-Oriented and Functional Programming

[269]

The following lines show the code that declares the new NumericForVector protocol. The
code file for the sample is included in the swift_3_oop_chapter_07_02 folder:

 public protocol NumericForVector {
 init()
 }

Now, we have to extend the existing Int type that we want to use for our
ImmutableVector3D<T> class to make it conform to the recently created
NumericForVector protocol. The code file for the sample is included in the
swift_3_oop_chapter_07_02 folder:

 extension Int: NumericForVector { }

The following lines show the code for the new ImmutableVector3D<T> class. The code file
for the sample is included in the swift_3_oop_chapter_07_02 folder:

 open class MutableVector3D<T: NumericForVector> {
 open var x: T
 open var y: T
 open var z: T
 init(x: T, y: T, z: T) {
 self.x = x
 self.y = y
 self.z = z
 }
 public var representation: String {
 get {
 return String("X: (self.x), Y: (self.y), Z: (self.z)")
 }
 }
 open class func makeEqualElements(initialValue: T) ->
 MutableVector3D<T> {
 return MutableVector3D<T>(x: initialValue, y: initialValue,
 z: initialValue)
 }
 open class func makeOrigin() -> MutableVector3D<T> {
 let zero = T()
 return makeEqualElements(initialValue: zero)
 }
 }

Object-Oriented and Functional Programming

[270]

The code doesn't overload operators because we want to keep our focus on the refactoring
process. The class declares a representation read-only computed property of the String
type that returns a string with the values for the x, y, and z constants. The
SphereAndCube.renderSphere and SphereAndCube.renderCube type methods print
the values for the x, y, and z coordinates of many elements that compose the scene. We will
generalize the generation of the string representation that will allow us to print the values.

We will create a simple protocol named SceneElementProtocol to specify the
requirements for scene elements, as follows. The code file for the sample is included in the
swift_3_oop_chapter_07_02 folder:

 public protocol SceneElementProtocol {
 var location: MutableVector3D<Int> { get set }
 }

The following lines declare the SceneElement class that conforms to the previously
defined SceneElementProtocol protocol. The class represents a 3D element that is part of
a scene and has a location specified with MutableVector3D<Int>. It is the base class for all
the scene elements that require a location in the 3D space. The code file for the sample is
included in the swift_3_oop_chapter_07_02 folder:

 open class SceneElement: SceneElementProtocol {
 open var location: MutableVector3D<Int>
 init(location: MutableVector3D<Int>) {
 self.location = location
 }
 }

The following lines declare another abstract class named Light, which is a subclass of the
previously defined SceneElement class. The class represents a 3D light, and it is the base
class for all the lights that might be included in a scene. In this case, the class declaration is
empty, and we only declare it because we know that there will be many types of lights, and
we want to be able to generalize the common requirements for all types of lights in the
future. We are preparing the code for further enhancements. The code file for the sample is
included in the swift_3_oop_chapter_07_02 folder:

 open class Light: SceneElement {
 }

Object-Oriented and Functional Programming

[271]

The following lines declare a subclass of Light named DirectionalLight. The class
represents a directional light and adds a color stored property. In this case, we don't add
validations for the property setters just to make the example simple. However, we already
know how to do it. The code file for the sample is included in the
swift_3_oop_chapter_07_02 folder:

 open class DirectionalLight: Light
 {
 open var color: Int
 init(location: MutableVector3D<Int>, color: Int) {
 self.color = color
 super.init(location: location)
 }
 }

The following lines declare a class named Camera, which inherits from SceneElement. The
class represents a 3D camera. It is the base class for all cameras. In this case, the class
declaration is empty, and we only declare it because we know that there will be many types
of cameras. Also, we want to be able to generalize the common requirements for all types of
cameras in the future as we did for the lights. The code file for the sample is included in the
swift_3_oop_chapter_07_02 folder:

 open class Camera: SceneElement {
 }

The following lines declare a subclass of Camera named PerspectiveCamera. The class
represents a perspective camera and adds the following ImmutableVector3D<Int> stored
properties: direction and vector. In addition, the class adds the following three stored
properties: fieldOfView, nearClippingPlane, and farClippingPlane. The code file
for the sample is included in the swift_3_oop_chapter_07_02 folder:

 open class PerspectiveCamera: Camera {
 open var direction: MutableVector3D<Int>
 open var vector: MutableVector3D<Int>
 open var fieldOfView: Int
 open var nearClippingPlane: Int
 open var farClippingPlane: Int
 init(location: MutableVector3D<Int>,
 direction: MutableVector3D<Int>, vector: MutableVector3D<Int>,
 fieldOfView: Int, nearClippingPlane: Int, farClippingPlane: Int)
 {
 self.direction = direction
 self.vector = vector
 self.fieldOfView = fieldOfView

Object-Oriented and Functional Programming

[272]

 self.nearClippingPlane = nearClippingPlane
 self.farClippingPlane = farClippingPlane
 super.init(location: location)
 }
 }

The following lines declare a class named Shape, which inherits from SceneElement. The
class represents a 3D shape, and it is the base class for all 3D shapes. The class defines a
render method that receives a Camera instance and an array of Light instances. Each
subclass that implements a specific shape will be able to override the empty render
method to render a specific shape. The code file for the sample is included in the
swift_3_oop_chapter_07_02 folder:

 open class Shape: SceneElement
 {
 open func render(camera: Camera, lights: [Light]) {
 }
 }

The following lines declare a Sphere class, a subclass of Shape that adds a radius
property and overrides the render method defined in its superclass to render a sphere. The
code file for the sample is included in the swift_3_oop_chapter_07_02 folder:

 open class Sphere: Shape {
 open var radius: Int
 init(location: MutableVector3D<Int>, radius: Int) {
 self.radius = radius
 super.init(location: location)
 }
 open override func render(camera: Camera, lights: [Light]) {
 print("Drawing sphere at (location.representation)")
 }
 }

The following lines declare a Cube class, a subclass of Shape that adds an edgeLength
property and overrides the render method defined in its superclass to render a cube. The
code file for the sample is included in the swift_3_oop_chapter_07_02 folder:

 open class Cube: Shape {
 open var edgeLength: Int

 init(location: MutableVector3D<Int>, edgeLength: Int) {
 self.edgeLength = edgeLength
 super.init(location: location)
 }

Object-Oriented and Functional Programming

[273]

 open override func render(camera: Camera, lights: [Light]) {
 print("Drawing cube at (location.representation)")
 }
 }

Finally, the following lines declare the Scene class, which represents the scene to be
rendered. The class defines an activeCamera private stored property that holds a Camera
instance. The lights private stored property is an array of Light instances, and the
shapes private stored property is an array of the Shape instances that compose the scene.
The add method that has a light parameter adds a Light instance to the lights array.
The add method that has a shape parameter adds a Shape instance to the shapes array.
Finally, the render method prints some details about the scene that is set up, based on the
types of camera and lights. Then, this method calls the render method for each of the
Shape instances included in the shapes array and passes the activeCamera and lights
arrays as arguments. The code file for the sample is included in the
swift_3_oop_chapter_07_02 folder:

 open class Scene {
 private var lights = [Light]()
 private var shapes = [Shape]()
 private var activeCamera: Camera

 init(initialCamera: Camera) {
 activeCamera = initialCamera
 }

 open func add(light: Light) {
 lights.append(light)
 }

 open func add(shape: Shape) {
 shapes.append(shape)
 }

 open func render() {
 print("Creating camera at
 (activeCamera.location.representation)")
 if let perspectiveCamera = activeCamera as? PerspectiveCamera
 {
 print("Setting camera direction to
 (perspectiveCamera.direction.representation)")
 print("Setting camera vector to
 (perspectiveCamera.vector.representation)")
 print("Setting camera perspective field of view to:
 (perspectiveCamera.fieldOfView)")
 print("Setting camera near clipping plane to:

Object-Oriented and Functional Programming

[274]

 (perspectiveCamera.nearClippingPlane)")
 print("Setting camera far clipping plane to:
 (perspectiveCamera.farClippingPlane)")
 }
 for light in lights {
 if let directionalLight = light as? DirectionalLight {
 print("Creating directional light at
 (directionalLight.location.representation). Light color is
 (directionalLight.color)")
 } else {
 print("Creating light at (light.location.representation)")
 }
 }
 for shape in shapes {
 shape.render(camera: activeCamera, lights: lights)
 }
 }
 }

After we create the previously shown classes, we can enter the following code in the
Playground. The code file for the sample is included in the swift_3_oop_chapter_07_02
folder:

 var camera = PerspectiveCamera(location:
 MutableVector3D<Int>.makeEqualElements(initialValue: 30),
 direction: MutableVector3D<Int>(x: 50, y: 0, z: 0),
 vector: MutableVector3D<Int>(x: 4, y: 5, z: 2),
 fieldOfView: 90,
 nearClippingPlane: 20,
 farClippingPlane: 40
)
 var sphere = Sphere(location: MutableVector3D<Int>
 (x: 20, y: 20, z: 20), radius: 8)
 var cube = Cube(location:
 MutableVector3D<Int>.makeEqualElements(initialValue: 10),
 edgeLength: 5
)
 var light = DirectionalLight(location: MutableVector3D<Int>
 (x: 2, y: 2, z: 5), color: 235)

 var scene = Scene(initialCamera: camera)
 scene.add(shape: sphere)
 scene.add(shape: cube)
 scene.add(light: light)
 scene.render()

Object-Oriented and Functional Programming

[275]

The code is very easy to understand and read. We create a PerspectiveCamera instance
with the necessary parameters and then create two shapes: Sphere and Cube. Then, we
create a DirectionalLight with all the necessary parameters and Scene with the
previously created PerspectiveCamera as the initial camera.

Then, we add the shapes and the light to the scene and call the render method to render
the scene. The following lines show the generated output:

 Creating camera at X: 30, Y: 30, Z: 30
 Setting camera direction to X: 50, Y: 0, Z: 0
 Setting camera vector to X: 4, Y: 5, Z: 2
 Setting camera perspective field of view to: 90
 Setting camera near clipping plane to: 20
 Setting camera far clipping plane to: 40
 Creating directional light at X: 2, Y: 2, Z: 5.
 Light color is 235Drawing sphere at X: 20, Y: 20, Z: 20
 Drawing cube at X: 10, Y: 10, Z: 10

Now, let's compare the previous code with the following lines that call the
SphereAndCube.renderSphere and SphereAndCube.renderCube methods with more
than a dozen parameters. The code file for the sample is included in the
swift_3_oop_chapter_07_03 folder:

 SphereAndCube.renderCube(x: 10, y: 20, z: 30,
 edgeLength: 50, cameraX: 25, cameraY: 25, cameraZ: 70,
 cameraDirectionX: 30, cameraDirectionY: 20, cameraDirectionZ: 35,
 cameraVectorX: 11, cameraVectorY: 15, cameraVectorZ: 25,
 cameraPerspectiveFieldOfView: 140, cameraNearClippingPlane: 150,
 cameraFarClippingPlane: 160, directionalLightX: 30,
 directionalLightY: 30, directionalLightZ: 25,
 directionalLightColor: 156
)

 SphereAndCube.renderSphere(x: 10, y: 15, z: 25, radius: 32,
 cameraX: 25, cameraY: 35, cameraZ: 10, cameraDirectionX: 30,
 cameraDirectionY: 35, cameraDirectionZ: 10, cameraVectorX: 62,
 cameraVectorY: 5, cameraVectorZ: 2,
 cameraPerspectiveFieldOfView: 7, cameraNearClippingPlane: 20,
 cameraFarClippingPlane: 30, directionalLightX: 5,
 directionalLightY: 4, directionalLightZ: 7,
 directionalLightColor: 232
)

Object-Oriented and Functional Programming

[276]

The following screenshot shows the object-oriented version and the call to the two type
methods. The object-oriented version is definitely easier to read and understand. In
addition, there is a lot less code duplication:

The object-oriented version requires a higher amount of code. However, it is easier to
understand and expand based on future requirements. In addition, the object-oriented
version reuses many pieces of code. If you need to add a new type of light, shape, or
camera, you know where to add the pieces of code, which classes to create, and which
methods to change.

Object-Oriented and Functional Programming

[277]

Understanding functions as first-class
citizens
Since its first release, Swift has been a multiparadigm programming language, and one of
its supported programming paradigms is functional programming. Functional
programming favors immutable data and, therefore, avoids state changes. The code written
with a functional programming style is as declarative as possible, and it is focused on what
it does instead of how it must do it.

As it happens in many modern programming languages, functions are first-class citizens in
Swift 3. You can use functions as arguments for other functions or methods. We can easily
understand this concept with a simple example: array filtering. However, take into account
that we will start by writing imperative code with functions as first-class citizens, and then,
we will create a new version for this code that uses a functional approach in Swift through a
filter operation.

The following lines declare the applyFunctionTo function that receives an array of Int,
numbers, and a function type: condition. The function type specifies the parameter types
and the return types for the function. In this case, condition specifies a function type that
receives Int and returns a Bool value. The function executes the received function,
condition, for each element in the input array and adds the element to an output array
whenever the result of the called function is true. This way, only the elements that meet the
specified condition will appear in the resulting array of Int. The code file for the sample is
included in the swift_3_oop_chapter_07_04 folder:

 public func applyFunctionTo(numbers: [Int],
 condition: (Int) -> Bool) -> [Int] {
 var returnNumbers = [Int]()
 for number in numbers {
 if condition(number) {
 returnNumbers.append(number)
 }
 }
 return returnNumbers
 }

Object-Oriented and Functional Programming

[278]

The following line declares a divisibleBy5 function that receives Int and returns Bool,
indicating whether the received number is divisible by 5 or not. The code file for the sample
is included in the swift_3_oop_chapter_07_04 folder:

 func divisibleBy5(number: Int) -> Bool {
 return number % 5 == 0
 }

The function type for the divisibleBy5 function is equal to the function type specified in
the condition argument for the applyFunctionToNumbers function. The following lines
show the function type specified in the condition argument followed by the
divisibleBy5 function declaration. The function type specified in the condition
argument matches the function type for the divisibleBy5 function:

 condition: (Int) -> Bool
 func divisibleBy5(number: Int) -> Bool

The following two lines declare an array of Int initialized with ten numbers and call the
applyFunctionTo function with the array of Int as the numbers argument and the
divisibleBy5 function as the condition argument. The divisibleBy5Numbers array of
Int will have the following values after the applyFunctionTo function runs: [10, 20,
30, 40, 50, 60]. The code file for the sample is included in the
swift_3_oop_chapter_07_04 folder:

 var numbers = [10, 20, 30, 40, 50, 60, 63, 73, 43, 89]
 var divisibleBy5Numbers = applyFunctionTo(numbers: numbers,
 condition: divisibleBy5)
 print(divisibleBy5Numbers)

Object-Oriented and Functional Programming

[279]

The following screenshot shows the results of executing the previous lines in the
Playground:

Working with function types within classes
The following lines declare a myFunction variable with a function type, specifically, a
function that receives an Int argument and returns a Bool value. The variable works in the
same way as an argument that specifies a function type for a function. The code file for the
sample is included in the swift_3_oop_chapter_07_05 folder:

 var myFunction: ((Int) -> Bool)
 myFunction = divisibleBy5
 let myNumber = 20
 print("Is (myNumber) divisible by 5: (myFunction(myNumber))")

Object-Oriented and Functional Programming

[280]

Then, the code assigns the divisibleBy5 function to myFunction. It is very important to
understand that the line doesn't call the divisibleBy5 function and save the result of this
call in the myFunction variable. Instead, it just assigns the function to the variable that has
a function type. The lack of parenthesis after the function name makes the difference.

Then, the code prints whether the Int value specified in the myNumber constant is divisible
by 5 or not using the myFunction variable to call the referenced function with myNumber as
an argument.

The following screenshot shows the results of executing the previous lines in the
Playground. Note that the result of executing myFunction = divisibleBy5 displays an
Int -> Bool type on the right-hand side:

Type inference also works with functions, so we might replace the two lines that declared
the myFunction variable and assigned the divisibleBy5 function with the following
single line. The code file for the sample is included in the swift_3_oop_chapter_07_06
folder:

 var myFunction = divisibleBy5

So far, we have worked with function types in functions. We can definitely take advantage
of function types in object-oriented code. For example, the following lines show the code for
a new NumberWorker class that declares the appliedFunction method with a function
type as a parameter type. The code file for the sample is included in the
swift_3_oop_chapter_07_06 folder:

 open class NumbersWorker {
 private var numbers = [Int]()
 init(numbers: [Int]) {
 self.numbers = numbers
 }

Object-Oriented and Functional Programming

[281]

 open func appliedFunction(condition: (Int) -> Bool) -> [Int] {
 var returnNumbers = [Int]()
 for number in numbers {
 if condition(number) {
 returnNumbers.append(number)
 }
 }
 return returnNumbers
 }
 }

The following lines show the code for the NumberFunctions class that defines the
isDivisibleBy5 type method. We will use this type method as an argument when we'll
call the appliedFunction method that we coded in the NumbersWorker class. The code
file for the sample is included in the swift_3_oop_chapter_07_07 folder:

 open class NumberFunctions {
 open static func isDivisibleBy5(number: Int) -> Bool {
 return number % 5 == 0
 }
 }

The following lines create a numbersList array of Int and then pass it as an argument to
the initializer of the NumbersWorker class. The last line calls the
worker.appliedFunction method with the NumberFunctions.isDivisibleBy5 type
method as an argument. The code file for the sample is included in the
swift_3_oop_chapter_07_07 folder:

 var numbersList = [-60, -59, -48, -35, -25, -10, 11, 12, 13, 14,
 15]
 var worker = NumbersWorker(numbers: numbersList)
 var divisibleBy5List = worker.appliedFunction
 (condition: NumberFunctions.isDivisibleBy5)
 print(divisibleBy5List)

In this case, we used a type method as the argument for a method that specified a function
type as a parameter type. We can also use an instance method as an argument that requires
a function type.

Object-Oriented and Functional Programming

[282]

The following screenshot shows the result of executing the previous lines in the
Playground:

Creating a functional version of array
filtering
The collections included in Swift allow us the use of higher order functions, that is,
functions that take other functions and use them to perform transformations on datasets.
For example, an array provides us with the filter, map, and reduce methods.

As previously explained, the preceding code represents an imperative version of array
filtering. We can achieve the same goal with a functional approach using the filter
method included in all the types that conform to the Sequence protocol. The
Array<Element> struct conforms to the Sequence protocol and many other protocols. In
Swift versions prior to 3, the Sequence protocol was named SequenceType.

Object-Oriented and Functional Programming

[283]

As it happens in most modern languages, Swift supports closures, which
are also known as anonymous functions. Closures are self-contained
blocks of functionality that we can pass around and use within our code as
functions without names. Closures automatically capture everything we
reference, such as variables and functions that aren't defined within the
closure. Closures in Swift are similar to blocks in Objective-C.

The following lines use a closure as an argument for the filter method to generate the
array with the numbers divisible by 5. The closure is the code surrounded with braces ({}),
and it uses the in keyword to separate the argument (number: Int) and the return type
(Bool) for the closure from its body. The code file for the sample is included in the
swift_3_oop_chapter_07_08 folder:

 var filteredNumbers = numbersList.filter({
 (number: Int) -> Bool in
 return NumberFunctions.isDivisibleBy5(number: number)
 })
 print(filteredNumbers)

The code calls the filter method for the previously defined numbersList Array<Int>.
This method creates and returns a new Array<Int> that contains only those elements of
numbersList Array<Int> for which the Bool value returned by the specified closure
returns true. In this case, the closure receives a number value of the Int type and returns
the result of calling the NumberFunctions.isDivisibleBy5 type method with number as
the number argument.

The following lines add a new filteredBy method to the existing NumbersWorker class.
The method specifies a function type for the condition argument and then uses the
function type within the closure that the filter method calls. This way, we are able to call
this method with the function name that we want to receive an Int value and return Bool
to evaluate which members of the original array are returned in the resulting array. The
code file for the sample is included in the swift_3_oop_chapter_07_09 folder:

 open func filteredBy(condition: (Int) -> Bool) -> [Int] {
 return numbersList.filter({
 (number: Int) -> Bool in
 return condition(number)
 })
 }

Object-Oriented and Functional Programming

[284]

The next lines create a numbersList2 array of Int and then pass it as an argument to the
initializer of the NumbersWorker class. The last line calls the
worker2.applyFunctionToNumbers method with the
NumberFunctions.isNumberDivisibleBy5 type method as an argument. The code file
for the sample is included in the swift_3_oop_chapter_07_09 folder:

 var numbersList2 = [-30, -29, -47, 10, 30, 50, 80]
 var worker2 = NumbersWorker(numbers: numbersList)
 var filteredNumbers2 = worker2.filteredBy
 (condition: NumberFunctions.isDivisibleBy5)
 print(filteredNumbers2)

The following screenshot shows the results of executing the previous lines in the
Playground:

Object-Oriented and Functional Programming

[285]

Writing equivalent closures with simplified
code
It is possible to omit the type for the closure's parameter and return type. The following
lines show a simplified version of the previously shown code that generates the same result.
Note that the closure code is really simplified and doesn't even include the return statement
because it uses implicit return. Swift evaluates the code we write after the in keyword and
returns its evaluation as if we included the return statement before the expression. Swift
infers the return type. We just have to replace the existing code for the filteredBy method
in the NumbersWorker class with the new code. The code file for the sample is included in
the swift_3_oop_chapter_07_10 folder:

 open func filteredBy(condition: (Int) -> Bool) -> [Int] {
 return numbersList.filter({
 (number) in condition(number)
 })
 }

We can go a step further and use the argument shorthand notation. This way, the closure
omits the type for the parameters and its return type, takes advantage of implicit returns,
and also uses the argument shorthand notation. The dollar sign followed by the argument
number identifies each of the arguments for the closure. In this case, there is only one
argument, so we will use $0 to reference it. Obviously, $1 would reference a second
argument, $2 would reference a third argument, and so on. We just have to replace the
existing code for the filteredBy method in the NumbersWorker class with the new code.
The code file for the sample is included in the swift_3_oop_chapter_07_11 folder:

 open func filteredBy(condition: (Int) -> Bool) -> [Int] {
 return numbersList.filter({ condition($0) })
 }

Object-Oriented and Functional Programming

[286]

The following three pieces of code are equivalent and produce the same results. The first
two versions make it easier to understand that the closure receives a number argument
because we use a specific name for it:

 return numbersList.filter({
 (number: Int) -> Bool in
 return condition(number)
 })

 return numbersList.filter({
 (number) in condition(number)
 })

 return numbersList.filter({
 return condition($0)
 })

Creating a data repository with generics and
protocols
Now, we want to create a repository that provides us with entities so that we can apply the
functional programming features included in Swift to retrieve and process data from these
entities. First, we will create an Identifiable protocol that defines the requirements for
an identifiable entity. We want any class that conforms to this protocol to have a read-only
id property of the Int type to provide a unique identifier for the entity. The code file for
the sample is included in the swift_3_oop_chapter_07_11 folder:

 import Foundation
 public protocol Identifiable {
 var id: Int { get }
 }

The next lines create a Repository<Element> generic class, which specifies that Element
must conform to the recently created Identifiable protocol in the generic type constraint.
The class declares a getAll method that we will override in the subclasses. The code file for
the sample is included in the swift_3_oop_chapter_07_11 folder:

 open class Repository<Element: Identifiable> {
 open func getAll() -> [Element] {
 return [Element]()
 }
 }

Object-Oriented and Functional Programming

[287]

The next lines create the Entity class, which is the base class for all the entities. The class
conforms to the Identifiable protocol and defines a read-only id property of the Int
type. The code file for the sample is included in the swift_3_oop_chapter_07_11 folder:

 open class Entity: Identifiable {
 open let id: Int

 init(id: Int) {
 self.id = id
 }
 }

The next lines create the Game class, which is a subclass of Entity, which conforms to the
CustomStringConvertible protocol. The class adds the following stored properties:
name, highestScore, and playedCount. The CustomStringConvertible protocol
requires the class to implement a description calculated property that Swift uses
whenever we write values to the output string. This way, whenever we use print and
specify an instance of the Game class, Swift will print the value for the description calculated
property. The code file for the sample is included in the swift_3_oop_chapter_07_11
folder:

 open class Game: Entity, CustomStringConvertible {
 open var name: String
 open var highestScore: Int
 open var playedCount: Int

 open var description: String {
 get {
 return "id: (id), name: "(name)", highestScore:
 (highestScore), playedCount: (playedCount)"
 }
 }

 init(id: Int, name: String, highestScore: Int,
 playedCount: Int) {
 self.name = name
 self.highestScore = highestScore
 self.playedCount = playedCount
 super.init(id: id)
 }
 }

Object-Oriented and Functional Programming

[288]

The following lines create the GameRepository class, a subclass of Repository<Game>.
The class overrides the getAll method declared in the generic superclass, that is, in the
Repository<T> class. In this case, the method returns an array of Game, Array<Game>,
specified with the [Game] shortcut. The overridden method creates ten Game instances and
appends them to an array of Game that the method returns as a result. Note that we use
underscores as separators to make it easier to read integer numbers. For example, instead of
writing 3050, we write 3_050, and it is equivalent to 3050. This way, we can easily realize
that it is three thousand and fifty. The code file for the sample is included in the
swift_3_oop_chapter_07_11 folder:

 open class GameRepository: Repository<Game> {
 open override func getAll() -> [Game] {
 var gamesList = [Game]()

 gamesList.append(Game(id: 1, name: "Invaders 2017",
 highestScore: 1050, playedCount: 3_050))

 gamesList.append(Game(id: 2, name: "Minecraft",
 highestScore: 3741050, playedCount: 780_009_992))

 gamesList.append(Game(id: 3, name: "Minecraft Story Mode",
 highestScore: 67881050, playedCount: 304_506_506))

 gamesList.append(Game(id: 4, name: "Soccer Warriors",
 highestScore: 10_025, playedCount: 320_450))

 gamesList.append(Game(id: 5, name: "The Walking Dead Stories",
 highestScore: 1_450_708, playedCount: 75_405_350))

 gamesList.append(Game(id: 6,
 name: "Once Upon a Time in Wonderland",
 highestScore: 1_050_320, playedCount: 7_052))

 gamesList.append(Game(id: 7, name: "Cars Forever",
 highestScore: 6_705_203, playedCount: 850_021))

 gamesList.append(Game(id: 8, name: "Jake & Peter Pan",
 highestScore: 4_023_134, playedCount: 350_230))

 gamesList.append(Game(id: 9, name: "Kong Strikes Back",
 highestScore: 1_050_230, playedCount: 450_050))

Object-Oriented and Functional Programming

[289]

 gamesList.append(Game(id: 10, name: "Mario Kart 2017",
 highestScore: 10_572_340, playedCount: 3_760_879))

 return gamesList
 }
 }

The following lines create an instance of GameRepository and call the forEach method
for the array of Game returned by the getAll method. The forEach method calls a body on
each element in the array, as is done in a for in loop. The closure specified as an argument
for the forEach method calls the print method with the Game instance as an argument.
This way, Swift uses the description computed property to generate a String
representation for each Game instance. The code file for the sample is included in the
swift_3_oop_chapter_07_11 folder:

 var gameRepository = GameRepository()
 gameRepository.getAll().forEach({ (game) in print(game) })

The following lines show the output generated by the preceding code:

id: 1, name: "Invaders 2017", highestScore: 1050, playedCount: 3050
id: 2, name: "Minecraft", highestScore: 3741050, playedCount: 780009992
id: 3, name: "Minecraft Story Mode", highestScore: 67881050,
 playedCount: 304506506
id: 4, name: "Soccer Warriors", highestScore: 10025,
 playedCount: 320450
id: 5, name: "The Walking Dead Stories", highestScore: 1450708,
 playedCount: 75405350
id: 6, name: "Once Upon a Time in Wonderland", highestScore: 1050320,
 playedCount: 7052
id: 7, name: "Cars Forever", highestScore: 6705203,
 playedCount: 850021
id: 8, name: "Jake & Peter Pan", highestScore: 4023134,
 playedCount: 350230
id: 9, name: "Kong Strikes Back", highestScore: 1050230,
 playedCount: 450050
id: 10, name: "Mario Kart 2017", highestScore: 10572340,
 playedCount: 3760879

Object-Oriented and Functional Programming

[290]

The following screenshot shows the result of executing the previous lines in the
Playground:

The following line uses the argument shorthand notation, which is equivalent to the last
line, and produces the same result. The code file for the sample is included in the
swift_3_oop_chapter_07_12 folder:

 gameRepository.getAll().forEach({ print($0) })

Object-Oriented and Functional Programming

[291]

Filtering arrays with complex conditions
We can use our new repository to restrict the results retrieved from more complex data. In
this case, the getAll method returns an array of Game instances, which we can use with the
filter method to retrieve only the games that match certain conditions. The following
lines declare a new getWithHighestScoreGreaterThan method for our previously coded
GameRepository class. The code file for the sample is included in the
swift_3_oop_chapter_07_13 folder:

 open func getWithHighestScoreGreaterThan(score: Int) -> [Game] {
 return getAll().filter({ (game) in game.highestScore > score })
 }

The getWithHighestScoreGreaterThan method receives a score: Int argument and
returns Array<Game>, specified with the [Game] shortcut. The code calls the getAll and
filter methods for the result with a closure that specifies the required condition for the
games in the array to be returned in the new array. In this case, only the games whose
highestScore value is greater than the score value received as an argument will appear in
the resulting Array<Game>.

The following lines use the GameRepository instance called gameRepository to call the
previously added method and then chain a call to forEach to print all the games whose
highestScore value is greater than 5,000,000. The code file for the sample is included in
the swift_3_oop_chapter_07_13 folder:

 gameRepository.getWithHighestScoreGreaterThan
 (score: 5_000_000).forEach({ print($0) })

The following lines show the output generated using the preceding code:

id: 3, name: "Minecraft Story Mode", highestScore: 67881050,
 playedCount: 304506506
id: 7, name: "Cars Forever", highestScore: 6705203, playedCount: 850021
id: 10, name: "Mario Kart 2017", highestScore: 10572340,
 playedCount: 3760879

The following code shows another version of the getWithHighestScoreGreaterThan
method, which is equivalent and produces the same results. The code file for the sample is
included in the swift_3_oop_chapter_07_14 folder:

 open func getWithHighestScoreGreaterThan(score: Int) -> [Game] {
 return getAll().filter({
 (game: Game) -> Bool in
 game.highestScore > score })
 }

Object-Oriented and Functional Programming

[292]

The following code shows another version of the getWithHighestScoreGreaterThan
method, which is equivalent and produces the same results. The code file for the sample is
included in the swift_3_oop_chapter_07_15 folder:

 open func getWithHighestScoreGreaterThan(score: Int) -> [Game] {
 return getAll().filter({ $0.highestScore > score })
 }

The following lines declare a new getWith method for our previously coded
GameRepository class. The code file for the sample is included in the
swift_3_oop_chapter_07_16 folder:

 open func getWith(prefix: String) -> [Game] {
 return getAll().filter({ game in game.name.hasPrefix(prefix) })
 }

The getWith method receives a prefix, String argument and returns an Array<Game>,
specified with the [Game] shortcut. The code calls the getAll method and calls the filter
method for the result with a closure that specifies the required condition for the games in
the array to be returned in the new array. In this case, only the games whose name includes
the string specified in the prefix value and is received as an argument or prefix will
appear in the resulting Array<Game>.

The following line uses the GameRepository instance called gameRepository to call the
previously added method and then chains a call to forEach to print all the games whose
name starts with "Mi". The code file for the sample is included in the
swift_3_oop_chapter_07_16 folder:

 gameRepository.getWith(prefix: "Mi").forEach({ print($0) })

The following lines show the output generated by the preceding code:

id: 2, name: "Minecraft", highestScore: 3741050, playedCount: 780009992
id: 3, name: "Minecraft Story Mode", highestScore: 67881050,
 playedCount: 304506506

Object-Oriented and Functional Programming

[293]

The following code shows another version of the getWith method, which is equivalent and
produces the same results. The code file for the sample is included in the
swift_3_oop_chapter_07_17 folder:

 open func getWith(prefix: String) -> [Game] {
 return getAll().filter({
 (game: Game) -> Bool in
 game.name.hasPrefix(prefix)
 })
 }

The following code shows another version of the getWith method, which is equivalent and
produces the same results. The code file for the sample is included in the
swift_3_oop_chapter_07_18 folder:

 open func getWith(prefix: String) -> [Game] {
 return getAll().filter({ $0.name.hasPrefix(prefix) })
 }

So far, we have used the filter method to generate a new Array<Game>. Sometimes, we
just want to retrieve a single element from an Array or a similar collection, and we also
want to specify a more complex condition. The following lines declare a new getBy method
for our previously coded GameRepository class. The code file for the sample is included in
the swift_3_oop_chapter_07_18 folder:

 open func getBy(highestScore: Int, playedCount: Int) -> Game? {
 return getAll().filter({ game in game.highestScore ==
 highestScore && game.playedCount == playedCount }).first
 }

The getBy method receives two Int arguments: highestScore and playedCount. The
method returns an optional Game, that is, Game?. The code calls the getAll and filter
methods for the result with a closure that specifies the required condition for the games in
the array to be returned in the new array. In this case, only the games whose
highestScore and playedCount values are equal to the values received as arguments
with the same names will appear in the Array<Game> generated by the call to the filter
method. Then, the call to the first method returns the first element in the generated array
or nil if no elements are found.

Object-Oriented and Functional Programming

[294]

The following lines use the GameRepository instance called gameRepository to call the
previously added method to retrieve two games that match the specified highestScore
and playedCount values. The method returns a Game?; therefore, the code checks whether
the result is a Game instance or not in each call using if statements. The code file for the
sample is included in the swift_3_oop_chapter_07_18 folder:

 if let game0 = gameRepository.getBy(highestScore: 4023134,
 playedCount: 350230) {
 print(game0)
 } else {
 print("No game found with the specified criteria")
 }
 if let game1 = gameRepository.getBy(highestScore: 30,
 playedCount: 40) {
 print(game1)
 } else {
 print("No game found with the specified criteria")
 }

The following lines show the output generated with the preceding code. In the first call,
there was a game that matched the search criteria. In the second call, there is no Game
instance included in the array that matches the search criteria:

id: 8, name: "Jake & Peter Pan", highestScore: 4023134,
 playedCount: 350230
No game found with the specified criteria

The following code shows another version of the getBy method, which is equivalent and
produces the same results. The code file for the sample is included in the
swift_3_oop_chapter_07_19 folder:

 open func getBy(highestScore: Int, playedCount: Int) -> Game? {
 return getAll().filter({
 (game: Game) -> Bool in
 game.highestScore == highestScore && game.playedCount ==
 playedCount
 }).first
 }

Object-Oriented and Functional Programming

[295]

The following code shows another version of the getBy method, which is equivalent and
produces the same results. The code file for the sample is included in the
swift_3_oop_chapter_07_20 folder:

 open func getBy(highestScore: Int, playedCount: Int) -> Game? {
 return getAll().filter({ $0.highestScore == highestScore &&
 $0.playedCount == playedCount }).first
 }

Using map to transform values
The map method takes a closure as an argument, calls it for each item in the array, and
returns a mapped value for the item. The returned mapped value can be of a different type
from the item's type.

The following lines declare a new getUppercasedNames method that performs the
simplest map operation for our previously coded GameRepository class. The code file for
the sample is included in the swift_3_oop_chapter_07_21 folder:

 open func getUppercasedNames() -> [String] {
 return getAll().map({ game in game.name.uppercased() })
 }

The getUppercasedGames parameterless method returns Array<String>, specified with
the [String] shortcut. The code calls the getAll method and calls the map method for the
result with a closure that returns the name value for each game converted to uppercase. This
way, the map method transforms each Game instance into String with its name converted
to uppercase. The result is an Array<String> array generated by the call to the map
method.

The following line uses the GameRepository instance called gameRepository to call the
previously added getUppercasedNames method and then chains a call to forEach to print
all the game names converted to uppercase strings. The code file for the sample is included
in the swift_3_oop_chapter_07_21 folder:

 gameRepository.getUppercasedNames().forEach({ print($0) })

Object-Oriented and Functional Programming

[296]

The following lines show the output generated by the preceding code:

INVADERS 2017
MINECRAFT
MINECRAFT STORY MODE
SOCCER WARRIORS
THE WALKING DEAD STORIES
ONCE UPON A TIME IN WONDERLAND
CARS FOREVER
JAKE & PETER PAN
KONG STRIKES BACK
MARIO KART 2017

The following code shows another version of the getUppercasedNames method, which is
equivalent and produces the same results. The code file for the sample is included in the
swift_3_oop_chapter_07_22 folder:

 open func getUppercasedNames() -> [String] {
 return getAll().map({
 (game: Game) -> String in
 game.name.uppercased()
 })
 }

The following code shows another version of the getUppercasedNames method, which is
equivalent and produces the same results. The code file for the sample is included in the
swift_3_oop_chapter_07_23 folder:

 open func getUppercasedNames() -> [String] {
 return getAll().map({ $0.name.uppercased() })
 }

Swift supports tuples that group multiple values into a single compound value. The
following lines declare a new getUppercasedAndLowercasedNames method for our
previously coded GameRepository class, which performs a map operation that returns a
tuple, specifically, a tuple that groups two string values into a single compound value. The
code file for the sample is included in the swift_3_oop_chapter_07_23 folder:

 open func getUppercasedAndLowercasedNames() -> [(upper: String,
 lower: String)] {
 return getAll().map({
 game -> (String, String) in
 (game.name.uppercased(), game.name.lowercased())
 })
 }

Object-Oriented and Functional Programming

[297]

The getUppercasedAndLowercasedNames parameterless method returns a tuple with two
named String values: [(upper: String, lower: String). The first string element in
the tuple is named upper, and the second one is named lower. The code calls the getAll
and map method for the result with a closure that returns a tuple with the first element
equal to the name value for each game converted to uppercase and the second element with
the value converted to lower case. This way, the map method transforms each Game instance
into a (String, String) tuple with its name converted to uppercase and lowercase and
stored in a compound value. The result is (String, String) generated by the call to the
map method. The method declaration specifies names for each element in
the returned tuple, so we will be able to access its members through these specified names.

The following line uses the GameRepository instance called gameRepository to call the
previously added getUppercasedAndLowercasedNames method and then chains a call to
forEach to print the upper and lower elements of the tuple separated by a hyphen. The
code file for the sample is included in the swift_3_oop_chapter_07_23 folder:

 gameRepository.getUppercasedAndLowercasedNames().forEach({
 print($0.upper, " - ", $0.lower) })

The following lines show the output generated by the preceding code:

INVADERS 2017 - invaders 2017
MINECRAFT - minecraft
MINECRAFT STORY MODE - minecraft story mode
SOCCER WARRIORS - soccer warriors
THE WALKING DEAD STORIES - the walking dead stories
ONCE UPON A TIME IN WONDERLAND - once upon a time in wonderland
CARS FOREVER - cars forever
JAKE & PETER PAN - jake & peter pan
KONG STRIKES BACK - kong strikes back
MARIO KART 2017 - mario kart 2017

The following lines would produce the same results by accessing the tuple elements with .0
and .1 for the first and second elements instead of using the upper and lower names. The
code file for the sample is included in the swift_3_oop_chapter_07_24 folder:

 gameRepository.getUppercasedAndLowercasedNames().forEach({
 print($0.0, " - ", $0.1) })

Swift allows us to access tuple elements with a dot followed by the
element number. The element number starts at 0. However, it is usually
convenient to provide names to the elements in order to make the code
easier to understand and maintain.

Object-Oriented and Functional Programming

[298]

We can also easily iterate through the upper and lower pairs using a for loop. The code file
for the sample is included in the swift_3_oop_chapter_07_25 folder:

 for (upper, lower) in
 gameRepository.getUppercasedAndLowercasedNames() {
 print("UPPER: (upper), lower: (lower)")
 }

The next lines show the results of executing the previous for loop:

UPPER: INVADERS 2017, lower: invaders 2017
UPPER: MINECRAFT, lower: minecraft
UPPER: MINECRAFT STORY MODE, lower: minecraft story mode
UPPER: SOCCER WARRIORS, lower: soccer warriors
UPPER: THE WALKING DEAD STORIES, lower: the walking dead stories
UPPER: ONCE UPON A TIME IN WONDERLAND, lower: once upon a time in
 wonderland
UPPER: CARS FOREVER, lower: cars forever
UPPER: JAKE & PETER PAN, lower: jake & peter pan
UPPER: KONG STRIKES BACK, lower: kong strikes back
UPPER: MARIO KART 2017, lower: mario kart 2017

Combining map with reduce
The following lines show an imperative code version of a forin loop that calculates the
sum of all the highestScore values for the games. The code file for the sample is included
in the swift_3_oop_chapter_07_26 folder:

 var sum = 0
 for game in gameRepository.getAll() {
 sum += game.highestScore
 }
 print(sum)

The code is very easy to understand. The sum variable has a starting value of 0, and each
iteration of the for in loop retrieves a Game instance from the Array<Game> returned by
the gameRepository.getAll method and increases the value of the sum variable with the
value of the highestScore property.

Object-Oriented and Functional Programming

[299]

We can combine the map and reduce operations to create a functional version of the
previous imperative code to calculate the sum of all the highestScore values for the
games. The next lines chain a call to map to a call to reduce to achieve this goal. Take a look
at the following code. The code file for the sample is included in the
swift_3_oop_chapter_07_27 folder:

 let highestScoreSum = gameRepository.getAll().map({ $0.highestScore
 }).reduce(0, {
 sum, highestScore in
 return sum + highestScore
 })
 print(highestScoreSum)

First, the code uses the call to map to transform an Array<Game> into an Array<Int> with
the values specified in the highestScore stored property. Then, the code calls the reduce
method that receives two arguments that do not use parameter labels: the initial value for
an accumulated value and a combine closure that will be repeatedly called with the
accumulated value. The method returns the results of the repeated calls to the combine
closure.

In Swift versions prior to 3, it was necessary to use the combine parameter
label for the second argument in the call to the reduce method. If we
specify the combine parameter label for the second argument in Swift 3,
the code won't compile.

The closure specified in the second argument for the reduce method receives sum and
highestScore and returns the sum of both values. Thus, the closure returns the sum of the
total accumulated so far plus the highestScore value that is processed. We can add a
print statement to display the values for both sum and highestScore within the closure
specified in the second argument. The following lines show a new version of the previous
code that adds the line with the print statement. The code file for the sample is included in
the swift_3_oop_chapter_07_28 folder:

 let highestScoreSum2 = gameRepository.getAll().map({
 $0.highestScore }).reduce(0, {
 sum, highestScore in
 print("sum value: (sum), highestScore value: (highestScore)")
 return sum + highestScore
 })
 print(highestScoreSum2)

Object-Oriented and Functional Programming

[300]

The following lines show the results for the previous line, where we can see how the sum
value starts with the initial value specified in the initial argument for the reduce
method and accumulates the sum completed so far. Finally, the highestScoreSum2
variable holds the sum of all the highestScore values, that is, the last value of sum,
85,912,770 plus the last highestScore value, 10,572,340. The result is 96,485,110:

sum value: 0, highestScore value: 1050
sum value: 1050, highestScore value: 3741050
sum value: 3742100, highestScore value: 67881050
sum value: 71623150, highestScore value: 10025
sum value: 71633175, highestScore value: 1450708
sum value: 73083883, highestScore value: 1050320
sum value: 74134203, highestScore value: 6705203
sum value: 80839406, highestScore value: 4023134
sum value: 84862540, highestScore value: 1050230
sum value: 85912770, highestScore value: 10572340
96485110

The following screenshot shows the results of executing the previous lines in the
Playground:

Object-Oriented and Functional Programming

[301]

In the previous code, we had to pass a closure expression to the reduce method as the
method's final argument, and the closure expression is long. We can write it as a trailing
closure, that is, a closure expression written after the closing parenthesis of the method call
and outside it. The following lines show a new version of the previous code that uses a
trailing closure. Note that the call to reduce seems to include just one argument: 0.
However, the code included within curly braces after the method call is the combine
argument for reduce. Take a look at the following lines. The code file for the sample is
included in the swift_3_oop_chapter_07_29 folder:

 let highestScoreSum3 = gameRepository.getAll().map({
 $0.highestScore }).reduce(0) {
 sum, highestScore in
 print("sum value: (sum), highestScore value: (highestScore)")
 return sum + highestScore
 }

Chaining filter, map, and reduce
We can chain filter, map, and reduce. The following lines declare a new
summedHighestScoresWhere method for our previously coded GameRepository class
that chains filter, map, and reduce calls. The code file for the sample is included in the
swift_3_oop_chapter_07_30 folder:

 open func summedHighestScoresWhere(minPlayedCount: Int) -> Int {
 return getAll().filter({ $0.playedCount >=
 minPlayedCount }).map({ $0.highestScore }).reduce(0) {
 sum, highestScore in
 return sum + highestScore
 }
 }

The summedHighestScoresWhere method receives a minPlayedCount argument of the
Int type and returns an Int value. The code calls the getAll and filter methods to
generate a new Array<Game> with only the Game instances, whose playedCount value is
greater than or equal to the value specified in the minPlayedCount argument. The code
calls the map method to transform an Array<Game> into an Array<Int> with the values
specified in the highestScore stored property. Then, the code calls the reduce method
with the initial value for the accumulated value set to 0 and a trailing closure that performs
the sum task for highestScore, which we analyzed in the previous example.

Object-Oriented and Functional Programming

[302]

The following line uses the GameRepository instance called gameRepository to call the
previously added calculateGamesHighestScoresSum method to calculate the sum of the
highestScores for the games that were played at least 500,000 times. The code file for
the sample is included in the swift_3_oop_chapter_07_30 folder:

 let highestScoreSumFor500000 =
 gameRepository.summedHighestScoresWhere(minPlayedCount: 500_000)
 print(highestScoreSumFor500000)

Solving algorithms with reduce
We can solve algorithms with reduce by following a functional approach. The following
lines declare a new getNamesSeparatedBy method for our previously coded
GameRepository class that solves an algorithm by calling the reduce method. The code
file for the sample is included in the swift_3_oop_chapter_07_31 folder:

 open func getNamesSeparatedBy(separator: String) -> String {
 let gamesNames = getUppercasedNames()
 return gamesNames.reduce("") {
 concatenatedGameNames, gameName in
 print(concatenatedGameNames)
 let separatorOrEmpty = (gameName == gamesNames.last) ? "" :
 separator
 return "(concatenatedGameNames)(gameName)(separatorOrEmpty)"
 }
 }

The getNamesSeparatedBy method receives a separator argument of the String type
and returns a String value. The code calls the getUppercasedNames method and saves
the result in the gamesNames reference constant. Then, the code calls the reduce method
with an empty string as the initial value for an accumulated value. The code uses a
trailing closure to specify the closure expression for combine, that is, the second argument
for the reduce method.

The trailing closure receives concatenatedGameNames and gameName. First, the closure
prints the value of concatenatedGameNames. This way, we will be able to understand how
the algorithm completes the concatenated game names in each execution. Then, an
expression determines whether the string specified in separator or an empty string has to
be used as a separator.

Object-Oriented and Functional Programming

[303]

In case the gameName is equal to the last game in the Array<String>, the code uses an
empty string because the last game shouldn't have the separator after it. Finally, the code
returns a string composed of the names concatenated so far, concatenatedGameNames; the
game name that is being concatenated, gameName; and the separator or an empty string,
separatorOrEmpty.

The following line uses the GameRepository instance called gameRepository to call the
previously added getSeparatedGamesNames method to generate a string with all the
uppercase game names separated by a semicolon followed by a space. The code file for the
sample is included in the swift_3_oop_chapter_07_31 folder:

print(gameRepository.getNamesSeparatedBy(separator: "; "))

The following lines show the results for the previous line where we can see how the
concatenated game names start with the initial value specified in the initial argument for
the reduce method and accumulates the strings generated so far. Finally, the value
returned by the getNamesSeparatedBy method includes all the game names in uppercase
separated by a semicolon and followed by a space:

INVADERS 2017;
INVADERS 2017; MINECRAFT;
INVADERS 2017; MINECRAFT; MINECRAFT STORY MODE;
INVADERS 2017; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; INVADERS
2017; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS;
THE WALKING DEAD STORIES;
INVADERS 2017; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND;
INVADERS 2017; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND; CARS FOREVER;
INVADERS 2017; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND; CARS FOREVER; JAKE &
PETER PAN;
INVADERS 2017; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND; CARS FOREVER; JAKE &
PETER PAN; KONG STRIKES BACK;
INVADERS 2017; MINECRAFT; MINECRAFT STORY MODE; SOCCER WARRIORS; THE
WALKING DEAD STORIES; ONCE UPON A TIME IN WONDERLAND; CARS FOREVER; JAKE &
PETER PAN; KONG STRIKES BACK; MARIO KART 2017

Object-Oriented and Functional Programming

[304]

The following screenshot shows the results of executing the previous lines in the
Playground:

Exercises
Add new methods to the GameRepository class that we created in this chapter. Make sure
you create a new method to solve each algorithm and that you use a functional
programming approach:

Retrieve all the games whose average score is lower than a maximum average
score received as an argument.
Generate a string with the first letter of each game name followed by the highest
score value. Use a hyphen as a separator for each game name and highest score
value pair. That last value pair shouldn't include a hyphen after it.
Calculate the minimum playedCount value.
Calculate the maximum playedCount value.

Object-Oriented and Functional Programming

[305]

Test your knowledge
The { (game: Game) -> Bool in game.highestScore == highestScore1.
&& game.playedCount == playedCount } closure is equivalent to:

{ $0.highestScore == highestScore && $1.playedCount ==1.
playedCount }.
{ $0.highestScore == highestScore && $0.playedCount ==2.
playedCount }.
{ 0 -> 0.highestScore == highestScore && 0.playedCount3.
== playedCount }.

The closure { return condition($0) } is equivalent to:2.
{ (number: Int) -> Bool in return condition(number) }.1.
{ (number -> Bool) -> Int in condition <- (number) }.2.
{ 0 -> condition(number) }.3.

A function type specifies:3.
The parameter and return types for the function.1.
Only the parameter names required for the function.2.
The required function name and the return value without any details3.
about the parameters.

Which of the following lines declare a variable with a function type, considering4.
that the syntax must be compatible with Swift 3?

var condition: { 0 -> Int -> Bool }.1.
var condition: Int $0 returns Bool.2.
var condition: ((Int) -> Bool).3.

After we assign a tuple to a variable with the line, var tuple: (key: String,5.
value: String) = ("Name", "Garfield"), which of the following lines
accesses the first string element in the tuple, that is, the value named key?

tuple.$0.1.
tuple.1.2.
tuple.0.3.

Object-Oriented and Functional Programming

[306]

Summary
In this chapter, you learned how to refactor existing code to take full advantage of object-
oriented code. We prepared the code for future requirements, reduced maintenance cost,
and maximized code reuse.

We worked with many functional programming features included in Swift and combined
them with everything we discussed so far about object-oriented programming. We
analyzed the differences between imperative and functional programming approaches for
many algorithms. We realized that Swift 3 introduced many changes compared with the
code generated with previous Swift versions.

Now that you have learned about refactoring code to take advantage of object-oriented
programming and include functional programming pieces in our object-oriented code, we
are ready to protect and organize the code, which is the topic of the next chapter.

8
Extending and Building Object-

Oriented Code
In this chapter, we will put together many pieces of the object-oriented puzzle. We will take
advantage of extensions to add features to classes, protocols, and types that we can't modify
through source code editing. We will interact with a simple object-oriented data repository
through Picker View and consider how object-oriented code is everywhere in an iOS app.

Putting together all the pieces of the object-
oriented puzzle
In Chapter 1, Objects from the Real-World to the Playground, you learned how to recognize
objects from real-life situations. We understood that working with objects makes it easier to
write code that is easier to understand and reuse. You learned how to recognize real-world
elements and translate them into the different components of the object-oriented paradigm
supported in Swift: classes, protocols, properties, methods, and instances.

We discussed that classes represent blueprints or templates to generate the objects, which
are also known as instances. We designed a few classes with properties and methods that
represent blueprints for real-life objects. Then, we improved the initial design by taking
advantage of the power of abstraction and specialized different classes.

Extending and Building Object-Oriented Code

[308]

In Chapter 2, Structures, Classes, and Instances, you learned about an object's life cycle. We
worked with many examples to understand how object initializers and deinitializers work.
We declared our first class to generate a blueprint for objects. We customized object
initializers and deinitializers and tested their personalized behavior in action with live
examples in Swift's Playground. We considered how they work in combination with
automatic reference counting.

In Chapter 3, Encapsulation of Data with Properties, you learned the different members of a
class and how they are reflected in members of the instances generated from a class. We
worked with instance properties, type properties, instance methods, and type methods. We
worked with stored properties, getters, setters, and property observers, and we took
advantage of access modifiers to hide data. We also worked with mutable and immutable
versions of a 3D vector. We discussed the difference between mutable and immutable
classes. Immutable classes are extremely useful when we work with concurrent code.

In Chapter 4, Inheritance, Abstraction, and Specialization, you learned how to take advantage
of simple inheritance to specialize a base class. We designed many classes from top to
bottom using chained initializers, type properties, computed properties, stored properties,
and methods. Then, we coded most of these classes in the interactive Playground, taking
advantage of different mechanisms provided by Swift. We took advantage of operator
functions to overload operators that we could use with the instances of our classes. We
overrode and overloaded initializers, type properties, and methods. We also took
advantage of one of the most exciting object-oriented features: polymorphism.

In Chapter 5, Contract Programming with Protocols, you learned that Swift works with
protocols in combination with classes. The only way to have multiple inheritance in Swift is
through the usage of protocols. You learned about the declaration and combination of
multiple blueprints to generate a single instance. We declared protocols with different types
of requirements. Then, we created many classes that conform to these protocols. We worked
with type casting to take a look at how protocols work as types. Finally, we combined
protocols with classes to take advantage of multiple inheritance in Swift. We combined
inheritance for protocols and inheritance for classes.

Extending and Building Object-Oriented Code

[309]

In Chapter 6, Maximization of Code Reuse with Generic Code, you learned how to maximize
code reuse by writing code capable of working with objects of different types; that is,
instances of classes that conform to specific protocols or whose class hierarchy includes
specific superclasses. We worked with protocols and generics. We also created classes
capable of working with one or two constrained generic types. We combined inheritance,
protocols, and extensions to maximize the reusability of code. We also made classes work
with many different types. Generics are very important to maximizing code reuse in Swift.

In Chapter 7, Object-Oriented Programming and Functional Programming, you learned how to
refactor the existing code to take full advantage of object-oriented code. We prepared the
code for future requirements, reduced maintenance cost, and maximized code reuse. We
worked with many functional programming features included in Swift, and we combined
them with everything we have discussed so far about object-oriented programming. We
analyzed the differences between imperative and functional programming approaches for
many algorithms.

Now, you will learn how to extend the existing classes to achieve our goals.

Adding methods with extensions
Sometimes, we would like to add methods to an existing class. We already know how to do
this; we just need to go to its Swift source file and add a new method within the class body.
However, sometimes, we cannot access the source code for the class, or it isn't convenient to
make changes to it. A typical example of this situation is a class, struct, or any other type
that is part of the standard language elements. For example, we might want to add a
method that we can call in any Int value to initialize either a 2D or 3D point with all its
elements set to the Int value.

The following lines declare a simple Point2D class that represents a mutable 2D point with
the x and y elements. The class conforms to the CustomStringConvertible protocol;
therefore, it declares a description computed property that returns a string representation
for the 2D point. The code file for the sample is included in the
swift_3_oop_chapter_08_01 folder.

 open class Point2D: CustomStringConvertible {
 open var x: Int
 open var y: Int

 open var valuesAsDescription: String {
 return "x: \(x), y: \(y)"
 }

Extending and Building Object-Oriented Code

[310]

 open var description: String {
 get {
 return "(\(valuesAsDescription))"
 }
 }

 init(x: Int, y: Int) {
 self.x = x
 self.y = y
 }
 }

The Point2D class declares two stored properties: x and y. The valueAsDescription
computed property returns a string with the values for x and y without parentheses. The
description computed property encloses the value returned by valueAsDescription in
parentheses.

The following lines declare a Point3D class that inherits from the previously created
Point2D class and adds a z element to the inherited x and y elements. The code file for the
sample is included in the swift_3_oop_chapter_08_01 folder.

 open class Point3D: Point2D {
 open var z: Int

 open override var valuesAsDescription: String {
 return "\(super.valuesAsDescription), z:\(z)"
 }

 init(x: Int, y: Int, z: Int) {
 self.z = z
 super.init(x: x, y: y)
 }
 }

The Point3D class declares the z stored property and overrides the valueAsDescription
computed property to concatenate the value of the z stored property to the string value of
this property in the superclass. This way, the description computed property declared in the
Point2D superclass will generate the values for x, y, and z enclosed within parentheses.

Extending and Building Object-Oriented Code

[311]

Now that we have a Point2D class and a Point3D class, we want to extend the Int type to
provide methods that generate instances of these classes with all their elements initialized
with the Int value. Specifically, we want to be able to write the following line to generate a
Point2D instance with the x and y values initialized to 3:

 var point2D1 = 3.toPoint2D()

In addition, we want to be able to write the following line to generate a Point3D instance
with the x, y, and z values initialized to 5:

 var point3D1 = 5.toPoint3D()

The following lines use the extension keyword to add two methods to the Int standard
type: toPoint2D and toPoint3D. The code file for the sample is included in the
swift_3_oop_chapter_08_01 folder.

 public extension Int {
 public func toPoint2D() -> Point2D {
 return Point2D(x: self, y: self)
 }

 public func toPoint3D() -> Point3D {
 return Point3D(x: self, y: self, z: self)
 }
 }

The toPoint2D method returns a new instance of Point2D with the x and y arguments of
the initializer set to self. In this case, self represents the actual value for Int. The
toPoint3D method returns a new instance of Point3D with the x, y, and z arguments of
the initializer set to self.

The following lines use the previously added methods to create instances of both Point2D
and Point3D. The code file for the sample is included in the
swift_3_oop_chapter_08_01 folder.

 print(3.toPoint2D())
 print(5.toPoint2D())
 print(3.toPoint3D())
 print(5.toPoint3D())

The following lines show the output generated by the preceding code:

 (x: 3, y: 3)
 (x: 5, y: 5)
 (x: 3, y: 3, z:3)
 (x: 5, y: 5, z:5)

Extending and Building Object-Oriented Code

[312]

The following screenshot shows the results of executing the previous lines in the
Playground:

If you have some experience with Objective-C, you will notice that
extensions in Swift are very similar to categories in Objective-C. However,
one of the main differences is that extensions in Swift do not have names.

Now, let's imagine that both the Point2D and Point3D classes are included in an external
framework or library and that we aren't able to access the source code. Our code needs to
convert instances of Point3D to a (Int, Int, Int) tuple. It is a nice feature to generate a
tuple with named elements. Given that we cannot access the source code, we can use the
extension keyword to add a toTuple method to the Point3D class. This way, we can
easily convert a Point3D instance to a tuple. The following lines do the job. The code file for
the sample is included in the swift_3_oop_chapter_08_02 folder.

 public extension Point3D {
 public func toTuple() -> (x: Int, y: Int, z: Int) {
 return (x: x, y: y, z: z)
 }
 }

Extending and Building Object-Oriented Code

[313]

The following lines create an instance of the Point3D class and then call the recently added
toTuple method to generate a tuple composed of three Int values: (Int, Int, Int).
Then, the code prints the string representation of the generated tuple. The next line uses a
let statement to retrieve the three elements from the tuple generated by another call to the
toTuple method. Then, the code prints the values for the three retrieved elements. The last
two lines use the element names (x, y, and z) and numbers (0, 1, and 2) to access the
generated tuple values. The code file for the sample is included in the
swift_3_oop_chapter_08_02 folder.

 var point3D1 = Point3D(x: 10, y: 20, z: 15)
 var point3D1Tuple = point3D1.toTuple()
 print(point3D1Tuple)
 let (point3D1x, point3D1y, point3D1z) = point3D1.toTuple()
 print(point3D1x, point3D1y, point3D1z)
 print(point3D1Tuple.x, point3D1Tuple.y, point3D1Tuple.z)
 print(point3D1Tuple.0, point3D1Tuple.1, point3D1Tuple.2)

The following lines show the output generated by the preceding code.

 (10, 20, 15)
 10 20 15
 10 20 15
 10 20 15

The following screenshot shows the result of executing the previous lines in the
Playground:

Extending and Building Object-Oriented Code

[314]

Adding computed properties to a base type
with extensions
Swift allows us to add both computed instance properties and computed type properties to
an existing type. These are the only types of properties that we can add to an existing type,
so we cannot add simpler stored properties using extensions.

When you need to perform calculations with values that have an associated unit of
measurement, it is very common to make mistakes by mixing its different units. It is also
common to perform incorrect conversions between the different units that generate wrong
results. Swift doesn't allow us to associate a specific numerical value with a unit of
measurement. However, we can add computed properties to provide some information
about the units of measurement for a specific domain.

We worked with units when we analyzed the object-oriented approach of
the HealthKit framework in Chapter 1, Objects from the Real-Word to the
Playground. However, in this case, we just want to simplify a sum
operation with a specific resistance unit.

The need to associate quantities with units of measurement in any programming language
is easy to understand even in the most basic math and physics problems. One of the
simplest calculations is to sum two values that have an associated base unit. For example,
say that you have two electrical resistance values. One of the values is measured in ohms
and the other in kilo-ohms. To sum the values, you must choose the desired unit and
convert one of the values to the chosen unit. If you want the result to be expressed in ohms,
you must convert the value in kilo-ohms to ohms, sum the two values expressed in ohms,
and provide the result in ohms.

The following code uses variables with a suffix that defines the specific unit being used in
each case. You have probably used or seen similar conventions. The suffixes make the code
less error prone because you easily understand that r1InOhms holds a value in ohms, and
r2InKohms holds a value in kilo-ohms. Thus, there is a line that assigns the result of
converting the r2InKohms value to ohms to the new r2InOhms variable. The last line
calculates the sum and holds the result in ohms because both variables hold values in the
same unit of measurement. The code file for the sample is included in the
swift_3_oop_chapter_08_03 folder.

 var r1InOhms = 500.0
 var r2InKohms = 5.2
 var r2InOhms = r2InKohms * 1e3
 var r1PlusR2InOhms = r1InOhms + r2InOhms

Extending and Building Object-Oriented Code

[315]

Obviously, the code is still error prone because there won't be any exception thrown or
syntax error if a developer adds the following line to sum ohms and kilo-ohms without
performing the necessary conversions. The code file for the sample is included in the
swift_3_oop_chapter_08_04 folder.

 // The following line produces a wrong result
 var r3InOhms = r1InOhms + r2InKohms

There is no rule that ensures that all the variables included in the sum operation must use
the same suffix, that is, the same unit. There aren't invalid operations between variables that
hold values with incompatible units. For example, you might sum a voltage value to a
resistance value, and the code won't produce any error or warning.

The following lines use the extension keyword to add three get-only computed properties
to the Double standard type: ohm, kohm, and mohm. The code file for the sample is included
in the swift_3_oop_chapter_08_05 folder.

 public extension Double {
 public var ohm: Double { return self }
 public var kohm: Double { return self * 1e3 }
 public var mohm: Double { return self * 1e6 }
 }

The ohm get-only computed property returns self, that is, the actual value for Double. The
kohm get-only computed property returns self multiplied by 1,000. In this case, the code
uses the exponential notation, where 1e3 means 10 to the third power, that is, 10 * 10 * 10.
Finally, the mohm get-only computed property returns self multiplied by 1,000,000. In this
case, the code uses the exponential notation where 1e6 means 10 to the sixth power, that is,
10 * 10 * 10 * 10 * 10 * 10.

After we add the previous extensions, we want to perform the following calculation: 500
ohms + 5.2 KOhms + 3.1 MOhms. If we convert all the values to ohms and express the result
in ohms, we must calculate 500 ohms + 5,200 ohms + 3,100,000 ohms. We can declare three
variables with the number followed by a dot and the extension we created to convert the
number to the value in a baseline ohm unit. The extension methods will return a Double
number that will be always converted to ohms. Then, we can easily calculate the total
resistance value in ohms by computing the sum of the three variables.

Extending and Building Object-Oriented Code

[316]

The following lines declare three variables, and each one uses the get-only computed
property to specify the specific unit in which the original value is expressed: ohm, kohm, or
mhom. Then, the code prints the real values stored in the three variables: resistance1,
resistance2, and resistance3. The three values are stored in ohms because the get-only
computed property returns the result of the conversion of each unit to ohms. Then, the code
computes the sum of the three variables and stores the result expressed in ohms in the
totalResistance variable. The code file for the sample is included in the
swift_3_oop_chapter_08_05 folder.

 var resistance1 = 500.0.ohm
 var resistance2 = 5.2.kohm
 var resistance3 = 3.1.mohm
 print("resistance1 in ohms: \(resistance1)")
 print("resistance2 in ohms: \(resistance2)")
 print("resistance3 in ohms: \(resistance3)")
 var totalResistance = resistance1 + resistance2 + resistance3

 print("Total resistance in ohms: \(totalResistance)")

The following lines show the output generated after executing the preceding code. The code
file for the sample is included in the swift_3_oop_chapter_08_05 folder.

 resistance1 in ohms: 500.0
 resistance2 in ohms: 5200.0
 resistance3 in ohms: 3100000.0
 Total resistance in ohms: 3105700.0

The following screenshot shows the results of executing the previous lines in the
Playground:

Extending and Building Object-Oriented Code

[317]

We can take advantage of Swift's flexibility with property names and use the Greek omega
letter (Ω) instead of the ohm word in each of the get-only computed properties. You can
easily insert the Greek omega letter in Mac OS by pressing Alt + Z. You can check other
symbols in Mac OS by pressing Command + Control + Space. The following lines use the
extension keyword again to add three get-only computed properties to the Double
standard type: Ω, KΩ, and MΩ. The code file for the sample is included in the
swift_3_oop_chapter_08_06 folder.

 public extension Double {
 public var Ω: Double { return self }
 public var KΩ: Double { return self * 1e3 }
 public var MΩ: Double { return self * 1e6 }
 }

The following lines declare three variables, and each one uses the get-only computed
property to specify the specific unit in which the original value is expressed: Ω, KΩ, or MΩ.
Then, the code prints the real values stored in the three variables—resistance4,
resistance5, and resistance6—then it computes the sum and prints the result. The
code looks really nice because it is easy to understand the unit in which each resistance
value is expressed. The code file for the sample is included in the
swift_3_oop_chapter_08_06 folder.

 var resistance4 = 500.0.Ω
 var resistance5 = 5.2.KΩ
 var resistance6 = 3.1.MΩ
 print("resistance4 in Ω: \(resistance4)")
 print("resistance5 in Ω: \(resistance5)")
 print("resistance6 in Ω: \(resistance6)")

 var totalResistance456 = resistance4 + resistance5 + resistance6

 print("Total resistance in Ω: \(totalResistance456)")

The following lines show the output generated after executing the preceding code:

 resistance4 in Ω: 500.0
 resistance5 in Ω: 5200.0
 resistance6 in Ω: 3100000.0
 Total resistance in Ω: 3105700.0

Extending and Building Object-Oriented Code

[318]

The following screenshot shows the results of executing the previous lines in the
Playground:

Declaring new convenience initializers with
extensions
So far, we have always worked with one specific type of initializer for all the classes:
designated and initializers. These are the primary initializers for a class in Swift, and they
make sure that all the properties are initialized. In fact, every class must have at least one
designated initializer. However, it is important to note that a class can satisfy this
requirement by inheriting a designated initializer from its superclass.

There is another type of initializer known as convenience initializer that acts as a secondary
initializer and always ends up calling a designated initializer. Convenience initializers are
optional, so any class can declare one or more convenience initializers to provide initializers
that cover specific use cases or more convenient shortcuts to create instances of a class.

Now, imagine that we cannot access the code for the previously declared Point3D class.
We are working on an app, and we discover too many use cases in which we have to create
an instance of a Point3D class based on the values found on any of the following:

A tuple with three Int values: (Int, Int, Int)
A single Int value that should be used to initialize x, y, and z
The x and y properties in a Point2D instance and an Int value that adds the z
component

Extending and Building Object-Oriented Code

[319]

Swift allows us to add convenience initializers when we extend classes. It
isn't possible to add designated initializers using the extend keyword.

The following lines use the extension keyword to add three convenience initializers to the
existing Point3D class. The code file for the sample is included in the
swift_3_oop_chapter_08_07 folder.

 public extension Point3D {
 convenience init(tuple: (Int, Int, Int)) {
 self.init(x: tuple.0, y: tuple.1, z: tuple.2)
 }

 convenience init(singleValue: Int) {
 self.init(x: singleValue, y: singleValue, z: singleValue)
 }

 convenience init(point2D: Point2D, z: Int) {
 self.init(x: point2D.x, y: point2D.y, z: z)
 }
 }

The convenience keyword before init indicates to Swift that we are declaring a
convenience initializer instead of the default designated initializer. The first convenience
initializer receives a tuple argument of type (Int, Int, Int) and calls the designated
initializer for the class using self.init and providing the values for the three required
arguments: x, y, and z. The second convenience initializer receives a singleValue
argument of the Int type and calls the designated initializer for the class with
singleValue for the three required arguments. The third convenience initializer receives
two arguments: point2D and z. The first argument is of the Point2D type, and the second
is of type Int. The convenience initializer calls the designated initializer for the class with
point2D.x for x, point2D.y for y, and z for z.

The following lines use the recently added convenience initializers to create instances of the
Point3D class and print their description. The code file for the sample is included in the
swift_3_oop_chapter_08_07 folder.

 var tuple1 = (10, 20, 30)
 var tuple2 = (5, 10, 15)

 var point3D3 = Point3D(tuple: tuple1)
 var point3D4 = Point3D(tuple: tuple2)
 print(point3D3)
 print(point3D4)

Extending and Building Object-Oriented Code

[320]

 var point3D5 = Point3D(singleValue: 5)
 print(point3D5)

 var point2D6 = Point2D(x: 10, y: 11)
 var point3D6 = Point3D(point2D: point2D6, z: 12)
 print(point3D6)

The following lines show the output generated after executing the preceding code:

 (x: 10, y: 20, z:30)
 (x: 5, y: 10, z:15)
 (x: 5, y: 5, z:5)
 (x: 10, y: 11, z:12)

The following screenshot shows the results of executing the previous lines in the
Playground:

Defining subscripts with extensions
Let's consider that we still cannot access the code for the previously declared Point3D class.
We are working on an app, and we discover that it would be nice to access the x, y, and z
values of a Point3D instance with [0], [1], and [2]. We can easily add a subscript by
extending the Point3D class.

Extending and Building Object-Oriented Code

[321]

The following lines use the extension keyword to a subscript to the existing Point3D
class. The code file for the sample is included in the swift_3_oop_chapter_08_08 folder.

 public extension Point3D {
 public subscript(index: Int) -> Int? {
 switch index {
 case 0: return x
 case 1: return y
 case 2: return z
 default: return nil
 }
 }
 }

The following lines use the recently added subscript to access the elements of a Point3D
instance. The code file for the sample is included in the swift_3_oop_chapter_08_08
folder.

 var point3D7 = Point3D(x: 10, y: 15, z: 4)
 if let point3D7X = point3D7[0] {
 print("X or [0]: \(point3D7X)")
 }
 if let point3D7Y = point3D7[1] {
 print("Y or [1]: \(point3D7Y)")
 }
 if let point3D7Z = point3D7[2] {
 print("Z or [2]: \(point3D7Z)")
 }

The following lines show the output generated after executing the preceding code:

 X or [0]: 10
 Y or [1]: 15
 Z or [2]: 4

Working with object-oriented code in iOS
apps
So far, we have created and extended classes in the Playground. In fact, we could execute
the same sample code in the Swift REPL and the web-based Swift sandbox.

Extending and Building Object-Oriented Code

[322]

Now, we will create a simple iOS app based on the Single View Application template with
Xcode. We will recognize the usage of object-oriented code included in the template, that is,
before we add components and code to the app. Then, we will take advantage of the
GameRepository class we created in the previous chapter and use it to populate a UI
element.

You will need Xcode 8 or greater in order to work with this example.

Navigate to File | New | Project… in Xcode. Click on iOS at the top of the Choose a
template for your new project dialog box. Select Single View Application and click on
Next, as shown in the following screenshot:

Extending and Building Object-Oriented Code

[323]

Enter Chapter 8 in Product Name and select Swift in language and Universal in Devices,
as shown in the next screenshot. This way, we will create an app that can run on both iPad
and iPhone devices. Then, click on Next:

Select the desired folder in which you want to create the new project folder; ensure
that Don't add to any project or workspace is selected in the Add to the drop-down list in
case this option is shown in the dialog box, and click on Create. Xcode will create the new
project and all the related files. The following screenshot shows the project navigator
located on the left-hand side of the Xcode window:

Extending and Building Object-Oriented Code

[324]

Now, let's take a look at the initial code for the two Swift source files included in the
Chapter8 module:

AppDelegate.swift: This declares the AppDelegate class, and it is the entry
point to our application
ViewController.swift: This declares the ViewController class

The following lines show the initial code for the AppDelegate.swift source file that
declares the AppDelegate class without the comments that the template includes in each
method. The code file for the sample is included in the swift_3_oop_chapter_08_09
folder.

 import UIKit

 @UIApplicationMain
 class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 return true
 }

 func applicationWillResignActive(_ application: UIApplication) {
 }

 func applicationDidEnterBackground(_ application: UIApplication) {
 }

 func applicationWillEnterForeground(_ application: UIApplication) {
 }

 func applicationDidBecomeActive(_ application: UIApplication) {
 }

 func applicationWillTerminate(_ application: UIApplication) {
 }
 }

Extending and Building Object-Oriented Code

[325]

The @UIApplicationMain attribute included at the top of the declaration of the
AppDelegate class indicates that the class is designated as the delegate of the shared
UIApplication object in any iOS app. The AppDelegate class is a subclass of the
UIResponder class and conforms to the UIApplicationDelegate protocol. The class
declares a window stored property of the UIWindow type optional (UIWindow?) and six
instance methods. All the methods receive an application argument of the
UIApplication type, which is another subclass of UIResponder. The application
argument will always be the same instance of UIApplication that represents the current
iOS app, that is, our app. The application method receives a second argument named
launchOptions that provides a dictionary with keys indicating the reason that your app
was launched for. This method is the only one that has code and just returns true.

As you learned in Chapter 3, Encapsulation of Data with Properties, Swift 3
normalized the first parameter declaration in methods and functions. As a
result of this, by default, Swift 3 externalizes the first parameter. All the
methods that receive an application argument of the UIApplication
type in the previous code supress externalization of the argument label for
the first parameter by adding an underscore (_) followed by a space before
the parameter label (application) in each method's declaration. This
way, the code generates methods that we can call without specifying the
argument label for the first parameter, that is, with the default behavior
we had in Swift 2.3 and 2.2.

The following lines show the initial code for the ViewController.swift source file that
declares the ViewController class without the comments that the template includes in
each method. The code file for the sample is included in the
swift_3_oop_chapter_08_09 folder.

 import UIKit

 class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
 }

Extending and Building Object-Oriented Code

[326]

The ViewController class is a subclass of the UIViewController class and overrides two
parameterless instance methods: viewDidLoad and didReceiveMemoryWarning. Both
methods include a line of code that calls the method with the same name in its superclass.

It is important to take into account that the UIViewController class—that is, the
superclass for ViewController—is a subclass of the UIResponder class and conforms to
the following protocols: NSCoding, UIAppearanceContainer, UITraitEnvironment,
UIContentContainer, and UIFocusEnvironment.

We just created a new project based on a template, and we are already working with classes
that have superclasses, conform to protocols, declare stored properties, define instance
methods, and override inherited instance methods. Everything you learned in the previous
chapters is extremely useful to adding object-oriented code to the initial templates for any
kind of app or application, and it is also useful to understand how to interact with the
different object-oriented frameworks based on our targets.

Click onMain.storyboard in the Project Navigator on the left-hand side of the Xcode
window. The editor will switch to a design view that displays how the view will look. Click
on View Controller under View Controller Scene. Make sure that you see the Utilities
pane on the right-hand side and check the values for Identity Inspector. In order to do so,
navigate to View | Utilities | Show Identity Inspector or press Command + Option + 3. The
value for Class will be ViewController under Custom Class, as shown in the following
screenshot:

The previously introduced ViewController class is the custom class associated with the
View Controller tab in the main storyboard for the iOS app. We will add code to this class
later.

Extending and Building Object-Oriented Code

[327]

Now, we want to add and connect a simple UI element that will allow us to make a
selection from multiple choices—specifically a UIPickerView instance. A picker view uses
a spinning-wheel or slot-machine metaphor to show one or more sets of values. We can
select the desired values by rotating the wheels and making the desired row of values align
with a selection indicator.

Make sure that the Object Library tab is visible in Library View, which Xcode displays in
the bottom half of the Utilities pane on the right-hand side. You just need to click on the
Show the Object Library button at the top of the bottom half. Click on the Filter textbox
located at the bottom and type Picker. Object Library will display all the objects that
contain Picker, and one of them is Picker View, as shown in the following screenshot:

Extending and Building Object-Oriented Code

[328]

Drag Picker View from the previously shown list to the rectangle that defines the view in
the preview. This way, we will have a Picker View component on the view in the main
storyboard, as shown in the following screenshot. Note that the class is UIPickerView:

We added a Picker View component to the view. Now, we have to expose the component
to make it accessible through code in the previously analyzed ViewController class.

Navigate to View | Assistant Editor | Show Assistant Editor in the Xcode menu or simply
click on the button with two intersecting circles in the upper-right corner (the second
button). Xcode will display the source code for the ViewController class on the right-
hand side of the view preview for the main storyboard.

Press the Ctrl key and hold it while you drag the recently added Picker View component
from the view to the blank line after the ViewController class declaration. Xcode will
display a line and a tooltip with the following legend at the position to which you are
dragging the mouse: Insert Outlet or Outlet Collection. Release the Ctrl key, and Xcode
will display a pop-up dialog box asking us for a name for the new property and IBOutlet
that it will create. Enter picker in the Name textbox and then click on Connect:

Extending and Building Object-Oriented Code

[329]

After we click on the Connect button, the following highlighted line will appear within the
ViewController class body. The code file for the sample is included in the
swift_3_oop_chapter_08_09 folder.

 class ViewController: UIViewController {

 @IBOutlet weak var picker: UIPickerView!

The new line uses the @IBOutlet decorator to indicate the outlet connection. The line
declares a picker stored property as a weak reference to an implicitly unwrapped optional
UIPickerView. The weak keyword instructs Swift to use a weak reference that allows the
possibility of the object that the property points to become nil and avoids retain cycles.

The exclamation mark (!) after the UIPickerView class name indicates that Xcode wants
Swift to treat picker as an implicitly unwrapped optional UIPickerView class. This way,
the optional will be automatically unwrapped whenever the property is used. However, if it
points to nil, it will trigger a runtime error.

Extending and Building Object-Oriented Code

[330]

You will notice there are two small circles on the left-hand side of the new line of code. If
you let the cursor hover over this small icon, Xcode will highlight thePicker View
component in the view connected to this property. If you click on the icon, Xcode will
display a tooltip with the story board name, Main.storyboard, and the related component,
Picker, as shown in the following screenshot:

We can easily interact with the Picker View component through the recently added picker
property in our ViewController class.

Adding an object-oriented data repository to
a project
Now, we will add one protocol and many classes we created in the previous chapter to
generate the GameRepository class. We want to display a list of game names in the Picker
View. We will add the following Swift source files in the project within the Chapter8
group:

Identifiable.swift

Entity.swift

Repository.swift

Game.swift

GameRepository.swift

Extending and Building Object-Oriented Code

[331]

Click on the Chapter8 group in Project Navigator (the icon represents a folder). Do not
confuse it with the Chapter8 project that is the parent for the Chapter8 group. Navigate to
File | New | File… and select Swift File as the template for your new file. Then, click on
Next and enter Identifiable in the Save As textbox. Make sure that Chapter8 with the
folder icon is selected in the Group drop-down menu, as shown in the next screenshot, and
then click on Create. Swift will add the new Identifiable.swift source file to the
Chapter8 group within the Chapter8 project:

Add the following code for the recently created Identifiable.swift source file. The code
file for the sample is included in the swift_3_oop_chapter_08_09 folder.

 public protocol Identifiable {
 var id: Int { get }
 }

Extending and Building Object-Oriented Code

[332]

Follow the previously explained steps to add a new Entity.swift source file to the
Chapter8 group within the Chapter8 project. Add the following code to the new source file.
The code file for the sample is included in the swift_3_oop_chapter_08_09 folder.

 open class Entity: Identifiable {
 open let id: Int

 init(id: Int) {
 self.id = id
 }
 }

Follow the previously explained steps to add a new Repository.swift source file to the
Chapter8 group within the Chapter8 project. Add the following code to the new source file.
The code file for the sample is included in the swift_3_oop_chapter_08_09 folder.

 open class Repository<Element: Identifiable> {
 open func getAll() -> [Element] {
 return [Element]()
 }
 }

Follow the previously explained steps to add a new Game.swift source file to the Chapter8
group within the Chapter8 project. Add the following code to the new source file. The code
file for the sample is included in the swift_3_oop_chapter_08_09 folder.

 open class Game: Entity, CustomStringConvertible {
 open var name: String
 open var highestScore: Int
 open var playedCount: Int
 open var description: String {
 get {
 return "id: \(id), name: "\(name)", highestScore:
\(highestScore),
 playedCount: \(playedCount)"
 }
 }
 init(id: Int, name: String, highestScore: Int, playedCount: Int) {
 self.name = name
 self.highestScore = highestScore
 self.playedCount = playedCount
 super.init(id: id)
 }
 }

Extending and Building Object-Oriented Code

[333]

Follow the previously explained steps to add a new GameRepository.swift source file to
the Chapter8 group within the Chapter8 project. Add the following code to the new source
file. The code file for the sample is included in the swift_3_oop_chapter_08_09
folder.

 open class GameRepository: Repository<Game> {
 open override func getAll() -> [Game] {
 var gamesList = [Game]()
 gamesList.append(Game(id: 1, name: "Invaders 2017", highestScore:
1050,
 playedCount: 3_050))
 gamesList.append(Game(id: 2, name: "Minecraft", highestScore:
3741050,
 playedCount: 780_009_992))
 gamesList.append(Game(id: 3, name: "Minecraft Story Mode",
 highestScore: 67881050, playedCount: 304_506_506))
 gamesList.append(Game(id: 4, name: "Soccer Warriors", highestScore:
10_025,
 playedCount: 320_450))
 gamesList.append(Game(id: 5, name: "The Walking Dead Stories",
 highestScore: 1_450_708, playedCount: 75_405_350))
 gamesList.append(Game(id: 6, name: "Once Upon a Time in
Wonderland",
 highestScore: 1_050_320, playedCount: 7_052))
 gamesList.append(Game(id: 7, name: "Cars Forever", highestScore:
6_705_203,
 playedCount: 850_021))
 gamesList.append(Game(id: 8, name: "Jake & Peter Pan",
highestScore: 4_023_134,
 playedCount: 350_230))
 gamesList.append(Game(id: 9, name: "Kong Strikes Back",
 highestScore: 1_050_230, playedCount: 450_050))
 gamesList.append(Game(id: 10, name: "Mario Kart 2017",
 highestScore: 10_572_340, playedCount: 3_760_879))
 return gamesList
 }
 }

Extending and Building Object-Oriented Code

[334]

We added all the necessary source files to include the protocol and the classes that allow us
to work with the GameRepository class in our app. The following screenshot shows the
Project Navigator with all the new files added to the Chapter8 group. In this case, we will
add all the files to the same group. However, in more complex apps, it would be convenient
to split the files in different groups to have a better organization of the code:

Extending and Building Object-Oriented Code

[335]

Interacting with an object-oriented data
repository through Picker View
Now, we have to add code to the ViewController class in the ViewController.swift
source file to make the class conform to two additional protocols:
UIPickerViewDataSource and UIPickerViewDelegate. The conformance to the
UIPickerViewDataSource protocol allows us to use the class as a data source for the
UIPickerView class that represents the Picker View component. The conformance to the
UIPickerViewDelegate protocol allows us to handle the events raised by the
UIPickerView class.

The following lines show the new code for the ViewController class. The code file for the
sample is included in the swift_3_oop_chapter_08_09 folder.

 class ViewController: UIViewController, UIPickerViewDelegate,
 UIPickerViewDataSource {
 @IBOutlet weak var picker: UIPickerView!

 private var gamesList: [Game] = [Game]()

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a
nib.
 picker.delegate = self
 picker.dataSource = self

 let gameRepository = GameRepository()
 gamesList = gameRepository.getAll()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 func numberOfComponents(in pickerView: UIPickerView) -> Int {
 // Return the number of columns of data
 return 1
 }

Extending and Building Object-Oriented Code

[336]

 func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int)
 -> Int {
 // Return the number of rows of data
 return gamesList.count
 }

 func pickerView(_ pickerView: UIPickerView, titleForRow row: Int,
 forComponent component: Int) -> String? {
 // Return the data for the row. In this case,
 // we don't have columns
 return gamesList[row].name
 }

 func pickerView(_ pickerView: UIPickerView,
 didSelectRow row: Int, inComponent component: Int) {
 // Retrieve the game for the selected row
 let selectedGame = gamesList[row]
 print("Selected game name: \(selectedGame.name).
 Highest score: \(selectedGame.highestScore)")
 }
 }

We made changes to the class declaration to make it conform to the two additional
protocols. We declared a private gamesList stored property of the Array<Game> type. We
used the [Game] shortcut for this type. We then added the following lines to the overridden
viewDidLoad method.

 picker.delegate = self
 picker.dataSource = self

 let gameRepository = GameRepository()
 gamesList = gameRepository.getAll()

The code assigns the current instance of the ViewController class identified by self to
the picker.delegate property. We can do this because the ViewController class
conforms to the UIPickerViewDelegate protocol. Then, the code assigns the current
instance of the ViewController class to the picker.dataSource property. We can do
this because the ViewController class conforms to the UIPickerViewDataSource
protocol. This way, we can specify the data source and delegate for Picker View.

Then, we will create an instance of the GameRepository class and save Array<Game> with
the list of games returned by the getAll method in the gamesList property. This way, we
will be able to use gamesList later.

Extending and Building Object-Oriented Code

[337]

Then, we implemented two methods declared in the UIPickerViewDataSource protocol:

func numberOfComponentsInPickerView(in pickerView:

UIPickerView) -> Int: This returns the number of columns to display in
Picker View. In this case, we just want to display the name for each game, so we
added code to this method to return 1.
func pickerView(_ pickerView: UIPickerView,

numberOfRowsInComponent component: Int) -> Int: This returns the
number of rows to be displayed in each component or column. In this case, we
just have one column, and we will display the number of games included in
gamesListArray<Game>. Thus, we added code to this method to return
gamesList.count.

Finally, we implemented two methods declared in the UIPickerViewDelegate protocol:

func pickerView(_ pickerView: UIPickerView, titleForRow row:

Int, forComponent component: Int) -> String?: This returns the data
for the row to be displayed in Picker View. In this case, we just want to display
the name for each game, so we added code to this method to return the name
property for the gamesList element at the received row value.
func pickerView(_ pickerView: UIPickerView, didSelectRow row:

Int, inComponent component: Int): Whenever the user makes a change to
the Picker View selection, this method is executed, and the row argument
includes the value for the selected row. We use the row value to retrieve the Game
instance corresponding to the same index value for the gamesList array and
then call print to display the selected game name and highestScore property
values on the target output.

Extending and Building Object-Oriented Code

[338]

Now, we can debug the iOS app on an installed iOS simulator running iOS 10, such as an
iPhone 7 Plus. Click on the Play button in the upper-left corner of the Xcode window. Once
the simulator launches and the app begins its execution, you will see the Picker View
component displaying all the game names. When we select a game in the Picker View, the
target output will display the selected game name and its highest score, as shown in the
following screenshot:

Extending and Building Object-Oriented Code

[339]

Go to the Xcode editor for the ViewController.swift source file and move the cursor to
the following line in the ViewController class:

 print("Selected game name: \(selectedGame.name). Highest score:
 \(selectedGame.highestScore)")

Navigate to Debug | Breakpoint | Add Breakpoint at Current Line. Go back to the
simulator and select a different game name from Picker View. Xcode will hit the break
point, and we will be able to inspect the value for the selectedGame constant that
references an instance of Game. The debugger will display the ID property as part of
Chapter8.Entity because this property is inherited from the Entity class. The values for
the other properties defined in the Game class are listed after the id property, as shown in
the following screenshot:

Extending and Building Object-Oriented Code

[340]

In this case, we have just a few Game instances in the game list. However, we must take into
account that sometimes, it won't be convenient to have all the instances alive in case they
have a big impact on memory consumption. We can transform the data from the instances
to instances that have less memory footprint and retrieve the entire instances by a related ID
when we change the selection in Picker View. For example, we can generate instances that
only have a few stored properties instead of working with instances with all the properties.
In this case, the Game instance doesn't have too many properties. However, in other cases,
we might have instances that have dozens of properties.

Object-oriented code is great. However, we should not forget memory
footprint, as the number of required instances to keep alive increases in
certain use cases. In our previous example, it doesn't make sense to
transform the Game instances into simpler values because the code won't
cause any memory issues.

Exercises
Use the recently created iOS app as the baseline and extend it to provide the following
features:

Add a text box to allow the user to enter the text that the game names must match
in order to be displayed as an option in View Picker
After the user selects a game in View Picker, display a new view that shows the
highest score and the played count for the chosen game

Test your knowledge
We can add the following type of initializers to a class with extensions:1.

Convenience initializers.1.
Designated initializers.2.
Primary initializers.3.

We can add the following type of properties to a class with extensions:2.
Read/write stored type properties.1.
Primary properties.2.
Computed instance properties and computed type properties.3.

Extending and Building Object-Oriented Code

[341]

Convenience initializers are:3.
Optional.1.
Required.2.
Required only in superclasses.3.

A convenience initializer acts as:4.
A required initializer that doesn't need to call any other initializer.1.
A secondary initializer that doesn't need to call any other initializer.2.
A secondary initializer that always ends up calling a designated3.
initializer.

If we declare the type for a property as UIPickerView!, Swift will treat the5.
property as:

An implicitly wrapped optional.1.
An implicitly unwrapped optional.2.
An exact equivalent of UIPickerView?.3.

The default code for the AppDelegate class declares methods that receive an6.
application argument as the first parameter and:

Supresses externalization of the argument label by adding an1.
underscore (_) followed by a space before the parameter label
(application) in each method's declaration.
Enforces externalization of the argument label by adding an2.
underscore (_) followed by a space before the parameter label
(application) in each method's declaration.
Supresses externalization of the argument label by adding an asterisk3.
(*) followed by a space before the parameter label (application) in
each method's declaration.

Extending and Building Object-Oriented Code

[342]

Summary
In this chapter, you learned how to add methods, computed properties, convenience
initializers, and scripts using extensions and without editing the original source code for the
original classes or types. Then, we analyzed the initial object-oriented code in the Single
View Application template for an iOS app.

We added a simple UI element to the template and then we added classes that we tested in
the Swift Playground in the previous chapter. We interacted with a simple object-oriented
data repository through Picker View and discussed how object-oriented code is everywhere
in an iOS app.

Now that you have learned to write object-oriented code in Swift, you are ready to use
everything you learned in real-life applications that will not only rock, but also maximize
code reuse and simplify maintenance.

9
Exercise Answers

Chapter 1, Objects from the Real World to
the Playground
Questions Answers

Q1 3

Q2 2

Q3 1

Q4 2

Q5 3

Q6 1

Q7 2

Q8 1

Q9 2

Exercise Answers

[344]

Chapter 2, Structures, Classes, and
Instances
Questions Answers

Q1 2

Q2 1

Q3 1

Q4 3

Q5 1

Q6 3

Chapter 3, Encapsulation of Data with
Properties
Questions Answers

Q1 1

Q2 3

Q3 1

Q4 2

Q5 2

Q6 1

Q7 2

Q8 1

Exercise Answers

[345]

Chapter 4, Inheritance, Abstraction, and
Specialization
Questions Answers

Q1 1

Q2 2

Q3 1

Q4 2

Q5 3

Q6 3

Q7 1

Q8 2

Chapter 5, Contract Programming with
Protocols
Questions Answers

Q1 2

Q2 3

Q3 1

Q4 1

Q5 3

Q6 2

Exercise Answers

[346]

Chapter 6, Maximization of Code Reuse with
Generic Code
Questions Answers

Q1 1

Q2 3

Q3 2

Q4 1

Q5 2

Chapter 7, Object-Oriented and Functional
Programming
Questions Answers

Q1 2

Q2 1

Q3 1

Q4 3

Q5 3

Exercise Answers

[347]

Chapter 8, Extending and Building Object-
Oriented Code
Questions Answers

Q1 1

Q2 3

Q3 1

Q4 3

Q5 2

Q6 1

Index

A
actions
 recognizing, for method creation 25, 27
API objects
 working with, in Xcode Playground 35
 Xcode Playground 37, 38, 40
arrays
 filtering, with complex conditions 291, 293
 map method, combining with reduce method

298, 300, 301
 map method, used to transform values 295, 297
associated types
 adding, in protocols 246
 declaring, in protocols 235
 inheriting, in protocols 246
attributes 22
Automatic Reference Counting (ARC) 44, 48

B
base type
 computed properties, adding with extensions

314, 316, 318
 extending, to custom protocols 253, 255, 260

C
call methods
 working, that receive protocols as arguments

180, 181, 182, 183, 184
class hierarchies
 creating, to abstract 109, 111, 112, 113
 creating, to specialize behavior 109, 111, 112,

113

class inheritance
 combining 172, 173, 174, 175, 176, 177, 178,

179, 180
 combining, with protocol inheritance 197, 201,

204, 206, 207, 208
class
 declaring, to multiple protocols 214, 216
 declaring, with constrained generic type 220,

223, 225
 declaring, with constrained generic types 239,

241

classes
 about 44, 45, 46
 declaring 49
 declaring, that adopt protocols 164, 168, 169
 declaring, that inherit from another class 117,

118, 120, 121, 122
 downcasting with 185, 186, 187, 189
 generating, for object creation 20, 22
 organizing, with UML diagrams 28, 29, 31, 32,

33

compound assignment operator functions
 declaring 149
computed properties
 adding, to base type with extensions 314, 316,

318

 generating, with getters 74, 76, 77, 78, 79, 80,
81, 83

 generating, with setters 74, 76, 77, 78, 79, 80,
81, 83

constants
 recognizing, for property creation 22, 23, 24, 25
constraint
 used, for declaring protocol 213
convenience initializers
 about 318
 declaring, with extensions 318
customization 46, 47

[349]

D
data repository
 creating, with generics 286, 289, 290
 creating, with protocols 286, 289, 290
deinitialization
 about 47
 customizing 56, 57, 59, 60, 62

E
element types, class definition
 about 67, 69
 deinitializers 67
 initializers 67
 instance methods 68
 instance properties 68
 nested types 68
 subscripts 68
 type methods 68
 type properties 67
equivalent closures
 writing, with simplified code 286
existing classes
 generalizing, with generics 248, 251
extensions
 computed properties, adding to base type 314,

316, 318
 convenience initializers, declaring 318
 methods. adding 309, 311, 313
 subscripts, defining 320

F
fields 22
filter method
 chaining 301, 303
function types
 working, in classes 279, 280
functional programming
 as first-class citizens 277, 278
functional version
 creating, of array filtering 282, 284

G
generic class
 used, for multiple types 226, 228, 230, 232

 used, with generic type parameters 243, 245
generic code 211
getters
 combining 83, 85, 86
 computed properties, generating with 74, 76, 77,

78, 79, 80, 81, 83
 values, transforming with 93, 94

I
IBM Swift Sandbox
 reference 12
immutable classes
 building 103
inheritance 114, 116
initialization
 about 46, 47
 customizing 49, 51, 53, 54
initializer requisites
 combining, in protocols with generic types 234
instances
 about 44, 45, 46
 creating, of classes 63, 64
Integrated Development Environment (IDE) 7
iOS apps
 object-oriented code, working with 321, 322,

323, 324, 325, 326, 328, 330

M
Mac OS
 required software, installing 7, 10
map method
 chaining 301, 303
 combining, with reduce method 298, 300, 301
 used, to transform values 295, 297
method overloading 122, 123, 124, 126
method overriding
 about 122, 123, 124, 126, 129
 properties 127, 128
 subclasses, controlling 129, 134
methods
 about 26
 adding, with extensions 309, 310, 311, 313
 creating, by action recognition 25, 27
 requisites, specifying for 195
multiple inheritance of protocols

[350]

 advantages 169, 170, 171
mutable classes
 creating 99, 100

O
object-oriented code
 working, in iOS apps 321, 322, 323, 324, 325,

326, 328, 330
object-oriented data repository
 adding, to project 330, 331, 332, 333, 334
 interacting, through Picker View 335, 336, 337,

338, 339
object-oriented programming
 code, refactoring 264, 265, 267, 268, 270, 272,

274, 276
object-oriented puzzle
 implementing 307, 308, 309
objects
 capturing, from real world 13, 14, 15, 16, 19, 20
 creating, by generation of class 20, 22
operator functions
 declaring, for subclasses 152, 153
operator overloading
 advantage 146

P
parametric polymorphism 211
Picker View
 object-oriented data repository, interacting with

335, 336, 337, 338, 339
polymorphism
 working 134, 136, 137, 139, 141, 142, 143,

146

project
 object-oriented data repository, adding 330, 331,

332, 333, 334
properties
 about 22
 creation, by recognizing variables 22, 24, 25
 requisites, specifying 193, 194
property observers 88, 90, 91, 92
protocol type
 instances, treating as subclass 189, 190, 191,

192

protocols

 associated types, adding in 247
 associated types, declaring in 235
 associated types, inheriting in 246
 combining 172, 173, 174, 175, 177, 178, 179,

180

 declaring 160, 162
 declaring, constraint used 212
 downcasting with 184, 186, 187, 189
 initializer requisites, combining with generic types

234

 working, in classes 157, 158, 159, 160

R
reduce method
 chaining 301, 303
related property
 combining 83, 85, 86

S
setters
 combining 83, 85, 86
 computed properties, generating with 74, 76, 77,

78, 79, 80, 81, 83
 values, transforming with 93, 94
stored properties
 declaring 69, 70, 71, 72
structures 44, 45, 46
subclasses
 declaring, that inherit conformance to protocols

218, 220
subscripts
 defining, with extensions 320
 shortcuts, creating 236
Swift 3
 working, with on web 12
Swift Playgrounds
 reference 8
Swift Read Evaluate Print Loop 7
Swift
 reference 7

T
type properties
 used, for storing values shared by instances of

classes 95, 97, 98

typecasting
 working 136, 138, 139, 141, 142, 143, 146

U
Ubuntu Linux
 download link 11
 required software, installing 11
unary operator functions
 declaring 151, 152
Unified Modeling Language (UML)
 about 25
 diagrams, used for organizing classes 28, 29,

31, 32, 33
User Experiences (UX) 13
User Interfaces (UI) 13

V
values
 transforming, with getters 93, 94
 transforming, with setters 93, 94
variables
 recognizing, for property creation 22, 23, 24, 25

W
web
 Swift 3, working with 12

X
Xcode Playground 8
 API objects, working with 34, 36, 38, 40
Xcode
 about 7

	Cover
	Credits
	About the Author
	Acknowledgement
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Objects from the Real World to the Playground
	Installing the required software on Mac OS
	Installing the required software on Ubuntu Linux
	Working with Swift 3 on the web
	Capturing objects from the real world
	Generating classes to create objects
	Recognizing variables and constants to create properties
	Recognizing actions to create methods
	Organizing classes with UML diagrams
	Working with API objects in the Xcode Playground
	Exercises
	Test your knowledge
	Summary

	Chapter 2: Structures, Classes, and Instances
	Understanding structures, classes, and instances
	Understanding initialization and its customization
	Understanding deinitialization and its customization
	Understanding automatic reference counting
	Declaring classes
	Customizing initialization
	Customizing deinitialization
	Creating the instances of classes
	Exercises
	Test your knowledge
	Summary

	Chapter 3: Encapsulation of Data with Properties
	Understanding elements that compose a class
	Declaring stored properties
	Generating computed properties with setters and getters
	Combining setters, getters, and a related property
	Understanding property observers
	Transforming values with setters and getters
	Creating values shared by all the instances of a class with type properties
	Creating mutable classes
	Building immutable classes
	Exercises
	Test your knowledge
	Summary

	Chapter 4: Inheritance, Abstraction, and Specialization
	Creating class hierarchies to abstract and specialize behavior
	Understanding inheritance
	Declaring classes that inherit from another class
	Overriding and overloading methods
	Overriding properties
	Controlling whether subclasses can or cannot override members
	Working with typecasting and polymorphism
	Taking advantage of operator overloading
	Declaring compound assignment operator functions
	Declaring unary operator functions
	Declaring operator functions for specific subclasses
	Exercises
	Test your knowledge
	Summary

	Chapter 5: Contract Programming with Protocols
	Understanding how protocols work in combination with classes
	Declaring protocols
	Declaring classes that adopt protocols
	Taking advantage of the multiple inheritance of protocols
	Combining inheritance and protocols
	Working with methods that receive protocols as arguments
	Downcasting with protocols and classes
	Treating instances of a protocol type as a different subclass
	Specifying requirements for properties
	Specifying requirements for methods
	Combining class inheritance with protocol inheritance
	Exercises
	Test your knowledge
	Summary

	Chapter 6: Maximization of Code Reuse with Generic Code
	Understanding parametric polymorphism and generic code
	Declaring a protocol to be used as a constraint
	Declaring a class that conforms to multiple protocols
	Declaring subclasses that inherit the conformance to protocols
	Declaring a class that works with a constrained generic type
	Using a generic class for multiple types
	Combining initializer requirements in protocols with generic types
	Declaring associated types in protocols
	Creating shortcuts with subscripts
	Declaring a class that works with two constrained generic types
	Using a generic class with two generic type parameters
	Inheriting and adding associated types in protocols
	Generalizing existing classes with generics
	Extending base types to conform to custom protocols
	Test your knowledge
	Exercises
	Summary

	Chapter 7: Object-Oriented and Functional Programming
	Refactoring code to take advantage of object-oriented programming
	Understanding functions as first-class citizens
	Working with function types within classes
	Creating a functional version of array filtering
	Writing equivalent closures with simplified code
	Creating a data repository with generics and protocols
	Filtering arrays with complex conditions
	Using map to transform values
	Combining map with reduce
	Chaining filter, map, and reduce
	Solving algorithms with reduce
	Exercises
	Test your knowledge
	Summary

	Chapter 8: Extending and Building Object-Oriented Code
	Putting together all the pieces of the object-oriented puzzle
	Adding methods with extensions
	Adding computed properties to a base type with extensions
	Declaring new convenience initializers with extensions
	Defining subscripts with extensions
	Working with object-oriented code in iOS apps
	Adding an object-oriented data repository to a project
	Interacting with an object-oriented data repository through Picker View
	Exercises
	Test your knowledge
	Summary

	Appendix: Exercise Answers
	Chapter 1, Objects from the Real World to the Playground
	Chapter 2, Structures, Classes, and Instances
	Chapter 3, Encapsulation of Data with Properties
	Chapter 4, Inheritance, Abstraction, and Specialization
	Chapter 5, Contract Programming with Protocols
	Chapter 6, Maximization of Code Reuse with Generic Code
	Chapter 7, Object-Oriented and Functional Programming
	Chapter 8, Extending and Building Object-Oriented Code

	Index

